
Kratos:	Discovering	Inconsistent	
Security	Policy	Enforcement	
in	the	Android	Framework

Yuru	Shao,	Jason	Ott†,	Qi	Alfred	Chen,
Zhiyun	Qian†,	Z.	Morley	Mao

University	of	Michigan,	†University	of	California	Riverside

1



Security	Policy	Enforcement

• Security	policies	regulate	access	to
– Sensitive	data
– System	resources
– Privileged	operations

• Policies	need	to	be	correctly	enforced

2



Inconsistencies	exist

3

Telecom	Service Telephony	Service

(2)	endCall()

Check	CALL_PHONE

Privileged	Methods

The	enforcement	of	a	security	policy	on	different	code	
paths	can	be	inconsistent

(3)	onReceive()

No	security	
check!

• According	to	the	Android	documentation
– apps	that	hold	a	CALL_PHONE permission	 can	end	phone	calls

(1)	endCall()

Check	SYSTEM



Security	implication

• Privilege	escalation

4

Request	fewer	
permissions.

Exploiting
Inconsistencies



Security	implication

• Privilege	escalation

5

Request	fewer	
permissions.

Exploiting
InconsistenciesBesides	app	permissions,	attackers	can	also	

bypass	system	permissions



Inconsistent	security	policy	enforcement

• Also	found	in	SELinux and	Xen1
– Unauthorized	user	account		access
– Permanent	data	loss

• No	solution	for	the	Android	framework
– Prior	work	is	OS	specific
– Android	has	no	explicitly	defined	policies

6

[1]	Lin	Tan	et	al.	AutoISES:	Automatically	 Inferring	Security	Specification	 and	Detecting	
Violations.	 USENIX	Security	2008.



Problem	statement

• Focusing	on	the	Android	framework,	we	
answer	the	following	question:
– How	can	we	systematically	detect	inconsistent	
security	policy	enforcement	without	any	
knowledge	of	the	policies?

7



Our	approach

• Discover	app-accessible	service	interfaces that	
have	overlaps	in	functionality
– They’re	expected	to	have	consistent	security	
enforcement

• Perform	a	differential	analysis on	security	
checks	that	two	overlapping	interfaces	
employ

8



Differential	analysis

storeSMS(...) storeMMS(...)

...…

storageProvider

enforcePhone()

{RADIO} �

enforcePhone() checks	if	the	caller’s	UID	is	1001	(RADIO)
9



Pruning

storeSMS(...) storeMMS(...)

...…

storageProvider

ContentValues.put(...) String.equal(...)

{RADIO} �

enforcePhone() checks	if	the	caller’s	UID	is	1001	(RADIO)
10

enforcePhone()



App-accessible	service	interfaces

• Analysis	scope:	system	services
– System	services	perform	enforcement

• Service	interfaces
– AIDL	methods
– Broadcast	receivers

AIDL:	Android	interface	definition	language

Binder IPC
add

startScan
...

add
startScan
...

App WiFi
Service

11

broadcasts



Security	checks

• Security	enforcement:	a	set	of	security	checks
• We	formulate	four	types	of	checks

– Permission	check
– UID/PID	check
– Package	name	check
– Thread	status	check

12



Kratos	Design

Java	Class
Files

Relevant
Security	

Check	Types

Pre-processing

Call	Graph	
Construction

Call	Graph	
Annotation

Inconsistency	
Detection

Inconsistent
Security

Enforcement

Explore	the	codebase	 to	find
• All	system	 services	&	interfaces
• Look	at	service	registration

Build	a	precise	framework	call	graph
• Points-to	analysis
• IPC	shortcuts

Identify	security	checks	applied	 to	
each	node	(method)

Compare	security	enforcement	 of	
service	 interfaces	 if	they
• Call	 the	same	privileged	methods

1. Permission
2. UID/PID
3. Package	name
4. Thread	status

Ranked	 list	 for	manual	
investigation13



Implementation
• Support	AOSP	and	customized	frameworks

– Obtain	Java	classes	from
• Intermediate	building	output	(AOSP)
• Decompiled	dex files	(customized)

• Build	a	precise	framework	call	graph
– Points-to	analysis	using	Spark
– An	artificial,	static	entry	point	including	all	app-
accessible	service	interfaces

• Perform	data	flow	analysis
– Identify	security	check	methods
– Collect	system	services

14



Evaluation
• 6	different	Android	codebases

– AOSP	4.4,	5.0,	5.1	and	M	Preview
– HTC	One,	Samsung	Galaxy	Note	3

• Accuracy

15

Codebase	 #	Inconsistencies #	TP	 #	FP	 Precision	 #	Exploitable	

Android	4.4	 21	 16	 5	 76.2%	 8
Android	5.0	 61	 50	 11	 82.0%	 11	
Android	5.1	 63	 49	 14	 77.8%	 10	
M	Preview 73	 58	 15	 79.5%	 8	

AT&T	HTC	One 29	 20	 9	 69.0%	 8	
T-Mobile	

Samsung	Galaxy	
Note	3

128	 102	 26	 79.7%	 10	



False	positive	and	exploitability

• False	positives	exist
– Two	interfaces	are	not	equivalent	in	functionality
– Points-to	analysis	produces	over-approximated	
results

• Not	all	inconsistencies	are	exploitable
– Difficult	to	construct	valid	arguments
– Difficult	to	trigger	particular	privileged	methods

16



Vulnerabilities	discovered

• We	found	14	vulnerabilities

• 5	out	of	14	affect	all	codebases
• Bug	reports	confirmed	by	Google

– Results	website:	http://tinyurl.com/kratos15
17

Zero-days

Previously	reported	or	fixed



Case	study	1

• Bypass	system	permission	to	change	HTTP	
proxy	settings

18

udpateNetwork(conf) save(conf)

Check
CHANGE_WIFI_STATE

CONNECTIVITY_INTERNAL

addOrUpdateNetworkNative(conf)

Check
CHANGE_WIFI_STATE
ACCESS_WIFI_STATE

Documented	 in	
Android	SDK Hidden,	undocumented

• Allows	attackers	to	bypass	the	system	permission
• MITM,	eavesdropping,	traffic	interception,	…

CONNECTIVITY_INTERNAL	is	
a	system	permission

4.4.2_r1.	
Fixed	 in	Android	
5.0.0_r1



Case	study	2

• Send	arbitrary	requests	to	the	radio	hardware	
without	any	permissions

19

invokeOemRilRequestRaw(r)
sendRequestRawToRIL(r)

PhoneInterfaceManager PhoneInterfaceManagerExt
(Samsung-customized)

Check
CALL_PHONE	

Radio	 Interfaces

No	security	
checks!

• Allows	attackers	to	send	arbitrary	requests	to	radio	on	
vulnerable	Samsung	phones

• Send	SMS,	make	phone	calls,	…



Other	observations

• 11	vulnerable	interfaces	are	hidden to	apps
– Not	available	in	the	Android	SDK
– Invoke	using	Java	reflection

• AOSP	frameworks
– New	system	services	introduce	new	inconsistencies,	
leading	to	new	vulnerabilities

• Customized	frameworks
– Samsung	added	many	system	services

• Introduced	2	additional	vulnerabilities
• One	present	in	AOSP	was	fixed

20



Conclusions

• Inconsistent	security	policy	enforcement	gives	rise	
to	many	vulnerabilities

• Our	tool	is	practical	and	useful	for	AOSP,	vendors,	
and	carriers	

• Our	approach	is	general	and	can	be	applied	to	
other	systems

• To	ensure	system	security,	the	implementation	
must	faithfully	realize	the	design

21



Q&A

• Thank	you!

22


