Kratos: Discovering Inconsistent
Security Policy Enforcement
in the Android Framework

Yuru Shao, Jason Ott", Qi Alfred Chen,

Zhiyun Qian®, Z. Morley Mao
University of Michigan, TUniversity of California Riverside

UNIVERSITY OF CALIFORNIA
M UNIVERSITY OF MICHIGAN I% | V E R S I D E

1

Security Policy Enforcement

e Security policies regulate access to
— Sensitive data
— System resources

— Privileged operations
* Policies need to be correctly enforced

Inconsistencies exist

* According to the Android documentation
— apps that hold a CALL PHONE permission can end phone calls

Telecom Service

(1) endCall()

Telephony Service

v

(2) endCall()

(3) onReceive()

Check SYSTEM

v

Check CALL_PHONE

——34

Privileged Methods

The enforcement of a security policy on different code
paths can be inconsistent

Security implication
* Privilege escalation

@ PoC App

@ PoC App

Do you want to install this
application?

Do you want to install this
application?

Exploiting
Allow this application to: . . Allow this application to:
Your location |nC0nS|StenC|es ¢ Network communication

fine (GPS) location | full Internet access

Network communication
full Internet access

Request fewer
permissions.

Phone calls
read phone state and identity

Services that cost you

money
directly call phone numbers

Cancel Install Cancel Install

Security implication

* Privilege escalation

9

@ PoC App @ PoC App

Do you want to install this

Do you want to install this
ation? icati

ation?

Besides app permissions, attackers can also
bypass system permissions

money
directly call phone numbers

Cancel Install Cancel Install

Inconsistent security policy enforcement

* Also found in SELinux and Xen?
— Unauthorized user account access
— Permanent data loss
* No solution for the Android framework

— Prior work is OS specific
— Android has no explicitly defined policies

[1] Lin Tan et al. AutolSES: Automatically Inferring Security Specification and Detecting
Violations. USENIX Security 2008.

Problem statement

* Focusing on the Android framework, we
answer the following question:
— How can we systematically detect inconsistent

security policy enforcement without any
knowledge of the policies?

Our approach

* Discover app-accessible service interfaces that

have overlaps in functionality
— They’re expected to have consistent security
enforcement

* Perform a differential analysis on security
checks that two overlapping interfaces
employ

Differential analysis

storeSMS(...) storeMMS(...)

enforcePhone()

{RADIO} u %,

storageProvider

enforcePhone () checksif the caller’s UID is 1001 (RADIO)

9

Pruning

storeSMS(...)

ContentValues.put(...)

enforcePhone()

storeMMS(...)

String.equal(...)

{RADIO} u

%)

storageProvider

enforcePhone () checksif the caller’s UID is 1001 (RADIO)

10

App-accessible service interfaces

* Analysis scope: system services
— System services perform enforcement

* Service interfaces

— AIDL methods
— Broadcast receivers

WiFi
Service

-

add = -
startScan

< ¥ add
Binder IPC startScan

===

—

———————

AIDL: Android interface definition language

Security checks

* Security enforcement: a set of security checks
 We formulate four types of checks

— Permission check

— UID/PID check

— Package name check
— Thread status check

Kratos Design

Explore the codebase to find

Java Class —> Pre-processing * All system services & interfaces
Files * Look at service registration
Call Graph Build a precise framework call graph
C . * Points-to analysis
onstruction e |PCshortcuts

Relevafnt Call Graph
Security

Check Types

_ Identify security checks applied to
Annotation each node (method)

1. Permission i

. U Inconsistency '”gzzj':’;flnt

3. Package name Detection

4. Thread status Enforcement
Compare security enforcement of Ranked list for manual
service interfaces if they investigation

* Call the same privileged methods

Implementation

* Support AOSP and customized frameworks

— Obtain Java classes from
* Intermediate buildingoutput (AOSP)
 Decompiled dexfiles (customized)

* Build a precise framework call graph
— Points-to analysis using Spark

— An artificial, static entry point including all app-
accessible service interfaces

 Perform data flow analysis
— ldentify security check methods
— Collect system services

Evaluation

6 different Android codebases

— AOSP 4.4, 5.0, 5.1 and M Preview
— HTC One, Samsung Galaxy Note 3

* Accuracy
Codebase # Inconsistencies #TP #FP Precision # Exploitable
Android 4.4 21 16 5 76.2% 8
Android 5.0 61 50 11 82.0% 11
< Android 5.1 63 49 14 77.8% 10 >
M Preview 73 58 15 79.5% 3
AT&T HTC One 29 20 9 69.0% 8
T-Mobile
Samsung Galaxy 128 102 26 79.7% 10

Note 3

15

False positive and exploitability

* False positives exist

— Two interfaces are not equivalent in functionality

— Points-to analysis produces over-approximated
results

* Not all inconsistencies are exploitable

— Difficult to construct valid arguments
— Difficult to trigger particular privileged methods

Vulnerabilities discovered

e We found 14 vulnerabilities

" Previously reported or fixed

B Zero-days

e 5 out of 14 affect all codebases

* Bug reports confirmed by Google
— Results website: http://tinyurl.com/kratos15

17

Case study 1

* Bypass system permission to change HTTP

- -
- ._—
I -

udpateNetwork(conf) save(conf)

v

CHANGE_WIF|_STATE
CONNECTIVITY INTERNAL

CONNECTIVITY_INTERNAL is l
a system permission

........................... addOrUpdateNetworkNative(conf)

* Allows attackers to bypass the system permission
* MITM, eavesdropping, trafficinterception, ...

CHANGE_WIF|_STATE

ACCESS_WIFI_STATE

4.4.2 rl.
Fixed in Android
5.0.0_r1

Case study 2

* Send arbitrary requests to the radio hardware
without any permissions

PhonelnterfaceManager PhonelnterfaceManagerExt
(Samsung-customized)

invokeOemRilRequestRaw(r)

sendRequestRawToRIL(r)

Check

CALL PHONE

l “27 No security |
checks!

Radio Interfaces

* Allows attackers to send arbitrary requests to radio on
vulnerable Samsung phones
 Send SMS, make phonecalls, ...

Other observations

* 11 vulnerable interfaces are hidden to apps
— Not available in the Android SDK
— Invoke using Java reflection

e AOSP frameworks

— New system services introduce new inconsistencies,
leading to new vulnerabilities

e Customizedframeworks

— Samsung added many system services
* Introduced 2 additional vulnerabilities
* One presentin AOSP was fixed

Conclusions

Inconsistent security policy enforcement gives rise
to many vulnerabilities

Our tool is practical and useful for AOSP, vendors,
and carriers

Our approach is general and can be applied to
other systems

To ensure system security, the implementation
must faithfully realize the design

Q&A

* Thank you!

