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Abstract ity at a particular point of time are of limited use because
evil is constantly on the move. Administrators often even-
Internet-based services routinely contend with a range of tually discover and clean up infected hosts, which causes
malicious activity (e.g., spam, scans, botnets) that can po attackers to target new vulnerabilities and attack newshost
tentially arise from virtually any part of the global Integh elsewhere. Indeed, operators care far more about the evolu-
infrastructure and that can shift longitudinally over time tion of malicious activity than static snapshots, as the evo
this paper, we develop the first algorithmic techniques to au lution provides warning signs of emerging threats from re-
tomatically infer regions of the Internet with shifting sec  gions previously-considered benign.
rity characteristics in an online fashion. Conceptuallyro However, there has been little work on developing al-
key idea is to model the malicious activity on the Internet as gorithms that can automatically infer haaggregationsof
a decision tree over the IP address space, and identify themgajicious IPs evolve over time. Previous work has either
dynamics of the malicious activity by inferring the dynamic reated static snapshots [28, 29], or has explored the feasi
of the decision tree. Our evaluations on large corpuses of pjjity of using various a priori fixed IP clustering schemes
mail data and botnet data indicate that our algorithms are ¢y, spam-filtering over longer periods [9, 13, 22, 27, 30],
fast, can keep up with Internet-scale traffic data, and can among which BGP-based prefix clustering schemes, such

extract changes in sources of malicious activity substan- 55 pnetwork-aware clusters [19] have been especially popu-
tially better (a factor of 2.5) than approaches based on us- |31 One challenge is it is not obvious a priori what level

ing predetermined levels of aggregation such as BGP-basedyt aggregation granularity to use. While we know mali-
network-aware clusters. Our case studies demonstrate ourcioys [P addresses tend to be clustered, e.g., to ISPs with
algorithm’s ability to summarize large shifts in malicious poorly-managed networks [5, 21, 23, 30], many natural op-
activity to a small number of IP regions (by as much as two tions for a particular granularity provide inaccurate tesu
orders of magnitude), and thus help focus limited operator gy instance, the individual IP address is too fine-grained
resources. Using our algorithms, we find that some regions provide useful results [16,23, 30, 31], e.g., DHCP can
ofthe Internet are prone to much_faste_r changes_ than others,Cause asingle attacker to appear and disappear quickly from
such as a set of small and medium-sized hosting providersspecific |P addresses. On the other hand, predetermined
that are of particular interest to mail operators. aggregations of IP addresses such as by AS or BGP pre-

fix also does not afford the correct granularity. For exam-

ple, network-aware clustering using BGP routing prefixes
1 Introduction are likely to cluster the yvell-managed infrastructure bost
of an ISP together with its poorly-managed broadband ac-
cess customers. This is highlighted in several recent re-
sults [9, 13, 22, 27], which have illustrated that BGP-based
IP aggregations allow only for a coarse classification of ma-
licious activity.

Business-critical Internet-based services have to rou-
tinely contend with and mitigate a range of malicious ac-
tivity (e.g. spam, scans, botnets) that can arise from vir-
tually any part of the global Internet infrastructure. lden
tifying the regions of malicious activity on the Internet is
valuable for enhancing the security of networks, applica-  Since there are no obvious natural a priori aggregations
tions, and end-users along multiple dimensions and time-to use, we need to be able to automatically infer the ap-
scales. However, static snapshots showing malicious-activ propriate aggregation levels for detecting changes in dif-



ferent parts of the Internet, based on current observationsrespectively, that address the above two questions. At a
The appropriate aggregation varies drastically from negio high-level,A-Change answers the first question by analyz-
to region: some regions, such as small or mid-sized hostinging how well the different prefix aggregations in the static
providers, likely need to be monitored at very fine granu- snapshots model input data. By design, it ensures that every
larities (such a /24 or smaller prefix size), while other re- prefix identified by our algorithms has indeed undergone a
gions (e.g., entire countries that appear to be spam havens}hange, i.e., our list oA-bad andA-good prefixes has no
need to be monitored at much coarser granularities. Thefalse positives.A-Motion answers the second question by
problem becomes even more critical as IPv6 starts to getusing previously-accurate snapshots to identify indigidu
widely deployed — it is infeasible to even enumerate every IP addresses that have changed their behaviour, and then
IP address in the IPv6 address space. A practical algorithmpartitions the address space into regions that have a high
therefore needs to scale as a function of the number of dis-volume of changes and regions that have few changes. Our
tinct prefix aggregations needed, not as a function of thealgorithms work without assuming a fixed distribution of
size of the address space. A further complication is thatIP addresses (a common assumption in many learning al-
not every change in malicious activity is useful to find, g.g. gorithms, which allows for easier learning and inference).
newly spamming IPs are of little interest if they belong to Indeed, part of the data comes from malicious adversaries
a well-known spam haven, but of substantial interest if they who have an incentive to mislead our algorithms and evade
belong to a well-managed business network. Previous workdetection.

has not addressed this problem. We evaluate our algorithms experimentally on two dif-
In this paper, we develop the first algorithmic techniques ferent sources of malicious activity from a tier-1 ISP — four
to automatically infer regions of the internet wishifting months of mail data labeled with spamming activity, and
security characteristics in an online fashion. We call an IP three months of network traces labeled with botnet activity
prefix that turns from good to evilA-bad prefixand abad  and we demonstrate that our algorithmic techniques can find
prefix that sees the light and becomes godd-good prefix changes in spam and botnet activity. In particular, our ex-
Our key idea is that shifts in malicious activity will trigge  periments showve can find more shifts in malicious activ-
errors in an accurate classifier of the IP address space’s maity by a factor of 2.5 than by applying extensions of existing
licious activity. We model the IP address space as a decisiorstatic algorithms such as network aware clustéfarough
tree, which when given a particular prefix, outputs a label case studies, we demonstrate how our algorithms can pro-
“good” or “bad”. We also periodicially measure the errorin vide operators with a network-wide understanding of mali-
the decision tree, i.e., measure when it labels an IP prefix agious activity (both internal as well as external), and help
good when it is, in fact, originating malicious traffic. The them prioritize scarce manual effort to the most affected re
intuition is that when the decision tree has such errors ongions. For example, in one case study, our algorithm sum-
prefixes that it used to label accurately, it is not indiaativ - marized a large shifts in botnet activity into a very small
of a problem with the decision tree, but instead indicative 0 number ofA-change prefixes (22,000-36,000 new IPs from
aA-good orA-bad change. An additional challenge is that DNSChanger and Sality botnets into 19-66 prefixes — a drop
not all prefixes need to be modeled at the same granularof over two orders of magnitude). In another case study,
ity, e.g., AT&T’s prefix should not be modeled at the same our algorithm discovered a large number of regional ISPs
granularity as MIT, even though both own a /8. A key com- whose spamming activity dropped during the takedown of
ponent of our algorithm is it automatically infers the right the Grum botnet.  Finally, we find that there are certain
granularity to minimize error in labeling IP prefixésgood regions of the IP address space that are much more prone to
or A-bad. changes in spamming activity. For example, we found that a
More specifically, we present two algorithms to answer set of small and mid-sized hosting providers (which do not
two main questions. First, can we identify the specific re- appear as distinct entities in BGP prefixes) are extremely
gions on the Internet that have changed their malicious ac-prone to changes in spam activity — this is an intuitive re-
tivity? Second, are there regions on the Internet that ohang sult which network operators can easily validate (and then
their malicious activity much more frequently than others? begin to monitor), and which our algorithm discovered au-
The first question helps operators quickly focus their atten tomatically from noisy decision tree snapshots with nearly
tion on the region of importance, e.g., if one of their net- 100,000 nodes each.
works is suddenly compromised. The second question ex-  Our algorithms are also scalable: our current (unopti-
plores structural properties about the nature of changes inmized) implementation is able to process a day’s worth
malicious activity, highlighting the prefixes that need ® b of data (30-35 million IPs) in around 20-22 minutes, on a
“under watch”, as they are among the most likely to be fu- 2 4GHz processor with only a single pass over the data and
ture sources of attacks. uses only 2-3 MB of memory. Further, a switch to IPv6
We present two algorithms)-Changeand A-Motion will have relatively little impact on our algorithm, as ther



quired size of the decision trees is only a function of the dis
tinct administrative entities in terms of malicious betvawi Root: /0 Roct: /0
rather than the size of the address space.

More broadly, our results show that while there is plenty
of change in the malicious (both spamming and botnet) ac-
tivity on the Internet, there is also significant structunel a /22
predictability in these changing regions, which may be use-
ful for enhancing mitigation strategies.
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2 Definitions and Preliminaries
Our high-level goal is to design an algorithm that takes (@) No change (b) Change

as input a stream of IP addresses flagged malicious or non- Figure 1. Example of A-bad Changes. (a) shows a
malicious (e.g., spam logs, labeled with spam-filtering-sof prefix that is not A-bad, because /23 starts originating
ware), and finds a set of IP prefixes whose IP addresses Malicious traffic when its parent/22 is already known to

have changed from malicious to non-malicious, or vice-  ©riginate malicious traffic (b) shows a prefix that is de-

versa, across the stream. In this section, we describe how fined asA-bad, because the /23 starts originating mali-
important changes can be naturally modeled by monitoring C'Ollj.s.traﬁ'tc V\;fhen its parent /22 is not known to originate

a decision tree on the IP address space. malicious traftic.

Background.  We first introduce some standard machine hand, the larger prefix (e.g., the parent /22) has originated
learning terminology. Aclassification functiorfor aclassi-  ©nly legitimate traffic so far, the new spamming activity be-
fier) is a function that takes as input a given IP address, andcomes much more interesting to network operators, because
outputs dabeldenoting whether the IP address is malicious they previously assumed that the region did not spam. By
(also denoted by a “-") or non-malicious (also denoted by a notifying operators of the change, they can control or block
“+). The classification function makesmistakewhenever ~ the spam from the /23 to their networks. We illustrate this

it labels a malicious IP address as non-malicious, or a non-€xample in Figure 1.

malicious IP address as malicious. Tdlassification error A key part of this example is having an accurate clas-
of a classification function is the fraction of the input IRad sifier for the the type of traffic originated by the two /22
dresses on which it makes a mistake. prefixes — we need to know what kind of traffic a particular

We also introduce some networking background.IRn  region is expected to originate, before we can understand
address prefialso calledIP prefiy) i/d denotes the part when the region has changed its malicious activity. How-
of the IP address space that is covered by the dirsits ever, we do not have such a classifier given to us as input,
of ¢, e.g., the prefix.0.0.0.0/8 indicates the part of the IP  and we need to infer it dynamically from a stream of IP ad-
address space whose first octel s i.e., all IP addresses dresses and their associated labels. Thus, to infer change,
in the setl0. * . = .x. Note that the prefix/d + 1, (i.e., we first have to infer such a classifier for the prefixes from
10.0.0.0/9 in our example) denotes a subset of the addressthe labeled IP addresses, and then use this classifier to infe
denoted that/d (i.e.,10.0.0.0/8). The IP address hierarchy changes. Moreover, the appropriate prefix granularity for
can be naturally interpreted as a binary tree: the leaves ofsuch a classifier is different in different parts of the Inter
the tree correspond to individual IP addresses, the internanet, we need to also infer the required prefix granularities.
nodes correspond to the IP prefixes, and IP prgfixs the Because it is likely impossible to infer a classifier withaer
parent of the prefix/d + 1 in this representation. We say error, we instead will look for changes relative to any clas-

that IP prefixz belongs to prefiy if x is a parent ofy in sifier that makes no more tharerror on the data, for small

this tree, e.9.10.0.0.0/9 belongs t010.0.0.0/8. (input) 7 > 0. By definition, all such classifiers must clas-
sify most of the data identically. In particular, lgtdenote

2.1 Modeling the Problem the stream of inpu& I P, label > pairs appearing in epoch

We begin with a motivating example. Consider a /23 pre- ¢; our goal is to detect prefixes that have changesin
fix owned by an access provider, and suppose that a numbefelative to a classifier that makes no more than an input
of hosts with IP addresses in this /23 get compromised and€lror ons;.
start spamming. Now if this /23 prefix belongs to a larger  Algorithmic constraints and Adversarial Moddlhe
prefix (say, a parent /22) that is already a known spam-scale of network traffic makes it infeasible to use compu-
haven, this new spamming activity of the /23 is not very tationally expensive algorithms. In particular, a solatio
interesting to an operator, since the larger region is knownshould have constant processing time per IP, make only a
to spam (i.e., it is not surprising that a smaller region imith  single pass over the input streams, and have memory re-
a known spam-haven also starts to spam). If, on the otherquirements that are sublinear in the input data size. Such al



0.0.0.0/0 sending between — 20% spam. Conceptually, the state
00.0.0/1 128.0.0.0/1 of a prefix can be thought of measuring the level of "bad-
ness” of the prefix. We definelacalizedchange in a prefix
to be one where the prefix has changed its state, and our
goal is to find only localized changes. For example, sup-
pose the seb consists of two interval®, 0.2) and[0.2, 1).
1280004 O O 15200074 A prefix that used to send less thaa% spam, but now
o sends betwee20 — 100% has undergone a localized change
] (in effect, the prefix is considered non-malicious if it send
Figure 2. Example IPtree ofsize_6, since it has 6 leaves. less thar20% spam, and malicious if it sends at le2st%
Each leaf has a "+ or a ™", denoting whether the asso- spam, and we are only interested in finding when the prefix
C.'atEd pr?f'x originates non-malicious or malicious traf- changes from malicious to non-malicious, or vice-versa.)
fic. Section 3 describes how we learn such a tree from L . ) -
data. The setD is input to the algorithm. Continuous intervals
gorithms are callednline, and are among the most desired provide finer-grained data to operators than just malicious
(and difficult to create). In addition, our data may have to and non-malicious. Of course, in reports to the operators,
have somenoise— e.g., an IP may be labeled as produc- we can always reduce to just malicious and non-malicious
ing spam incorrectly. For example, if our labels are com- if desired.?

ing from SpamAssassin, and SpamAssassin mislabels |egit1\/|odeling Malicious Activity of Prefixes as Decision

imate mail from an IP as spam, then our algorithm receivestree,  We take advantage of the structural properties of
aninaccuracy label for this IP, and must be able to cope with jicious activity in order to design an efficient and ac-

this inaccuracy. Our algorithm’s performance thus needs to;rate algorithm for detecting changes. Prior work has

scale gracefully as the noise increases, and be able t0 progemonstrated that malicious traffic tends to be concemtrate
duce accurate output when the noise in the data is tiny. Fi-j; some parts of the address space [5, 21, 23, 30] — that is
nally, we cannot assume that input IPs are drawn from ahe |p address space can be partitioned into distinct prefix-
fixed probability distribution ovef. Although assuminga  pased regions, some of which mostly originate malicious
fixed distribution would be easier, it would make the algo- (affic and some that mostly originate legitimate traffic. We
rithm easier to evade. In particular, we assume an adversarypserve that the IP address space can be represented as a
can pick the addresses from which malicious activity origi- ree of prefixes. Thus, we can model the structure of ma-
nates, and therefore, could mislead any algorithm assumingjcioys activity as a decision tree over the IP address space
that all IPs originate from a priori fixed distribution.  pjerarchy rooted at the /0 prefix: the leaves of this tree are
Practical consideration¥here are additional constraints prefix-based partitions that send mostly malicious or ryostl
that make the algorithm more useful by directing atten- non-malicious traffic; this is a decision tree since each lea
tion towards changes that are most actionable by operatorsi the tree can be considered as having a "label” that indi-
First, we aim to detect prefixes with at le@straffic since  cates the kind of traffic that the corresponding prefix-based
(1) data may be occasionally mislabeled, and (2) changes inyegion originates (e.g., the label might be "bad” when the
prefixes with very little traffic may not be noteworthy. region originates mostly malicious traffic, "good” when the
In addition, operators only care about prefixes where the region originates mostly legitimate traffic). The changes i
change is directly evident: i.e., if the prefix changes from prefix behaviour can then be precisely captured by changes
originating mostly non-malicious activity to mostly mali- in this decision tree. In Sec. 3, we describe how we learn

cious activity, or vice versa.To formalize this concept, we  this decision tree to model the malicious activity from the
introduce the concept ofstateto reflect level of malicious  (ata.

0.0.0.0/2 O 192.0.0.0/2
+ - +

160.0.0.0/3
+

activity of a prefix. Formally, stateis defined by an inter- More formally: letZ denote the set of all IP addresses,
valin [0, 1]; the set of all state® input to the algorithmis  andP denote the set of all IP prefixes. ARTreeTp over
given by a collection of non-overlapping intervals[in1].  the |P address hierarchy is a tree whose nodes are prefixes

A prefix is assigned a state based on the fraction of traffic p < P and whose leaves are each associated with a la-
it originates that is non-malicious. Thus, for example, the pe|, malicious or non-malicious. An IPtree thus serves as a
state defined by the intervill, 0.2] is assigned to prefixes  cjassification function for the IP addresgesAn IP address
1There may be situations where a prefix undergoes changeshebut e .I .gets the label aSSOCIa.ted with its Ior.]geSt matching
change is not directly observed when traffic is aggregatettiaatprefix, prefix in the tree. Ak-IPtree is an IPtree with at most

e.g., a prefix could originate roughly the same amount of cimals and leaves. By fixing the number of leaves, we get a constant-
non-malicious traffic ins;1 as it did ins¢, but misclassify both malicious
and non-malicious activity os; 1 (perhaps because some of its children 2We could also define changes in terms of the relative shitiénna-
prefixes have changed). We ignore such changes in this papkewyare licious activity of the prefix. However, the definition we usgove allows
not typically actionable. for a conceptually easier way to explain prefix behavior.




sized data structure. Thaptimal k-IPtree on a stream of  happens, but actual ownership (and corresponding security
IP address-label pairs is thelPtree that makes the small- properties) may happen at finer or coarser prefix granu-
est number of mistakes on the stream. Figure 2 shows arlarity. (Likewise, ASes are also not an appropriate rep-
example IPtree of size 6. resentation because even though the Internet is clustered

We define prefix changes in terms of the IPTree: We de-into ASes, there is no one-to-one mapping between ser-
fine aA-bad prefixfor an IPTre€l” as a prefixp that starts ~ vice providers and ASes [3].) Our experiments in Sec. 4.1
to originate malicious traffic wheft’ labels traffic fromp demonstrate this, where network-aware clusters identify
as legitimate. Likewise, &-good prefixis a prefixp that around 2.5 times feweAA-change prefixes than our algo-
starts to originate legitimate traffic wheh labels traffic rithms. For example, such an algorithm fails to repfrt
from p as malicious. In the example of Fig. 1, the /24s in the changes in small to medium hosting providers. These host-
first and second scenarios are labeled as malicious and noning providers are located in different regions of the world;
malicious respectively. The /25 in the second case sendshe provider manages small prefix blocks, but these prefix
traffic that differs from the tree’s label. Fig. 1(b) shows an blocks do not appear in BGP prefixes. Any change in the
exampleA-bad prefix. Without loss of generality, we will hosting provider’s behavior typically just disappearint
useA-change prefixo refer to eitherA-good or aA-bad the noise when observed at the owning BGP prefix, but
prefix. We of course report back to an operator whether acan be the root cause of malicious activity that the opera-
A-change prefix ig\-bad orA-good. tor should know about.

In this paper we use TracklPTree as a subroutine in ourg2.vman Approaches based on TracklPTree. A sec-
algorlthms_ln order to infer de_uspn trees from the data 4 approach would be to learn IPTree snapshots that can
stream, as it meets all our algorithmic requirements foF sca ¢ 5sgify the data accurately for different time intervalsd
ably building near-optimal decision trees over advers$aria simply "diff’ the IPTree snapshots to find the-change pre-

IP address data [29]. (Note TrackIPTree does not solve thegyog “TrackiPTree [29] is a natural choice to constructéhes
problem of detecting the changed prefixes posed in this Paprree a5 it can build a near-optimal classifier. However,

per, even with a number of extensions, as we discuss in Secg, o, with near-optimal IPTrees, we cannot directly com-
tion 2.2.) Conceptually, TrackiPTree keeps track of a large pare them to accurate find-change prefixes.

collection of closely-related decision trees, each of Wwhic Let s, s, be two arbitrary input sequences of IPs on

is associated with a particular weight. It predicts the labe ., We’ make no a priori assumptions, as described in
for an IP address by a choosing a decision tree from this setg g tign 2 13 Let T, andT, be the resulting IPtrees after

:nbprlo;()jO(;Uon to ||ts reI:mve v_ve_lght in the ;et; W_hin g'\]feﬂ learning oves, ands, respectively using TrackIPTree [29].
abeled data to learn from, it increases the weights of the oo 416 many immediate ways we could comparand

dheC|S|o_nr:ree? tr?at mﬁke coLregt predlct|onsd,. and de;:_reaEeTb, but when the trees are large, noisy and potentially error-
the weights of those that make incorrect predictions. Hac prone, most of these lead to a lot of false positives. We use

IPTree aqcomplishes _this efﬁc‘e““Y (from both space and pore small examples to illustrate how these differencinrg ap
computatlon perspectives) by l_<eep|r_19 a S|ng_le t_re_e with theproaches fail, and in Section 4, we show that these lead to
weights decomposed appropriately into the individual pre- extremely high false positive rates on real IPTrees.

fixes of the tree. One possible approach to compare two decision trees is
to compare the labels of their leaves. However, the two trees
2.2 Alternate Approaches may assign different labels to a region even when there is
We first discuss a few previous approaches that may apnot a (significant) difference in the relevant partssgfand
pear to be simpler alternatives to our algorithms, and ex- s;, e.g., both trees may be inaccurate in that region, making

plain why they do not work. any differences found to be false positives.
BGP prefixes. A straightforward idea would be to use Even if we know which parts of the tree are accurate, and
BGP prefixes such asetwork-aware clusterfl9], a clus-  restrict ourselves to comparing only “mostly accurate™pre

tering that represents IP addresses that are close in terméxes, we still cannot directly compare the trees. The trees
of network topology. BGP prefixes have been a popular may still appear different because the tree structure is dif
choice in measurement studies of spamming activity andferent, even though they encode almost identical models of
.Spal‘mt_)deteCtrllon SCheg]e? [9,13,22,27,30], buC;[ hlave mcr(_aas 3We make no assumption on the I P, label > pairs that are present
'ng_Y_ een shown to be far too coarse to mode spamming;, sq andsyp. This means that there may be some IPs that are common to
activity accurately [22]. both s, ands;, and others that IPs are not present4nor s,. The labels
Unfortunately, BGP prefixes perform poorly because of the common IPs do not need to be identicakinands,; indeed, we

thev do not model the address space at the appro riatgxpect that in real data, some of the common IPs will havedaheedabels
y p pprop in s, andsy, but others will differ. Even within a single sequengg an

granularity for m‘f’\”CiOUS activity. BGP prefixes. only '€~ 1P does not need to have the same label throughout, it may héieeedt
flect the granularity of the address space at which routing labels at different points in the sequence
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Figure 3. Comparing “Mostly Accurate” Prefixes. T, Figure 4. Comparing prefixes that are accurate as well
and T, classify99% of traffic seen identically, but would as have sufficient traffic. T, and T}, are accurate, and
be flagged different because of differences in the tree share identical leaf labels; however, none of the leaves
structure that affect very little traffic. have enough traffic to be compared.

the malicious activity. We illustrate this with the example ~ rates of overn7%.
Figure 3 (assume that each leaf shown in the figure classifies

over95% of its respective traffic accurgtely). The two tr_ees 3 Our Algorithms
T, andT, (learned oves, ands, respectively) then classify
over99% of IPs identically, yet would be flagged different ST o
if we simply compared their accurate prefixes. Such small ~ Our key insight is to use the classification error between
deviations might just be caused by noise since the trees aréhe two trees in order to infeh-change prefixes. If a pre-
learned over different sequences, esg. might have had fix has had low classification error in earlier time intervals
more noise thaa,. It is of little use to identify sucki\-bad ~ With T’., but now has high classification error (on substan-
prefixes for operators. tial traffic), we can infer that it has undergonéachange.

A third possible approach considers only prefixes that ?I'he.(earlier) low classification error.(on s.ufficient .tra)‘ﬁc
are both “mostly accurate” and have sufficient (at leédst implies our treeT’, used to model this region well in the
traffic, but even then, we cannot simply compare the trees past intervals, but and the current high classificationrerro
Consider Figure 4, where the true tree has a /16 prefix withimplies does not do so any longer. Thus, we infer that the
two /17 children, and one /17 originates only malicious IPs, Préfixhas changedits behavior —thatitis sending traffic tha
while the other /17 originates only legitimate traffic. Ireth IS inconsistent with its past behaviour — and therefore, is a
two learned tree§, and T}, none of the leaves see suffi- A-Change region. As long as we are able to maintain a de-
cient @) traffic.# In this example, the highlighted /16 prefix ~ Cision tree _W|th h|gh predictive accuracy for the sequences
is the longest parent prefix withtraffic in bothZ,, andT},. our analysis can discover most pr_eflxes c_hangmg between
If we analyze the interior prefix's activity by the trafficiah ~ Sa @nds,. Further, by only selecting prefixes that have a
seen, most of the traffic seen by the /16 is non-malicious in high classification error on a substantial fraction of tlad-tr
T, and malicious irf},. Thus, we would flag it as A-bad fic, we puilq some noise-tolerance into our gpproach.
prefix. However, this is once again a false positive — note  This insight shows that we need to achieve the follow-
that all leaf labels irl,, and T} are identical (i.e., no re- N9 three simultaneous goals to address the IPTree evolu-
gion has actually changed its behaviour) — the only changetion problem: (1) keep track of a current model of the ma-
is that a few leaves send less trafficdip and more inT}, licious activity; (2) measure the classification errorstuod t
(and vice versa). Such changes in traffic volume distribu- Current sequence based opréor accurate model; (3) keep
tion occur routinely without malicious regions becoming track of a current model of the frequently changing regions.
benign. For example, some spam-bots may become quieWe keep multiple decision trees over the address to simul-
for a few days while they receive new spam templates, andt@neously achieve these goals. At a high-level, we let one
then restart spamming activities. In Sec. 4.1, we show em-IPtree learn over the current sequence, so it tracks the cur-

pirically that this third approach can lead to false positiv €Nt malicious activity. We _keep second_set of IPtrees fixed

(i.e., they cannot change its labels, weights, or strugture
“We need to analyze the interior prefixes to ensure that we timiss and use them to measure the classification accuracy on the

legitimate changes. For example, imagine a scenario whest af the current sequence. We then compare the classification errors

leaves in’’, are negative, while most of the leaveslipare positive. The ¢ 1na second set of IPtrees (not the IPtrees themselves) on

longest parent prefix with at leagttraffic is an interior prefix, and it has ) i

clearly undergone a change. If we do not analyze the intgriefix, we the different sequences to compute the specific changed pre-

will miss such changes. fixes (details in Section 3.2). For our third goal, we use our

3.1 Overview of Our Approach
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Figure 5. High-level sketch of A-Change Algorithm
learned IPtrees to discover which of the IP addresses in the
current sequence have changed their labels. We then learn
third IPtree based on this information, partitions the addr
space into regions that are change frequently and those tha
do not. (To avoid confusion, we term this third IPtree as
change-IPTregand define it in Section 3.3).

3.2 TheA-Change Algorithm

We now present ourh-Change algorithm which ad-
dresses the question: can we identify the specific regions of
changing malicious activity? Recall thakaPtree is a de-
cision tree over the IP address space with at nkdetwes.
Let sy, s ... denote the sequences of IP addresses at eac
time interval, and lef", denote the IPtree built over the se-
quences,. For readability, we us&,,,,, to denote the tree
that is being learned over the current sequence of IPs, ang
T,14 to denote an older tree that is being kept fixed over the
current sequence of IPs. We ufg, . to denote the tree
T,iq that is annotated with its classification errors on the
sequence,.

At a high-level, we do the following: As each labelled IP
1 arrives in the sequencg, (i) we predict a label with the
treesT,,,» andTy, .; (i) we annotate the tre®,;, . with
its classification error ofy and (iii) we update the model of
T.. With ¢ if necessary. Atthe end of the interval, we com-
pare classification errofB,;q,.—1 With T4, andTe,,., to
discover theA-change prefixes, discarding redundant pre-
fixes as appropriate (i.e., when multiple prefixes reflect the
same change).,; is then updated appropriately (we spec-
ify the details later), so it can used for measuring the clas-
sification errors of the IPs in the next sequence;. We
sketch the high-level view oh-Change in Figure 5.

We describe the construction ®f,,,.- andT,;4, . in Sec-

h

]

tion 3.2.1, and the comparison between the trees in Sec
tion 3.2.2. We describA-Change in terms of multiple trees
for conceptual clarity. However, it may be implemented
with just one IPTree (and additional counters) for efficienc

3.2.1 Constructing the IPTrees

At a high-level, TrackIPTree involves all parent prefixes of
an IP in current IPtree in both in classifying IR as well

A-CHANGE Input: sequence., Toid, Teurr;
for IP-label pair< ¢, label > in s,
pi,curr -= label predicted o using
TracklPTree o ¢yrrr
pi,o1a = label predicted on using
TracklPTree orly,;4
AnnotateTre€(sq, -, 7)

a

Update Cewrr, 4, label)
t ExtractChangedPrefixeg( 4, Teurr);
sub ANNOTATETREE

Input: IPTre€el,ld, IP i, labell
for each parent prefix of 7 in T4
IPj, label] += 1
|f Di,curr 7é DPi,old
mistake§j, label] += 1
Ssub EXTRACTCHANGEDPREFIXES
Input: IPTre€lyq,., IPTreelq4,.—1, IPTree
Tewrr, €rror thresholdy, IP threshold?
Output: Set ofA-changes”
//Step 4: Isolate Candidate Prefixes
Candidate Set oA-changes” = {}
for each prefixj € Toi4,~
error[j] = (mistakesf, +] +
mistakesf, —])/(IPs[j, +] + IPs[j, —1);
if error[j] > v and IPsf] > 6 and
statgj, Toia] # statés, Teurr|
Add prefixj to candidate sef’
//Step 5: Prune Redundant Prefixes
for each prefix € C
for each parenj of cin T4
childMistakes]] += mistakes§];
childIPs[j] += IPs[c]
for each prefix € C
if mistakesf] - childMistakesf] < 6
|| IPs[c] - childIPs[c] < ~
discardc from C
//Step 6: Discover New Children
for each prefix € C
for each child node’ of ¢ in Tey,r
If C, ¢ Told
addsubtree(c) to C

Figure 6. Pseudocode forA-Change
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Figure 7. A-Change Algorithm: lllustrating Steps 1 & 3 for a single IP i. (a)-(c) show Step 1, and (d) shows Step 3. The
shaded nodes indicate the parents of the current IR in the tree.

as in learning from labeled IR Crucially, TracklPTree de-  predictor. Thep; is our final output prediction.

composes the main prediction problem into 3 subproblems,Step 2. Annotating T,,; with Classification Errors.

which it treats independently: (a) deciding the predictbn We next describe how we annotate the IPTFgg to pro-
each individual parent prefix, (b) combining the parent pre- duceT,,, . based on the errors tha,, makes ons,. For
fix predictions by deciding their relative importance, aoj ( this, we éugment the basic IPTree data structure with four
maintaining the tree structure so that the appropriate sub

“additional counters at each prefixBf;4: two counters that

trees are grown and the unwanted subtrees are discardeq(eep track of the number of malicious and non-malicious

These subproblems are cast as instances of experts’ proqps on the sequence, and two counters that keep track
lems [11,20]. of the number of mistakes made on malicious and non-
TracklPTree uses the following data structure, shown in malicious IPs ors,. (This is the only update to the IPtree

Figure 7(a) and (b). Each node in the IPtree maintains two data structure of [29] thak-Change requires.)

sets of weights. One set, termibel predictors decide We do the following for each IR if the output predic-
whether an individual node should predict non-malicious or tjon p, of 7,,, (obtained from Step 1) does not match the
malicious, denotedy;. +,y; -} for nodej (Fig. 7(b)). The  input label of IP4, we increment the number of mistakes
second set, termeeelative importance predictorskeeps  made at each parent prefixih treeT,, .. We track mis-
track of the weight of the prefix’s prediction, in relation to  takes on malicious and non-malicious IPs separately. We
the predictions of other prefixes — we usgto denote this  aiso update the number of malicious and non-malicious IPs
weight for node; (Fig. 7(a)). InA-Change, we augment  seen at the prefix in the sequenge Thus, for example, in
the basic IPTree data structure with a few additional coun- gigyre 7, if the input label of IR is “-” and 7,4 has pre-
ters, so that we can keep track of the classification errorgicted “+”, we update the errors for malicious IPs at each
rates at the different parts of the address space on the curhignlighted parent prefix of, and we also update the num-

rent sequence; (we elaborate further in Step 2). Belowwe  per of malicious IPs seen at each highlighted parent prefix.
describe how we use this data structure in order to apply the

relevant components of TrackIPTree to constiigt.,. and ShteFI) f; ll‘edarninghrcurr- Finr?lly, we upgaltd;cuﬁr with _
T4 and then discover thA-change prefixes. the labeled IP. This ensures that our model of the stream is

current. This step directly applies the update rules ofH+ac
Step 1: Predicting with 7,4 and T.,,,. =~ We compute  |PTree tol..... [29], as a subroutine. Effectively, the learn-
predictions of7,,;; and 7. using the prediction rules of  ing procedure penalizes the incorrect prefixes and rewards
TrackIPTree. We first allow each prefix ofin T;,;; (and the correct prefixes by changing their weights appropsiatel
likewise, T¢..») to make an individual prediction (biased it then updates the tree’s structure by growing or pruning as
by its label predictors). Then, we combine the predictions necessary. Due to space limits, we omit a detailed descrip-
of the individual nodes (biased by its relative importance tion of TrackIPTree’s update rules here.
predictor). We illustrate these steps in Fig. 7(a)-(c).

Formally, let P denote the set of prefixes ofin a tree
T. We compute each prefixe P’s predictionp;_ ;, with a
bias ofy; 4 to predict non-malicious, and a bias@f_ to At this point, we have measured the classification error of
predict malicious. We then combine all the predictipns T,14 Over the sequence, (denoted byl,4,.), and we have
into one predictiorp; for the IP4, by choosing prediction  allowedT,,,,.. to learn overs,. Now, our goal is to extract
p;,; of nodej with probability z;, its relative importance the appropriate changes betwegrands,_; by comparing

3.2.2 Extracting Changes from IPTrees
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Figure 8. A-Change Algorithm: Steps 4-6. Running example illustratetiow A-change prefixes are extracted by comparing
Told,zfln Told,z and Tcur"r‘

the treeslq, 2, Toid,-—1 andT ey discarded because it is not accurate enough,ifn._, and
At a high-level, we do this in three steps: (1) first, we node D gets discarded because it has too few IPs.

isolate candidatei-change prefixes, by comparing their Step 5: Prune Redundant Changes. Not all candidate

é?svig';?ﬂgg fer(rﬂs daanr?t Ziaetﬁfezewsﬁﬁér?snudrjeﬂ;hiﬁgtl\;/ve OIOpreﬁxes isolated irC' will represent a change in a distinct

not include prefixes ag\-change if their children already part of the IP address space. Every parent af-ahange

account for bulk of the change: (3) finall e discover prefix will also have made the same mistakes. In some
un u ge, inatly, we discov cases, these mistakes may cause the parent prefix to also
new children that may have been grown in relation to these

: have a high overall classification error (e.g., when no other
changes by comparing.,,,.- andTy;4. 9 (e.g

- i child of that parent originates substantial traffic). Hoaev
Spe_cmcally, letD b? .the set of states that prefixes can some parents of A-change prefix may have a high classifi-
be assugnet_j t_o. Let m|n|mum_number of IP_S that a prefix cation error due to changes in a different part of the address

needs to originate to be considered potentially-ahange.

. ) X space. To avoid over-counting, we include a prefixin
Let7 denote the maximum error a prefix may have to still be

: ion's (Al only if the following two conditions hold: (1) it accounts
considered an accurate model of the region’s trafffiet y for an additionab IPs after the removal of all childrea-

as the minimum increase in a prefix’s error that guaranteeschange prefixes; (2) there is at leastlassification error on
that the prefix is indeed-change. We derive from the set

. ’ . h the IPs from the remaining prefixesin;, ., and at most
D, as we describe I_ater. We_W|II use Figure 8 to illustrate error inT,4... Figure 7(c) shows this step: we discard the
these three steps with a running example, where weé set

parent /17 prefix (node B) from the list &f-change pre-
50, 7 = 0.1, andy = 0.5. In the example, we allow @ i, oq pecause it does not account for an additienal 50
prefix to have one of two states: “good”, which corresponds |pg after we remove the contribution of ifs-change /18
to 0-50% of its traffic being malicious, and “bad”, which child (node C).

corresponds to 51-100% of its traffic being malicious.
Step 6: Discover New Children. The treeT,,,,. may

have grown new subtrees (with multiple children) to ac-
count for the changes in the input IP stream. We compare

Step 4: Isolate Candidate Prefixes. We isolate as a can-
didate set all prefixes inl,,;, satisfying the following con-

ditions: (1) its classification error i, . exceedsy, and each prefix: € C with the corresponding prefixes .

its classification error iff,;4 .1 is belowr; (2) at least .
. ' : to see if new subtrees efhave been grown. If these sub-
instances have been seen at the prefix. We then compare the

. L . trees differ frome in their prediction labels, we annotate
prediction labels of each prefix i@ to the corresponding . .

L . with these subtrees to report to the operator. Figure 8(d)
prefix in T~ to check for a state change. If there is no

. - . . howsT,,,. and the corresponding subtrees (of depth 1
change in the prefix’s state, the change is not localized, an [n this example) of theA-change prefix (node C) i
we discard the prefix fror. P gep olds

. - which are annotated with node C for output.

Figure 8(a) shows the origindl,;q .—1 (the states for T the\-Ch laorith di the't
each node are not shown for readability, assume they are alll 0 wrap up thea-.-hange algoritnm, we discuss the two
5900d” in Tyq._1) (b) ShowsT,. . (again, the states of parameters we did not specify earlier. First, we need to de-
each node are not shown, here assume all are “bad”). The '© h_(t)W we obtairloiq frorr(; _T‘”_”;' Se'\rclez;f’ld nge?s tt)o
shaded prefixes (nodes B & C) have both sufficient IPs and'12V€ IS accuracy measured in intervar 1, 1t needs to be

the necessary change in the classification error. Node A getéeamt no later th_am — 2. S0,Toua = T, for the sequence
s., and at every interval, we updaig;, to be the tree learnt

5 is typically set to a small value such @91%, but cannot be setto 2 Intervals before the current one. We also need to derive
0% because of noisy data. ~ from the set of state®. Since each state is defined by




an interval in[0, 1], we can use the interval boundaries to Streams,: <ipl+s <ip2,-><ip3+>

derive D. Thus, for example, if each stafe has the same / \

interval length, then = ﬁ. A . ‘
Properties of A-Change: Efficiency and Correctness RN —”»

The A-Change algorithm meets our goals of operating on- Streams., <ipl, change> |

line on streaming data and our computational requirements ‘ ip2, change> M

as each step involves only the following operations: learn- P2 nochanger.- :

: . . Change-IPTree W, ; | Update with

ing an IPtree, comparing two IPtrees or applying an IPtree

on the input data. The first operation is performed by the |

TracklPTree algorithm, which is an online learning algo-

rithm, and the remaining operations require storing ondy th

IPtrees themselves, thus requiring only constant addition

Change-IPTree W,

Figure 9. High-level approach of A-Motion

storage. 0

More precisely, the key data structures®fChange are &
three IPtrees, i.€1,14..—1, Toid.», Teurr- The basic IPTree R ORN®]
data structure has a space complexity(f) for a tree IR
with k leaves [29], as TracklPTree only stores a number of 16 ;3 N%)Change
weights and counters per prefix. FArChange algorithm, 7
as described in Step 2, we need to augment the basic IP- No Cha?ge OChange

tree structure with four additional counters for each prefix

Thus, the space complexity fdr-Change remain® (k). Figure 10. Example Change-IPTree: Partitioning the

Next, we describe the run-time complexityatChange. IP address space into “change” and “no-change” re-
Steps 1, 2 and 3 are applied to every IP in the input se-  gjons. Thisis just like the regular IPTree in Figure 1, but
guence, but each step has at moglog k) complexity: for with the leaf labels denoting “change” or “no-change”.

each IP, we examine all its parentsiip,,.- andT,;4 a con-

stant number of times (only once in Step 2, 2-4 times in in Section 3.2, this list of\-change prefixes may be incom-
Steps 1 & 3 as part of the subroutines of TracklPTree), soplete: A-Change can only ensure that every identified prefix
the run-time per IP i®)(logk). In Step 4, we compare each s truly aA-change prefix (i.e., there are no false positives),
pair of prefixes inlq,. andTyq,-—1, SO our run-time for  but not that every\-change prefix is discovered (i.e., there
Step 4 isO(k). In Step 5, we examine potentid-change  may be false negatives). However, there is additional infor
prefix together with its parents, so our run-time is bounded mation in the structure of the learned IPtfEg,; as well as

by O(klogk). For Step 6, we examine each potentll  the input data sequense that we can exploit.

change prefix together with its children subtreedin, ., To answer our question, we need to partition the IP ad-
and sincel., is a k-IPtree, the run-time is bounded by  gress space into regions that change quickly and regiohs tha
O(k). Thus, the total run-time ofA-Change, for an input  change slowly. We first observe that this problem may be
sequence of length, become®(nlog k + klog k). modeled as another instance of the problem of learning an

We conclude with a note about accuracy: by design, ev- |ptree — we need simply to learn a decision tree over the IP
ery A-change prefix discovered is guaranteed to reflect agddress spaaghere the leaf labels denote “change” or “no
change in the IPs between the sequenceands._;. If change”, rather than “malicious” or “non-malicious”. For
a prefix has had high classification erroripg,. and low  clarity, we define this IPTree aschange-IPTrepFigure 10
classification error iril,14,.—1, then that prefix is indeed  shows an example of such an IPtree. Therefore, if we get
originating a different kind of traffic ins._, than it did in  access to IPs labelled with “change” or “no change” (rather
s-. Thus, theA-Change algorithm will have no false pos-  than our usual sequences of IPs labelled with “malicious” or
itives (though it may not find all\-change prefixes, since  “non-malicious”), and we directly use TracklPTree to solve
the Te.r- andT g are approximate). this problem.

Recall that we denote, to be the part of the stream that
3.3 TheA-Motion Algorithm appears in interval. A-Motion uses the IPtre€,_; to an-

In this section, we address the second question posed imotate each IRin s.. If the label of IPi matches the predic-
our problem: What regions of the Internet are prone to fre- tion of 7,1, it pairs IP: with label "no change”, and if they
quent changes? The answer to this helps us pinpoint strucelo not match, it pairs the IP with a label "change”. We thus
tural properties of thé\-change prefixes. have a new strearsl, derived froms,, where the label of

A straightforward approach might be to use the each IP is "change” or "no change”. Next, we apply Track-
change prefixes output b-Change, but as just described [IPTree on this new stream, and the resulting change-IPtree



differentiates prefixes that change frequently from thase d © The botnet feed contains around 30,000-100,000 unique
not change frequently. We u$€, to denote this change- IP addresses daily (these include drones as well as the re-
IPtree built on the strears, of IPs labeled with "change”  sponsible C&C servers), and the feed includes over 2.64
or 'no change”. Even though the IPtré¢_; we use to million unique bot IP addresses in total across 94 days of
generate the new labels is approximate, it typically has adata. We label an IP address as malicious onidait ap-

very high accuracy and so the new stream will typically pears in the botnet feed on dayAs in the spam data set,
have only a little noise. We note that the space and run-any noise in the input data stream will be carried over to our
time complexity of A-Motion is identical to TrackIPTree: results; however, if there is a only small amount of noise
its data structure uses only three IPTrees (a change-IPTre@ the labeling, the adaptive nature of the algorithm ersure
and two regular IPTrees); each step®fMotion appliesa  that there will not be a long-term impact on the tree.

part of TracklPTree, and the different parts of TrackIPTree  Our results demonstrate that our algorithms are able to

are applied three times iA-Motion. discover many changes in the Internet's malicious activ-
ity, and do so substantially better than alternate appesmch
4 Experimental Results The exactA-change prefixes we detect are, of course, spe-

cific to our data sets, and for confidentiality reasons, we
anonymize the owning entities of all the prefixes in the re-
sults. Our results show two examples of how our algorithm
can be applied on real data sets from operational networks,
and discover changes that operators were unaware of.

Data. Our first data set uses spam as our source of ma-
licious activity. Our data is collected from the operatibna
mailservers of a tier-1 ISP which handle mail for total of
over 8 million subscribers. We collected data in two pe-
riods: from mid-April to mid-August 2010 over 120 days,
and from mid June to late July 2012, over 41 days. Our dataExperiment Setup. ~ Throughout our experiments, we
setincludes the IP addresses of the senders’ mail serwers ankeep the algorithm parameters fixed. We set= 0.05,
the number of spam and legitimate messages that each mafpllowing [29]. We use IPtrees of size = 100, 000 for
server sends in a 5-minute interval; we do not collect any spam data and = 50,000 for the botnet data, as they
other information. We use the mailserver's spam-filtering make accurate predictions on the input stream, and a fur-
system (Brightmail) as labels for IP addresses in our learn-ther increase ik does not substantially increase the tree’s
ing algorithm; a single IP address can thus be labeled mali-accuracy. We measure the accuracy of our algorithms on
cious at one point in time and non-malicious at a different & per-IP basis (following [29]), and the accuracy of our
point, as it may send legitimate messages at some points angonstructed IPtrees are similar to [29]. All our change-
spam at others. In total, the IP addresses in our data havéletection experiments are performed on day-length inter-
sent over 5.3 billion spam and 310 million legitimate mes- vals, i.e., each of the three trees is built, tested and coedpa
sages. While our data may have some noise in labeling (duedcross different days. We use three states for the prefixes,
to Brightmail mislabeling spam as legitimate mail and vice- Split by legitimate-ratio thresholdg0, 0.33), [0.33,0.75),
versa), because the algorithm is adaptive and noise-tilera and[0.75,1]. We term these statdsad neutraland good
a small fraction of inaccurate labels in the data will notéav ~ States respectively, and this means that a prefix state is as-
a significant long-term impact on the tree. signed as “good” if it sends at lea&t% non-malicious traf-

Our second data set is based on botnet activity from Oc-fic, “neutral” if it sends33% — 75% non-malicious traffic,
tober 2011 to January 2012. For this data set, we first ob-and “bad” if it sends less thasB% non-malicious traffic.
tain a distribution of the active IP addresses across tlee-Int  With the thresholds of the set of states, we defjive 33%.
net by collecting daily snapshots of flows sampled from IP We set allowable error = 5% throughout, and the mini-
backbone traffic. All together, our monitoring points cover mum traffic needed = 0.01% and0.05%. We chose these
80% of the traffic carried by the IP backbone. On any given Vvalues forr andé because in our experiments, we are able
day, our data includes 24-28 million unique IP addresses.to obtain a list ofA-change prefixes that is small enough to

We use botnet activity to label these IP addresses as mabe manually analyzed, and yet large enough for us to dis-
licious or non-malicious for our algorithms. In particylar Cover interesting trends across our data sets. Our parame-

we obtain a daily snapshot of IP addresses within a tier-1ters remain stable throughout our data set when we seek to
ISP that are part of a botnet, as identified by the ISP’s secu-analyze changes across day-long intervals. As operator re-
rity vendors. These security vendors employ a combinationsources allow, these parameters can be changed to allow for
of monitoring algorithms, sinkholes, spam traps and mal- the discovery of either more fine-grained changes (say, with
ware binary analysis to identify and track bot IP addresses,smaller ofé or larger values of) or more coarse-grained
and the da"y snapshot inCIUdeS all the b(?t. IPs observed -by 6While there are bound to be inaccuracies — both false pesitand

the vendors on that partICUIar day - speC|f|caIIy, abotIPis false negatives — in this dataset due to the difficulty of iifiging botnets,

included ir_‘ Fhe list fO_I‘ a par.ticular day only if it has 9€n-  our results demonstrate that our algorithms are able tdipigithose pre-
erated activity matching a signature on that particular day fixes where significant changes occur as a function of thet idgta.
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changes. Our experiments were run on a on a 2.4GHz * e 10 ) e
Sparc64-VI core. Our current (unoptimized) implementa- '
tion takes 20-22 minutes to process a day'’s trace (around | Pt
30-35 million IP addresses) and requires less than 2-3 MB
of memory storage.

We note that the ground truth in our data provides labels ;
for the individual IP addresses, but does not tell us the pre- 52 s B PP P
fixes that have changed. Thus, our ground truth allows us to (a) A-change Prefixes (b) IPs inA-change prefixes
confirm that the learned IPTree has high accuracy, but we
cannot directly measure false positive rate and false nega- Figure 11. Comparing A-Change algorithm with
tive rate of the change-detection algorithms. Thus, our ex- network-aware clusters on the spam data: A-Change
perimental results instead demonstrate that our algorithm  a@ways finds more prefixes and covers more IPs
can find small changes in prefix behaviour very early on real
data, and can do so substantially better than competing apProaches, as slightly different prefixes may reflect the same
proaches. Our operators were previously unaware of mostunderlying change in the data stream, e.g., network-aware
of theseA-change prefixes, and as a consequence, our sumelusters might identify a /24 whilé\-Change identifies a
marization makes it easy for operators to both note changed425. In order to account for such differences, we group
in behaviour of specific entities, as well as observe trends i together prefixes into distinct subtrees, and match a group
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malicious activity.” from the network-aware clustering to the appropriate group
from A-Change if at leasi0% of the volume of changed
4.1 Comparisons with Alternate Approaches IPs in network-aware clustering was accounted for\in

We first compareA-Change with previous approaches Change. In our results, network-aware clustering ideutifie
and direct extensions to previous work. We compare two N0A-change prefixes that wenetidentified byA-Change;
different possible alternate approaches witfChange: (1) otherwise, we vv_ou_ld have do the reverse matching as well.
using a fixed set of network-based prefixes (i.e., network- Furthermore, this is what aII_ows us to compare th?‘ num-
aware clusters, see Sec. 2.2) instead of a customized IPber of A-changes that were identified by both algorithms,
Tree, (2) directly differencing the IPTrees instead of gsin  Otherwise we would not be able to make this comparison.
A-Change. We focus here on only spam data for space rea- Fig. 11(a) shows the results of our comparison for 37
sons. days. Network-aware clustering typically finds only a small
Network-aware Clusters. As we described in Sec- fracti_on of theAA-change prefixes discovered nyChar_lge,
tion 3.2, our change-detection approach has no false pos—ranglng f_romlo% — 50%. On averggeA—Change finds

over 2.5 times as mani-change prefixes as network-aware

itives — every change we find will indeed be a change in lust Wi lso th ber of IPaich
the input data stream. Thus, we only need to demonstrate™ USI€rs: We compare aiso the number o Hehange

that A-Change finds substantially mor&-changes than prefixes i-den.tified by the network-aware (.:Iuster.ing dnd
network-aware clusters (i.e., has a lower false negatteg,ra bCth%i in F'gt' 1.1(b|?' ThA—cft]?nge fprt:flxe? g;c;ovgred
and therefore, is superior at summarizing changes in mali- y A-Lhange typically account for a tactor o ad-

cious activity to the appropriate prefixes for operatorratte _dresse_s as those discovered by the netvvprk-aware clus_ter-
tion. ing. It indicates that network-aware clustering does ngt di

We follow the methodology of [29] for labeling the f:ovetrc;n?ny(;:hanges;hat|nvolve§ﬁubstf:;nt|al V(.)tlﬁmr? of the
prefixes of the network-aware clusters optimally (i.e., we !{Epl; at.a. ?Ig]ag)é ays, esp:a_((:jla }[l'f(')nd t(;:lys V:' Ck anges,
choose the labeling that minimizes errors), so that we can € Iraction ot I addresses notidentiied by network-aware

test the best possible performance of network-aware clusclusters, however, is still smaller than the fraction of-pre

ters against\-Change. We do this allowing the network- fixes that it does not identify. This indicates that network-
aware clusters multiple passes over the IP addresses (eve%v_vare CtI#Stf”ng |d§ntg|e§ the larger, coarser changds, bu
thoughA-Change is allowed only a single pass), as detailed misses the fine-grained changes.

in [29]. We then use these clusters in place of the learned ~Network-aware clusters perform so poorly because the
IPTree in our change-detection algorithms. prefix granularity required to identifd-changes typically

We first compareA-change prefixes identified by the do_eg not appear at all in routing tables. Indeed, as our anal-
network-aware clustering and-Change. This compari- YSiS in Section 4.2 shows, a large numberethange pre-

son cannot be directly on the prefixes output by the two ap- X€S come from hosting providers, many of which do not
even appear in BGP prefix tables.

“As discussed in Section 1, our evaluation focuses exclysive . . .
changes in prefix behaviour, since prior work [28, 29] algefidds per- Possible Differencing of IPTrees. We now show that

sistent malicious behaviour. the possible differencing approach described in Sectian 2.



produces an extremely high false positive rate. For this ex-in Table 1(a)8

periment, we learn two trees (denotEgandT,) over two Table 2 (Fig. 13) shows thA-change prefixes split by
consecutive day-long intervals,; + 1 respectively. We cal-  access type of the prefix (in this analysis, we include a prefix
culate the differing common prefixes in the trees, and thenonly once even if it has appeared aAahange prefix mul-
use a basic mathematical argument to prove that there mustiple times) ford = 0.05%. The majority of theA-change

be a very high false positive rate among these prefixes. prefixes come from small ISPs and hosting providers, al-

Each tredl, and7,, has an overall accuracy rate exceed- though there are also a few large (tier-1) ISPs. As Table
ing 95.2% on each of the daysandi + 1 (we measure this 1 shows, most of these prefixes are identified because they
separately across all IPs in each dayndi + 1). Since each  Start to send spam. In Fig. 15(a) we also show the distribu-
tree makes less thai¥ error, the two trees can differ on at  tion of prefix lengths of theé\-change prefixes: over 60% of
most10% of the IPs on each dayandi + 1 (e.g., the trees prefixes have lengths between /16 and /26, which matches
may make errors on disjoint sets of IPs on each day); denotd"€ Prefix ranges expected of hosting providers and small
this set of IPs where the trees differ 6 Now, consider ~ ISPS. Obviously, many of these small ISPs and hosting
the set of prefixes that appear in both trees, and contain aProviders obtain their IP address ranges from large ISPs,
least0.01% of the data (and discard the redundant parentsbutA—C.hange |Qent|f|es the small ISPs dlstmctly from the_lr
from this set that account for the same traffic). In order for a FéSPective owning larger ISP only because their spamming
prefix to qualify asA-change, at leag3% of the IPs it sees act|_V|ty dlffer_s 5|gn|f|<_:antly from the spamming activity o
must be from the set/. However, by the pigeonhole prin- their respective owning larger I_SP. DHCP effects also in-
ciple, there can be at ma3t00 prefixes can (1) accountfor ~ fluence the prefixes that are discovered — they force the
at leas.01% of the IPs, and (2) have at ledi% of their change in spamming activity to be identified at the gran-
IPs come from the se¥/. However, when we measured the ularity of the owning prefix, rather than the individual IP
number of the prefixes present in these two trees that weredddresses, and this is likely another factor in the predomi-
different, based either on leaf label or on traffic volume for Nance of small ISPs and hosting providers as frequent
interior nodes (ensuring we discard redundant parents), wechanges. Indeed, the predominance of small regional ISPs
found5021 prefixes present in both, andZ), with atleast ~ @nd hosting providers as frequefitchanges emphasizes

0.01% of the traffic. Thus, at leag621 of the prefixes have the need for techniques that can automatically infer chéinge
to be incorrect, giving 47% false positive rate. malicious activity — these providers tend to be substdptial

more volatile and transient than large ISPs, making it much
harder to track them with pre-compiled lists.

4.2 Characterization: Spam Data Case Study 1: Individual Provider Spamming Activity.
Fig. 14 illustrates the spamming activity of three differ-

Summary. We present a summary ai_changes dis- ent providers that we identified as-bad atd = 0.05%.
covered in the 2010 spam data, as it covers a longer peProviderA is a hosting provider (with a /19 prefix) based in
riod (120 days) compared to the 2012 data. Table 1(a)South-eastern US, providétis a virtual web-hosting com-
(Fig. 12) summarizes thA-change prefixes discovered by Pany in Netherlands (with a /26 prefix), and provideis a
A-Change, categorized by the kind of behavioral changesmall ISP in mid-western US. (with a /22 prefix). Note that
that they have undergone. The table shows results for dif-€ach one of these providers starts and stops spammihg
ferent values of the thresholtl = 0.05%,0.01%. As we tiple times over 4 monthsA-Change identifies all of these
expect, wher decreases, the number of prefixes identified changes, as we highlightin Fig 14 with arrows. Further, we
as A-change increases, since there are more prefixes witthote thatA-Change identifies each-bad prefix early on,
at least IPs. Note that the majority of the changes come beforetheir peak spamming activity. None of these three
from prefixes that progressively originate more spam, i.e., Prefixes are detected when BGP prefixes are used, as they
nearly 75%A-change prefixes arA-bad. Further, regard- are much too small to appear in routing tables. Further, our
less ofo, very few Spamming prefixes actua”y Change for mail operators were unaware that these Specific providers
the better. These observations are consistent with the earWere engaging in spamming activity, and would not have
lier studies on spam origin and spammer behavior — while found them without exhaustive manual analysis.
spammers tend to move around the address space, perhaps These three providers are just examples of the many that
dependenton the bots they own, legitimate mail servers tendvere not detected by BGP prefixes and of which our opera-
to remain stable. Further, when a region stops spamming, ittors were previously unawaré We highlighted these to il-
are much more likely to stop sending mail traffic altogether, , _
rather than start sending substantial volumes of legitmat ®Note also the design of TrackiPTree ensures that such psefben-

. . . . tually get discarded from IPtree, and thus after a periodiroé t these
mail. SinceA-Change does not detect a prefix that SImply prefixes will not be labeled malicious in the tree forever.
stops originating traffic, we see very fetwgood prefixes 9Maintaining a list of hosting providers and using the listrck their




Original State| New State|| § = 0.01% | 0 = 0.05% Original State| New State|| 6 = 0.01% | 8 = 0.05%
Bad Good 31 11 Bad Good 134 23
Neutral 28 1 Neutral 189 16
Good Neutral 122 24 Good Neutral 42 17
Bad 205 33 Bad 78 14
Neutral Good 66 9 Neutral Good 201 98
Bad 146 13 Bad 285 43

Table 1(a) Spam Data Set Table 1(b) Botnet Data Set

Figure 12. Characterizing the A-change prefixes discovered for spam and botnet data sets.

ISP Type # ldentified ‘ ‘ ‘

Large ISPs 4
Small ISPs 11
Hosting Providers 9 105H/:—_; N
Others 2 Y L

| 2 N o gy jeetd
Figure 13. Table 2: Spam Data: ISP Types ofA- n :'-_-'.;'13' A be i
change prefixes “‘&“a.‘?:*“‘“&;{ q ‘ . e . ]

lustrate spamming activity from these smaller provideas th o u E} .

repeatedly starts and stops. Our case study also illustrate 10— ‘ LA 0: Y
how difficult it is to ensure that systems are configured to 20 40 60Day 80 100 120

never spam, especially for hosting providers, since hgstin
providers typically allow their customers to easily esistbl
new mail servers on their physical or virtual infrastruetur
and can repeatedly get caught into a cycle of accidentally
hosting spammers and cleaning up spamming activity.

Figure 14. Case Study 1: Spamming Activity in Small
Providers A, B, C. A-Change discovers spamming ac-
tivity early in small ISPs and hosting providers (arrows
indicate every time the prefixes are discovered).

Case Study 2: Drop in Internet-wide Spamming Activ-

ity.  In our next case study, we examine thegood pre-
fixes discovered byA-Change during the Grum botnet take-
down in July 2012. The Grum botnet was considered the
third largest spamming botnet and responsible for around
17% of all the spam on the Internet. [12]. This case study
illustrates what an operator would see with theChange
algorithm during such a large event, with no a priori knowl-
edge that the event was happening.

(previously) infected region become active after the bbtne
takedown, its prefix blocks are identified Asgood.

We also observe thak-Change discovers far mork-
good prefixes than the network-aware clusters (anywhere
between a factor of 3-10). Further analysis showed that
these prefixes had previously seh01% — 0.1% of the
daily spam volume in our data, and a few of them contained
over two thousand spamming IP addresses. Most of these
; , . prefixes range are allocated to small regional ISPs (rang-
Figure 15(b) shows the number &fgood prefixes dis- ing from /15 to /26), and many of them do not appear in
covered each day bk-Change and network-aware clusters, gGp routing tables, and so they cannot be detected with
and the start of the botnet takedown is indicated (with an ar- network-aware clusters. Thud-Change highlights to op-

row). (As in Sec. 4.1, we count onl-good prefixes that  g4t0rs where on the Internet a drop in spamming activity
correspond to distinct regions of the address space, in ory, place.

der to have a fair comparison betwedAnChange and the
network aware clusters.) Our first observation is that there
is sudden increase in the numberffgood prefixes right
after the botnet takedown, showing that a number of pre- ) o -
fixes have suddenly changed their spamming activity. Them_Et (_1ata. _Recall that_our data only identifies botnet agtivit
number of A-good prefixes discovered every day remains within a single Igrge tier-1 IS.P’ and thu_S;ghange qnly de-
high for a number of days after the takedown — this hap- tects changes internal to this ISP. This is especially uisefu
pens because our algorithm discovers prefixeS-ghanges since large ISPs often allocate prefix blocks to many smaller
when they actively generate traffic (€.g., by sending legit ISPs and other customers, many of which typically are are

mate mail instead of spam in this case). Thus, whenever amanaged independently and change over time as business
requirements change, and thus are likely to have very dif-

ferent security properties. In this scenaf®,Change was
useful for highlighting to the operators a network-widewie

4.3 Characterization: Botnet Data
Next, we examine the results df-Change on the bot-

spamming activity would be less effective, since hostingvjaters start
and shut down frequently.
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Figure 15. (a) shows sizes ofA-change prefixes. (b) shows Case Study 2-good prefixes with drop in spamming activity
during the Grum takedown (arrow indicates when the takedownstarted). There is a sharp increase inA-good prefixes
after the takedown. (c) shows Case Study 3A-change Prefixes in New Botnet Activity. A and B mark the A-bad prefixes
discovered when over 22,000-36,000 new bot IPs appeared fretfeed.

of the changing malicious activity, since there is likelyot® L
a diversity of malicious activity when new threats emerge. 095
T
Summary. Table 1(b) (Fig. 12) summarizes the differ- % °9 1
ent prefixes fo¥ = 0.05%, 0.01%, categorized by the type goss r
of change they have undergone. As in Section 4.2, the § 0.8 ‘
prefixes discovered increases sharply whas increased. 075 !
However, note that in this experiment, there are very signif 0.7
. h . 0 02 _ 04 06 08 1
icant numbers oA-good prefixes discovered as well — over False positive rate
56% of all the prefixes discovered afegood, unlike the Figure 16. ROC curve for A-Motion’s accuracy

spam data. This is primarily because the active IP addresserator from manually investigating over 22,000-36,000 new

space changes very little, while bot IP addresses appear i . o i _
the feed for much shorter durations (e.g., this may be as botsrbOt IPs to investigating 19-66 new IP prefixes, a drop of two

get cleaned, or bot signatures get outdated). A former botOrders of magnitude.
IP would then generate mostly legitimate traffic (its mali- S | vsis of .
cious traffic would drop, but its legitimate activity remain 4.4  Structural Analysis of IP Dynamics

the same, and so it would get labelled as legitimate), and thechz?nure('er?;lrlglr?taesrur:;’sdriglc')cr?;trst;ctt'h"? tc\zicls (ceonlsot?;t
corresponding IP regions thus becorheyood. gel clou VI W EeXp

the structure underlying these changes with A®otion
Case Study 3: New Botnet Activity. Our case study algorithm, focusing our analysis on spam dataset due to
illustrates the value of discoveringy-bad prefixes internal  space. We use a snapshot of the change-IPkreenerated

to a large ISP’s prefix blocks. Figure 15(c) shows the time- by A-Motion, 60 days into the datasét;’s high predictive
series of theA-change prefixes discovered over two months accuracy indicates it can distinguish frequently-chaggin
of our data set. The highlighted day4 and B) mark two regions well, as shown by the ROC curve in Fig. 16. We
sharp increases in the numberf®fchange prefixes discov- useW to classify every IP in our data set as "change” or
ered. These correspond to days with dramatic increases irfnon-change”, and then aggregate the IPs by country and
the number of new bot IPs seen in the data feed — 22.1 &owning company. We defirfeeq-ratioto be the fraction of
28.6 thousand at the two days marked4aand 36.8 thou-  the total IPs of that entity that are marked as change IPs,
sand atB Further analysis showed that on days markded and analyze the freqg-ratio of different aggregations.

nearly all of of these new bot IPs are from the DNSChanger Table 3 (Fig. 17) shows a breakdown for the origin of the
botnet [8], and are responsible for 19 & 3V-bad pre- frequently changing IPs. Together, these countries adcoun
fixes. On dayB, these new bot IPs are from Sality [25] for 90% of the data seen at our mail servers. We note that
and Conficker [6], and 6A-bad prefixes correspond to the countries like China, Korea, Russia [23], which are known
new IPs from Sality and Conficker. By contrast, network- to harbor lot of spammers actually change very infrequently
aware clusters were only able to discover 5-12 prefix blockswhile countries like US and Canada change 3-4 times more
asA-bad during these events. TheAebad prefixes come  frequently. This makes sense, as countries where ISPs ag-
from smaller regional ISPs, the tier-1 ISP’s dial-up and DSL gressively fight spammer infestations are likely to experi-
blocks; most of these prefixes had little to botnet activity ence a more frequent change in malicious activity. Table
(as identified by the vendor) earlier. Thus, in these two in- 4 shows a breakdown by ISP type. Once again, hosting
stancesA-Change effectively reduces the workload for op- providers have a substantially higher ratio than the othaer ¢



Country freg-ratio identification of spam campaigns [2,18] and spamming bot-
USA 6.9% nets [15, 32]; these take a very different angle, comple-
W. Europe| 2.6% mentary to ours, for analyzing shifting malicious activity
Brazil 0.8% ISP Type | freg-ratio | Lastly, there have been a number of studies showing the
Canada 9.1% Large ISPs| 6.6% relative inaccuracy of DNS-based blacklists [16, 26] Again
Russia 2.2% Small ISPs| 4.9% our results are complementary to (and consistent with) all
Estonia 1.1% Hosting these analyses, as we show that even with a near-optimal
Poland 1.5% Providers | 12.2% partitioning of the IP address space, there are still a large
Argentina 3.9% Others 1.1% number of changes in spamming behavior.

Korea 1.1% Table 4: ISP type Other Related Work.  Xie et al [31] consider the prob-
Co!omb|a 3.4% lem of discovering IP addresses that are dynamically as-
China 2.3% signed. Our problem is different from this work, as we are

Table 3: Country interested in dynamic of malicious activity, not of IP ad-

dress assignment. Soldo et al. [28] study the problem of
the tables show frequently changing regions filtering mghuous activity but the|r algorlthms only oper

. istent with Its in Section 4.2. sitise | ate on offline data, not streaming data. Finally, note also
egor;]es, cpnst|s enwi ?u;rers]u f.m ec l_gn W S! Bet') ththat our problem differs from work on identifying hierar-
much easier to spam out of a hosting provider. We See bothy ;. heavy-hitters [7, 10, 34], and discovering significa
large and small ISPs seem to have roughly the same fre-

. . . changes in the multi-dimensional aggregates [1, 4, 14, 17]:
quency of change, and that businesses (which constitute th‘f‘hesegproblems are concerned with 3cg)lur?1etric E:hanges on]a
most of the "other” category) have a tiny ratio, as expected.

. . . ! hierarchy, not on changes in classification of decision tree
The set of hosting providers discovered hyMotion y g

(which are the same as those tlietChange identifies re-

peatedly ask—bad_ prefixes)_are of particular intgrest to mail In this paper, we formulated and addressed the problem
operators. As discussed in Section 4.2, hosting providersy¢ iseovering changes in malicious activity across the In-

are espemally vulnerable to chan_ges because they see fornet. Our evaluations using a large corpus of mail data and
vwde variety of users, who sometimes take_ any opportu- et activity indicate that our algorithms are fast, caegk

nity to spam. HOV\_/ever, because these prqwders alsp hav%p with Internet scale traffic data, and can extract changes
many legitimate clients, they cannotbe entirely blacktist s rces of spam activity substantially better (a facfor o
and therefore need to be closely monitored so that they d02'5) than approaches based on using predetermined levels
not cause a significant performance impact. Indeed, this isOf aggregation such as BGP-based network-aware clusters.
likely true of all new hosting providers as they appear on Using our algorithms, we find that some regions of the In-
the market, and it is this kind of structural insight about ma ternet are prone to much faster changes than others, such as

Irllmlous activity thgtA.—_Mot;]or.] could discover, which may 5 set of hosting providers that are of particular interest to
elp operators prioritize their resources. mail operators,

Figure 17. Analyzing the IPtree learnt by A-Motion:

6 Conclusion

5 Related Work

Spam. There has recently been a lot of interest in de-
signing non-content based approaches to spam-filtering. Of [1] D. Agarwal, D. Barman, D. Gunopulous, F. Korn, D. Sri-
these, most closely related to our work are the IP-based vastava, an_d N._ Young_. Efficient an_d effective explanations
spam filtering approaches. These have included studies on EfDCDhggggo&h'eramh'cal summaries. Ifoceedings of
individual .IP addresses, AS .numbgrs and /24t prefixes_[23], [2] D. Ande’rson, c. Fleizach, S. Savage, and G. Voelker. Spam
BGP prefixes [27, 30], prefixes with dynamic IP assign- scatter: Characterizing the internet scam hosting infiiast
ment [31], highly predictive blacklists [33], using a com- ture. InProceedings of Usenix Security ’0Z007.

bination of DNS clusters and BGP prefixes [22], and using [3] B. Augustin, B. Krishnamurthy, and W. Willinger. Ixps:
well-defined properties of spammers to discover IP address ~ mapped? IiProceedings of the 9th ACM SIGCOMM confer-
ranges used by spam gangs [9]. Our work differs from alll ence on Internet measurement conferehkC '09, 2009.

of these as we are concerned with automatically discovering [ D- Barman, F. Korn, D. Srivastava, D. Gunopulos, N. Yong,
the prefixes that change their malicious behavior, using onl ﬁir;dra?c'h'?‘cgaalw(\fg; ::')ﬁirost':?: dqf;:oeffglggagggzgg); hange in
a stream of IP addresses labelled spammer or legitimate; (51 m. p. Collins, T. J. Shimeall, S. Faber, J. Naies, R. Weave
we do not use a priori fixed clusters that originating from
network-based properties. There have also been behavior-

based spam filtering approaches [13, 24], and analysis and
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