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Abstract

Internet-based services routinely contend with a range of
malicious activity (e.g., spam, scans, botnets) that can po-
tentially arise from virtually any part of the global Internet
infrastructure and that can shift longitudinally over time. In
this paper, we develop the first algorithmic techniques to au-
tomatically infer regions of the Internet with shifting secu-
rity characteristics in an online fashion. Conceptually, our
key idea is to model the malicious activity on the Internet as
a decision tree over the IP address space, and identify the
dynamics of the malicious activity by inferring the dynamics
of the decision tree. Our evaluations on large corpuses of
mail data and botnet data indicate that our algorithms are
fast, can keep up with Internet-scale traffic data, and can
extract changes in sources of malicious activity substan-
tially better (a factor of 2.5) than approaches based on us-
ing predetermined levels of aggregation such as BGP-based
network-aware clusters. Our case studies demonstrate our
algorithm’s ability to summarize large shifts in malicious
activity to a small number of IP regions (by as much as two
orders of magnitude), and thus help focus limited operator
resources. Using our algorithms, we find that some regions
of the Internet are prone to much faster changes than others,
such as a set of small and medium-sized hosting providers
that are of particular interest to mail operators.

1 Introduction
Business-critical Internet-based services have to rou-

tinely contend with and mitigate a range of malicious ac-
tivity (e.g. spam, scans, botnets) that can arise from vir-
tually any part of the global Internet infrastructure. Iden-
tifying the regions of malicious activity on the Internet is
valuable for enhancing the security of networks, applica-
tions, and end-users along multiple dimensions and time-
scales. However, static snapshots showing malicious activ-

ity at a particular point of time are of limited use because
evil is constantly on the move. Administrators often even-
tually discover and clean up infected hosts, which causes
attackers to target new vulnerabilities and attack new hosts
elsewhere. Indeed, operators care far more about the evolu-
tion of malicious activity than static snapshots, as the evo-
lution provides warning signs of emerging threats from re-
gions previously-considered benign.

However, there has been little work on developing al-
gorithms that can automatically infer howaggregationsof
malicious IPs evolve over time. Previous work has either
created static snapshots [28, 29], or has explored the feasi-
bility of using various a priori fixed IP clustering schemes
for spam-filtering over longer periods [9, 13, 22, 27, 30],
among which BGP-based prefix clustering schemes, such
as network-aware clusters [19] have been especially popu-
lar. One challenge is it is not obvious a priori what level
of aggregation granularity to use. While we know mali-
cious IP addresses tend to be clustered, e.g., to ISPs with
poorly-managed networks [5, 21, 23, 30], many natural op-
tions for a particular granularity provide inaccurate results.
For instance, the individual IP address is too fine-grained
to provide useful results [16, 23, 30, 31], e.g., DHCP can
cause a single attacker to appear and disappear quickly from
specific IP addresses. On the other hand, predetermined
aggregations of IP addresses such as by AS or BGP pre-
fix also does not afford the correct granularity. For exam-
ple, network-aware clustering using BGP routing prefixes
are likely to cluster the well-managed infrastructure hosts
of an ISP together with its poorly-managed broadband ac-
cess customers. This is highlighted in several recent re-
sults [9, 13, 22, 27], which have illustrated that BGP-based
IP aggregations allow only for a coarse classification of ma-
licious activity.

Since there are no obvious natural a priori aggregations
to use, we need to be able to automatically infer the ap-
propriate aggregation levels for detecting changes in dif-



ferent parts of the Internet, based on current observations.
The appropriate aggregation varies drastically from region
to region: some regions, such as small or mid-sized hosting
providers, likely need to be monitored at very fine granu-
larities (such a /24 or smaller prefix size), while other re-
gions (e.g., entire countries that appear to be spam havens)
need to be monitored at much coarser granularities. The
problem becomes even more critical as IPv6 starts to get
widely deployed – it is infeasible to even enumerate every
IP address in the IPv6 address space. A practical algorithm
therefore needs to scale as a function of the number of dis-
tinct prefix aggregations needed, not as a function of the
size of the address space. A further complication is that
not every change in malicious activity is useful to find, e.g.,
newly spamming IPs are of little interest if they belong to
a well-known spam haven, but of substantial interest if they
belong to a well-managed business network. Previous work
has not addressed this problem.

In this paper, we develop the first algorithmic techniques
to automatically infer regions of the internet withshifting
security characteristics in an online fashion. We call an IP
prefix that turns from good to evil a∆-bad prefix, and a bad
prefix that sees the light and becomes good a∆-good prefix.
Our key idea is that shifts in malicious activity will trigger
errors in an accurate classifier of the IP address space’s ma-
licious activity. We model the IP address space as a decision
tree, which when given a particular prefix, outputs a label
“good” or “bad”. We also periodicially measure the error in
the decision tree, i.e., measure when it labels an IP prefix as
good when it is, in fact, originating malicious traffic. The
intuition is that when the decision tree has such errors on
prefixes that it used to label accurately, it is not indicative
of a problem with the decision tree, but instead indicative of
a∆-good or∆-bad change. An additional challenge is that
not all prefixes need to be modeled at the same granular-
ity, e.g., AT&T’s prefix should not be modeled at the same
granularity as MIT, even though both own a /8. A key com-
ponent of our algorithm is it automatically infers the right
granularity to minimize error in labeling IP prefixes∆-good
or ∆-bad.

More specifically, we present two algorithms to answer
two main questions. First, can we identify the specific re-
gions on the Internet that have changed their malicious ac-
tivity? Second, are there regions on the Internet that change
their malicious activity much more frequently than others?
The first question helps operators quickly focus their atten-
tion on the region of importance, e.g., if one of their net-
works is suddenly compromised. The second question ex-
plores structural properties about the nature of changes in
malicious activity, highlighting the prefixes that need to be
“under watch”, as they are among the most likely to be fu-
ture sources of attacks.

We present two algorithms,∆-Changeand ∆-Motion

respectively, that address the above two questions. At a
high-level,∆-Change answers the first question by analyz-
ing how well the different prefix aggregations in the static
snapshots model input data. By design, it ensures that every
prefix identified by our algorithms has indeed undergone a
change, i.e., our list of∆-bad and∆-good prefixes has no
false positives.∆-Motion answers the second question by
using previously-accurate snapshots to identify individual
IP addresses that have changed their behaviour, and then
partitions the address space into regions that have a high
volume of changes and regions that have few changes. Our
algorithms work without assuming a fixed distribution of
IP addresses (a common assumption in many learning al-
gorithms, which allows for easier learning and inference).
Indeed, part of the data comes from malicious adversaries
who have an incentive to mislead our algorithms and evade
detection.

We evaluate our algorithms experimentally on two dif-
ferent sources of malicious activity from a tier-1 ISP – four
months of mail data labeled with spamming activity, and
three months of network traces labeled with botnet activity,
and we demonstrate that our algorithmic techniques can find
changes in spam and botnet activity. In particular, our ex-
periments showwe can find more shifts in malicious activ-
ity by a factor of 2.5 than by applying extensions of existing
static algorithms such as network aware clusters. Through
case studies, we demonstrate how our algorithms can pro-
vide operators with a network-wide understanding of mali-
cious activity (both internal as well as external), and help
them prioritize scarce manual effort to the most affected re-
gions. For example, in one case study, our algorithm sum-
marized a large shifts in botnet activity into a very small
number of∆-change prefixes (22,000-36,000 new IPs from
DNSChanger and Sality botnets into 19-66 prefixes – a drop
of over two orders of magnitude). In another case study,
our algorithm discovered a large number of regional ISPs
whose spamming activity dropped during the takedown of
the Grum botnet. Finally, we find that there are certain
regions of the IP address space that are much more prone to
changes in spamming activity. For example, we found that a
set of small and mid-sized hosting providers (which do not
appear as distinct entities in BGP prefixes) are extremely
prone to changes in spam activity – this is an intuitive re-
sult which network operators can easily validate (and then
begin to monitor), and which our algorithm discovered au-
tomatically from noisy decision tree snapshots with nearly
100,000 nodes each.

Our algorithms are also scalable: our current (unopti-
mized) implementation is able to process a day’s worth
of data (30-35 million IPs) in around 20-22 minutes, on a
2.4GHz processor with only a single pass over the data and
uses only 2-3 MB of memory. Further, a switch to IPv6
will have relatively little impact on our algorithm, as the re-



quired size of the decision trees is only a function of the dis-
tinct administrative entities in terms of malicious behaviour,
rather than the size of the address space.

More broadly, our results show that while there is plenty
of change in the malicious (both spamming and botnet) ac-
tivity on the Internet, there is also significant structure and
predictability in these changing regions, which may be use-
ful for enhancing mitigation strategies.

2 Definitions and Preliminaries
Our high-level goal is to design an algorithm that takes

as input a stream of IP addresses flagged malicious or non-
malicious (e.g., spam logs, labeled with spam-filtering soft-
ware), and finds a set of IP prefixes whose IP addresses
have changed from malicious to non-malicious, or vice-
versa, across the stream. In this section, we describe how
important changes can be naturally modeled by monitoring
a decision tree on the IP address space.

Background. We first introduce some standard machine
learning terminology. Aclassification function(or aclassi-
fier) is a function that takes as input a given IP address, and
outputs alabeldenoting whether the IP address is malicious
(also denoted by a “-”) or non-malicious (also denoted by a
“+”). The classification function makes amistakewhenever
it labels a malicious IP address as non-malicious, or a non-
malicious IP address as malicious. Theclassification error
of a classification function is the fraction of the input IP ad-
dresses on which it makes a mistake.

We also introduce some networking background. AnIP
address prefix(also calledIP prefix) i/d denotes the part
of the IP address space that is covered by the firstd bits
of i, e.g., the prefix10.0.0.0/8 indicates the part of the IP
address space whose first octet is10, i.e., all IP addresses
in the set10. ∗ . ∗ .∗. Note that the prefixi/d + 1, (i.e.,
10.0.0.0/9 in our example) denotes a subset of the address
denoted thati/d (i.e.,10.0.0.0/8). The IP address hierarchy
can be naturally interpreted as a binary tree: the leaves of
the tree correspond to individual IP addresses, the internal
nodes correspond to the IP prefixes, and IP prefixi/d is the
parent of the prefixi/d + 1 in this representation. We say
that IP prefixx belongs to prefixy if x is a parent ofy in
this tree, e.g.,10.0.0.0/9 belongs to10.0.0.0/8.

2.1 Modeling the Problem
We begin with a motivating example. Consider a /23 pre-

fix owned by an access provider, and suppose that a number
of hosts with IP addresses in this /23 get compromised and
start spamming. Now if this /23 prefix belongs to a larger
prefix (say, a parent /22) that is already a known spam-
haven, this new spamming activity of the /23 is not very
interesting to an operator, since the larger region is known
to spam (i.e., it is not surprising that a smaller region within
a known spam-haven also starts to spam). If, on the other

(a) No change (b) Change

Figure 1. Example of ∆-bad Changes. (a) shows a
prefix that is not ∆-bad, because /23 starts originating
malicious traffic when its parent /22 is already known to
originate malicious traffic (b) shows a prefix that is de-
fined as∆-bad, because the /23 starts originating mali-
cious traffic when its parent /22 is not known to originate
malicious traffic.

hand, the larger prefix (e.g., the parent /22) has originated
only legitimate traffic so far, the new spamming activity be-
comes much more interesting to network operators, because
they previously assumed that the region did not spam. By
notifying operators of the change, they can control or block
the spam from the /23 to their networks. We illustrate this
example in Figure 1.

A key part of this example is having an accurate clas-
sifier for the the type of traffic originated by the two /22
prefixes – we need to know what kind of traffic a particular
region is expected to originate, before we can understand
when the region has changed its malicious activity. How-
ever, we do not have such a classifier given to us as input,
and we need to infer it dynamically from a stream of IP ad-
dresses and their associated labels. Thus, to infer change,
we first have to infer such a classifier for the prefixes from
the labeled IP addresses, and then use this classifier to infer
changes. Moreover, the appropriate prefix granularity for
such a classifier is different in different parts of the Inter-
net, we need to also infer the required prefix granularities.
Because it is likely impossible to infer a classifier with zero
error, we instead will look for changes relative to any clas-
sifier that makes no more thanτ error on the data, for small
(input) τ > 0. By definition, all such classifiers must clas-
sify most of the data identically. In particular, letst denote
the stream of input< IP, label > pairs appearing in epoch
t; our goal is to detect prefixes that have changed inst+1

relative to a classifier that makes no more than an inputτ
error onst.

Algorithmic constraints and Adversarial ModelThe
scale of network traffic makes it infeasible to use compu-
tationally expensive algorithms. In particular, a solution
should have constant processing time per IP, make only a
single pass over the input streams, and have memory re-
quirements that are sublinear in the input data size. Such al-



0.0.0.0/0

0.0.0.0/1
128.0.0.0/1

0.0.0.0/2 192.0.0.0/2

+

+

-+

-+

160.0.0.0/3

128.0.0.0/4 152.0.0.0/4

Figure 2. Example IPtree of size 6, since it has 6 leaves.
Each leaf has a ”+” or a ”-”, denoting whether the asso-
ciated prefix originates non-malicious or malicious traf-
fic. Section 3 describes how we learn such a tree from
data.

gorithms are calledonline, and are among the most desired
(and difficult to create). In addition, our data may have to
have somenoise– e.g., an IP may be labeled as produc-
ing spam incorrectly. For example, if our labels are com-
ing from SpamAssassin, and SpamAssassin mislabels legit-
imate mail from an IP as spam, then our algorithm receives
an inaccuracy label for this IP, and must be able to cope with
this inaccuracy. Our algorithm’s performance thus needs to
scale gracefully as the noise increases, and be able to pro-
duce accurate output when the noise in the data is tiny. Fi-
nally, we cannot assume that input IPs are drawn from a
fixed probability distribution overI. Although assuming a
fixed distribution would be easier, it would make the algo-
rithm easier to evade. In particular, we assume an adversary
can pick the addresses from which malicious activity origi-
nates, and therefore, could mislead any algorithm assuming
that all IPs originate from a priori fixed distribution.

Practical considerationsThere are additional constraints
that make the algorithm more useful by directing atten-
tion towards changes that are most actionable by operators.
First, we aim to detect prefixes with at leastθ traffic since
(1) data may be occasionally mislabeled, and (2) changes in
prefixes with very little traffic may not be noteworthy.

In addition, operators only care about prefixes where the
change is directly evident: i.e., if the prefix changes from
originating mostly non-malicious activity to mostly mali-
cious activity, or vice versa.1 To formalize this concept, we
introduce the concept of astateto reflect level of malicious
activity of a prefix. Formally, astateis defined by an inter-
val in [0, 1]; the set of all statesD input to the algorithm is
given by a collection of non-overlapping intervals in[0, 1].
A prefix is assigned a state based on the fraction of traffic
it originates that is non-malicious. Thus, for example, the
state defined by the interval[0, 0.2] is assigned to prefixes

1There may be situations where a prefix undergoes changes, butthe
change is not directly observed when traffic is aggregated atthat prefix,
e.g., a prefix could originate roughly the same amount of malicious and
non-malicious traffic inst+1 as it did inst, but misclassify both malicious
and non-malicious activity onst+1 (perhaps because some of its children
prefixes have changed). We ignore such changes in this paper as they are
not typically actionable.

sending between0 − 20% spam. Conceptually, the state
of a prefix can be thought of measuring the level of ”bad-
ness” of the prefix. We define alocalizedchange in a prefix
to be one where the prefix has changed its state, and our
goal is to find only localized changes. For example, sup-
pose the setD consists of two intervals[0, 0.2) and[0.2, 1).
A prefix that used to send less than20% spam, but now
sends between20−100% has undergone a localized change
(in effect, the prefix is considered non-malicious if it sends
less than20% spam, and malicious if it sends at least20%
spam, and we are only interested in finding when the prefix
changes from malicious to non-malicious, or vice-versa.)
The setD is input to the algorithm. Continuous intervals
provide finer-grained data to operators than just malicious
and non-malicious. Of course, in reports to the operators,
we can always reduce to just malicious and non-malicious
if desired.2

Modeling Malicious Activity of Prefixes as Decision
Tree. We take advantage of the structural properties of
malicious activity in order to design an efficient and ac-
curate algorithm for detecting changes. Prior work has
demonstrated that malicious traffic tends to be concentrated
in some parts of the address space [5, 21, 23, 30] – that is,
the IP address space can be partitioned into distinct prefix-
based regions, some of which mostly originate malicious
traffic and some that mostly originate legitimate traffic. We
observe that the IP address space can be represented as a
tree of prefixes. Thus, we can model the structure of ma-
licious activity as a decision tree over the IP address space
hierarchy rooted at the /0 prefix: the leaves of this tree are
prefix-based partitions that send mostly malicious or mostly
non-malicious traffic; this is a decision tree since each leaf
in the tree can be considered as having a ”label” that indi-
cates the kind of traffic that the corresponding prefix-based
region originates (e.g., the label might be ”bad” when the
region originates mostly malicious traffic, ”good” when the
region originates mostly legitimate traffic). The changes in
prefix behaviour can then be precisely captured by changes
in this decision tree. In Sec. 3, we describe how we learn
this decision tree to model the malicious activity from the
data.

More formally: letI denote the set of all IP addresses,
andP denote the set of all IP prefixes. AnIPTreeTP over
the IP address hierarchy is a tree whose nodes are prefixes
P ∈ P , and whose leaves are each associated with a la-
bel, malicious or non-malicious. An IPtree thus serves as a
classification function for the IP addressesI. An IP address
i ∈ I gets the label associated with its longest matching
prefix in the tree. Ak-IPtree is an IPtree with at mostk
leaves. By fixing the number of leaves, we get a constant-

2We could also define changes in terms of the relative shift in the ma-
licious activity of the prefix. However, the definition we useabove allows
for a conceptually easier way to explain prefix behavior.



sized data structure. Theoptimal k-IPtree on a stream of
IP address-label pairs is thek-IPtree that makes the small-
est number of mistakes on the stream. Figure 2 shows an
example IPtree of size 6.

We define prefix changes in terms of the IPTree: We de-
fine a∆-bad prefixfor an IPTreeT as a prefixp that starts
to originate malicious traffic whenT labels traffic fromp
as legitimate. Likewise, a∆-good prefixis a prefixp that
starts to originate legitimate traffic whenT labels traffic
fromp as malicious. In the example of Fig. 1, the /24s in the
first and second scenarios are labeled as malicious and non-
malicious respectively. The /25 in the second case sends
traffic that differs from the tree’s label. Fig. 1(b) shows an
example∆-bad prefix. Without loss of generality, we will
use∆-change prefixto refer to either∆-good or a∆-bad
prefix. We of course report back to an operator whether a
∆-change prefix is∆-bad or∆-good.

In this paper we use TrackIPTree as a subroutine in our
algorithms in order to infer decision trees from the data
stream, as it meets all our algorithmic requirements for scal-
ably building near-optimal decision trees over adversarial
IP address data [29]. (Note TrackIPTree does not solve the
problem of detecting the changed prefixes posed in this pa-
per, even with a number of extensions, as we discuss in Sec-
tion 2.2.) Conceptually, TrackIPTree keeps track of a large
collection of closely-related decision trees, each of which
is associated with a particular weight. It predicts the label
for an IP address by a choosing a decision tree from this set
in proportion to its relative weight in the set; when given
labeled data to learn from, it increases the weights of the
decision trees that make correct predictions, and decreases
the weights of those that make incorrect predictions. Track-
IPTree accomplishes this efficiently (from both space and
computation perspectives) by keeping a single tree with the
weights decomposed appropriately into the individual pre-
fixes of the tree.

2.2 Alternate Approaches
We first discuss a few previous approaches that may ap-

pear to be simpler alternatives to our algorithms, and ex-
plain why they do not work.

BGP prefixes. A straightforward idea would be to use
BGP prefixes such asnetwork-aware clusters[19], a clus-
tering that represents IP addresses that are close in terms
of network topology. BGP prefixes have been a popular
choice in measurement studies of spamming activity and
spam-detection schemes [9,13,22,27,30], but have increas-
ingly been shown to be far too coarse to model spamming
activity accurately [22].

Unfortunately, BGP prefixes perform poorly because
they do not model the address space at the appropriate
granularity for malicious activity. BGP prefixes only re-
flect the granularity of the address space at which routing

happens, but actual ownership (and corresponding security
properties) may happen at finer or coarser prefix granu-
larity. (Likewise, ASes are also not an appropriate rep-
resentation because even though the Internet is clustered
into ASes, there is no one-to-one mapping between ser-
vice providers and ASes [3].) Our experiments in Sec. 4.1
demonstrate this, where network-aware clusters identify
around 2.5 times fewer∆-change prefixes than our algo-
rithms. For example, such an algorithm fails to report∆-
changes in small to medium hosting providers. These host-
ing providers are located in different regions of the world;
the provider manages small prefix blocks, but these prefix
blocks do not appear in BGP prefixes. Any change in the
hosting provider’s behavior typically just disappears into
the noise when observed at the owning BGP prefix, but
can be the root cause of malicious activity that the opera-
tor should know about.

Strawman Approaches based on TrackIPTree. A sec-
ond approach would be to learn IPTree snapshots that can
classify the data accurately for different time intervals,and
simply ”diff” the IPTree snapshots to find the∆-change pre-
fixes. TrackIPTree [29] is a natural choice to construct these
IPTree, as it can build a near-optimal classifier. However,
even with near-optimal IPTrees, we cannot directly com-
pare them to accurate find∆-change prefixes.

Let sa, sb be two arbitrary input sequences of IPs on
which we make no a priori assumptions, as described in
Section 2.1.3 Let Ta andTb be the resulting IPtrees after
learning oversa andsb respectively using TrackIPTree [29].
There are many immediate ways we could compareTa and
Tb, but when the trees are large, noisy and potentially error-
prone, most of these lead to a lot of false positives. We use
here small examples to illustrate how these differencing ap-
proaches fail, and in Section 4, we show that these lead to
extremely high false positive rates on real IPTrees.

One possible approach to compare two decision trees is
to compare the labels of their leaves. However, the two trees
may assign different labels to a region even when there is
not a (significant) difference in the relevant parts ofsa and
sb, e.g., both trees may be inaccurate in that region, making
any differences found to be false positives.

Even if we know which parts of the tree are accurate, and
restrict ourselves to comparing only “mostly accurate” pre-
fixes, we still cannot directly compare the trees. The trees
may still appear different because the tree structure is dif-
ferent, even though they encode almost identical models of

3We make no assumption on the< IP, label > pairs that are present
in sa andsb. This means that there may be some IPs that are common to
bothsa andsb, and others that IPs are not present insa or sb. The labels
of the common IPs do not need to be identical insa andsb; indeed, we
expect that in real data, some of the common IPs will have the same labels
in sa andsb, but others will differ. Even within a single sequencesa, an
IP i does not need to have the same label throughout, it may have different
labels at different points in the sequencesa.
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Figure 3. Comparing “Mostly Accurate” Prefixes. Ta

and Tb classify99% of traffic seen identically, but would
be flagged different because of differences in the tree
structure that affect very little traffic.

the malicious activity. We illustrate this with the examplein
Figure 3 (assume that each leaf shown in the figure classifies
over95% of its respective traffic accurately). The two trees
Ta andTb (learned oversa andsb respectively) then classify
over99% of IPs identically, yet would be flagged different
if we simply compared their accurate prefixes. Such small
deviations might just be caused by noise since the trees are
learned over different sequences, e.g.,sa might have had
more noise thansb. It is of little use to identify such∆-bad
prefixes for operators.

A third possible approach considers only prefixes that
are both “mostly accurate” and have sufficient (at leastθ)
traffic, but even then, we cannot simply compare the trees.
Consider Figure 4, where the true tree has a /16 prefix with
two /17 children, and one /17 originates only malicious IPs,
while the other /17 originates only legitimate traffic. In the
two learned treesTa andTb, none of the leaves see suffi-
cient (θ) traffic.4 In this example, the highlighted /16 prefix
is the longest parent prefix withθ traffic in bothTa andTb.
If we analyze the interior prefix’s activity by the traffic it has
seen, most of the traffic seen by the /16 is non-malicious in
Ta and malicious inTb. Thus, we would flag it as a∆-bad
prefix. However, this is once again a false positive – note
that all leaf labels inTa andTb are identical (i.e., no re-
gion has actually changed its behaviour) – the only change
is that a few leaves send less traffic inTa and more inTb

(and vice versa). Such changes in traffic volume distribu-
tion occur routinely without malicious regions becoming
benign. For example, some spam-bots may become quiet
for a few days while they receive new spam templates, and
then restart spamming activities. In Sec. 4.1, we show em-
pirically that this third approach can lead to false positive

4We need to analyze the interior prefixes to ensure that we do not miss
legitimate changes. For example, imagine a scenario where most of the
leaves inTa are negative, while most of the leaves inTb are positive. The
longest parent prefix with at leastθ traffic is an interior prefix, and it has
clearly undergone a change. If we do not analyze the interiorprefix, we
will miss such changes.
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Figure 4. Comparing prefixes that are accurate as well
as have sufficient traffic. Ta and Tb are accurate, and
share identical leaf labels; however, none of the leaves
have enough traffic to be compared.

rates of over47%.

3 Our Algorithms
3.1 Overview of Our Approach

Our key insight is to use the classification error between
the two trees in order to infer∆-change prefixes. If a pre-
fix has had low classification error in earlier time intervals
with Tz, but now has high classification error (on substan-
tial traffic), we can infer that it has undergone a∆-change.
The (earlier) low classification error (on sufficient traffic)
implies our treeTz used to model this region well in the
past intervals, but and the current high classification error
implies does not do so any longer. Thus, we infer that the
prefix has changed its behavior – that it is sending traffic that
is inconsistent with its past behaviour – and therefore, is a
∆-change region. As long as we are able to maintain a de-
cision tree with high predictive accuracy for the sequences,
our analysis can discover most prefixes changing between
sa andsb. Further, by only selecting prefixes that have a
high classification error on a substantial fraction of the traf-
fic, we build some noise-tolerance into our approach.

This insight shows that we need to achieve the follow-
ing three simultaneous goals to address the IPTree evolu-
tion problem: (1) keep track of a current model of the ma-
licious activity; (2) measure the classification errors of the
current sequence based on aprior accurate model; (3) keep
track of a current model of the frequently changing regions.
We keep multiple decision trees over the address to simul-
taneously achieve these goals. At a high-level, we let one
IPtree learn over the current sequence, so it tracks the cur-
rent malicious activity. We keep second set of IPtrees fixed
(i.e., they cannot change its labels, weights, or structure),
and use them to measure the classification accuracy on the
current sequence. We then compare the classification errors
of the second set of IPtrees (not the IPtrees themselves) on
the different sequences to compute the specific changed pre-
fixes (details in Section 3.2). For our third goal, we use our
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learned IPtrees to discover which of the IP addresses in the
current sequence have changed their labels. We then learn a
third IPtree based on this information, partitions the address
space into regions that are change frequently and those that
do not. (To avoid confusion, we term this third IPtree as
change-IPTree, and define it in Section 3.3).

3.2 The∆-Change Algorithm
We now present our∆-Change algorithm which ad-

dresses the question: can we identify the specific regions of
changing malicious activity? Recall that ak-IPtree is a de-
cision tree over the IP address space with at mostk leaves.
Let s1, s2 . . . denote the sequences of IP addresses at each
time interval, and letTz denote the IPtree built over the se-
quencesz. For readability, we useTcurr to denote the tree
that is being learned over the current sequence of IPs, and
Told to denote an older tree that is being kept fixed over the
current sequence of IPs. We useTold,z to denote the tree
Told that is annotated with its classification errors on the
sequencesz.

At a high-level, we do the following: As each labelled IP
i arrives in the sequencesz, (i) we predict a label with the
treesTcurr andTold,z; (ii) we annotate the treeTold,z with
its classification error oni, and (iii) we update the model of
Tcurr with i if necessary. At the end of the interval, we com-
pare classification errorsTold,z−1 with Told,z andTcurr to
discover the∆-change prefixes, discarding redundant pre-
fixes as appropriate (i.e., when multiple prefixes reflect the
same change).Told is then updated appropriately (we spec-
ify the details later), so it can used for measuring the clas-
sification errors of the IPs in the next sequencesz+1. We
sketch the high-level view of∆-Change in Figure 5.

We describe the construction ofTcurr andTold,z in Sec-
tion 3.2.1, and the comparison between the trees in Sec-
tion 3.2.2. We describe∆-Change in terms of multiple trees
for conceptual clarity. However, it may be implemented
with just one IPTree (and additional counters) for efficiency.

3.2.1 Constructing the IPTrees

At a high-level, TrackIPTree involves all parent prefixes of
an IPi in current IPtree in both in classifying IPi, as well

∆-CHANGE Input: sequencesz , Told, Tcurr;
for IP-label pair< i, label > in sz

pi,curr := label predicted oni using
TrackIPTree onTcurr

pi,old := label predicted oni using
TrackIPTree onTold

AnnotateTree(Told,z , i)
Update (Tcurr, i, label)

ExtractChangedPrefixes(Told, Tcurr);
sub ANNOTATETREE

Input: IPTreeTold, IP i, labell
for each parent prefixj of i in Told

IPs[j, label] += 1
if pi,curr 6= pi,old

mistakes[j, label] += 1
sub EXTRACTCHANGEDPREFIXES

Input: IPTreeTold,z, IPTreeTold,z−1, IPTree
Tcurr, error thresholdγ, IP thresholdθ

Output: Set of∆-changesC
//Step 4: Isolate Candidate Prefixes
Candidate Set of∆-changesC = {}
for each prefixj ∈ Told,z

error[j] = (mistakes[j, +] +
mistakes[j,−])/(IPs[j,+] + IPs[j,−]);

if error[j] > γ and IPs[j] > θ and
state[j, Told] 6= state[j, Tcurr]

Add prefixj to candidate setC

//Step 5: Prune Redundant Prefixes
for each prefixc ∈ C

for each parentj of c in Told

childMistakes[j] += mistakes[c];
childIPs[j] += IPs[c]

for each prefixc ∈ C

if mistakes[c] - childMistakes[c] < θ

|| IPs[c] - childIPs[c] < γ

discardc from C

//Step 6: Discover New Children
for each prefixc ∈ C

for each child nodec′ of c in Tcurr

if c′ 6∈ Told

addsubtree(c) to C

Figure 6. Pseudocode for∆-Change
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as in learning from labeled IPi. Crucially, TrackIPTree de-
composes the main prediction problem into 3 subproblems,
which it treats independently: (a) deciding the predictionof
each individual parent prefix, (b) combining the parent pre-
fix predictions by deciding their relative importance, and (c)
maintaining the tree structure so that the appropriate sub-
trees are grown and the unwanted subtrees are discarded.
These subproblems are cast as instances of experts’ prob-
lems [11,20].

TrackIPTree uses the following data structure, shown in
Figure 7(a) and (b). Each node in the IPtree maintains two
sets of weights. One set, termedlabel predictors, decide
whether an individual node should predict non-malicious or
malicious, denoted{yj,+, yj,−} for nodej (Fig. 7(b)). The
second set, termedrelative importance predictors, keeps
track of the weight of the prefix’s prediction, in relation to
the predictions of other prefixes – we usexj to denote this
weight for nodej (Fig. 7(a)). In∆-Change, we augment
the basic IPTree data structure with a few additional coun-
ters, so that we can keep track of the classification error
rates at the different parts of the address space on the cur-
rent sequencesz (we elaborate further in Step 2). Below we
describe how we use this data structure in order to apply the
relevant components of TrackIPTree to constructTcurr and
Told,z and then discover the∆-change prefixes.

Step 1: Predicting with Told and Tcurr. We compute
predictions ofTold andTcurr using the prediction rules of
TrackIPTree. We first allow each prefix ofi in Told (and
likewise, Tcurr) to make an individual prediction (biased
by its label predictors). Then, we combine the predictions
of the individual nodes (biased by its relative importance
predictor). We illustrate these steps in Fig. 7(a)-(c).

Formally, letP denote the set of prefixes ofi in a tree
T . We compute each prefixj ∈ P ’s predictionpi,j , with a
bias ofyj,+ to predict non-malicious, and a bias ofyj,− to
predict malicious. We then combine all the predictionspi,j

into one predictionpi for the IPi, by choosing prediction
pi,j of nodej with probabilityxj , its relative importance

predictor. Thepi is our final output prediction.

Step 2: Annotating Told with Classification Errors.
We next describe how we annotate the IPTreeTold to pro-
duceTold,z based on the errors thatTold makes onsz. For
this, we augment the basic IPTree data structure with four
additional counters at each prefix ofTold: two counters that
keep track of the number of malicious and non-malicious
IPs on the sequencesz, and two counters that keep track
of the number of mistakes made on malicious and non-
malicious IPs onsz. (This is the only update to the IPtree
data structure of [29] that∆-Change requires.)

We do the following for each IPi: if the output predic-
tion pi of Told (obtained from Step 1) does not match the
input label of IPi, we increment the number of mistakes
made at each parent prefix ofi in treeTold,z. We track mis-
takes on malicious and non-malicious IPs separately. We
also update the number of malicious and non-malicious IPs
seen at the prefix in the sequencesz. Thus, for example, in
Figure 7, if the input label of IPi is “-” and Told has pre-
dicted “+”, we update the errors for malicious IPs at each
highlighted parent prefix ofi, and we also update the num-
ber of malicious IPs seen at each highlighted parent prefix.

Step 3: Learning Tcurr. Finally, we updateTcurr with
the labeled IP. This ensures that our model of the stream is
current. This step directly applies the update rules of Track-
IPTree toTcurr [29], as a subroutine. Effectively, the learn-
ing procedure penalizes the incorrect prefixes and rewards
the correct prefixes by changing their weights appropriately;
it then updates the tree’s structure by growing or pruning as
necessary. Due to space limits, we omit a detailed descrip-
tion of TrackIPTree’s update rules here.

3.2.2 Extracting Changes from IPTrees

At this point, we have measured the classification error of
Told over the sequencesz (denoted byTold,z), and we have
allowedTcurr to learn oversz . Now, our goal is to extract
the appropriate changes betweensz andsz−1 by comparing
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the treesTold,z, Told,z−1 andTcurr.
At a high-level, we do this in three steps: (1) first, we

isolate candidate∆-change prefixes, by comparing their
classification errors and states betweenTold,z andTold,z−1;
(2) we prune redundant prefixes, which ensures that we do
not include prefixes as∆-change if their children already
account for bulk of the change; (3) finally, we discover
new children that may have been grown in relation to these
changes by comparingTcurr andTold.

Specifically, letD be the set of states that prefixes can
be assigned to. Letθ minimum number of IPs that a prefix
needs to originate to be considered potentially a∆-change.
Let τ denote the maximum error a prefix may have to still be
considered an accurate model of the region’s traffic.5 Let γ
as the minimum increase in a prefix’s error that guarantees
that the prefix is indeed∆-change. We deriveγ from the set
D, as we describe later. We will use Figure 8 to illustrate
these three steps with a running example, where we setθ =
50, τ = 0.1, andγ = 0.5. In the example, we allow a
prefix to have one of two states: “good”, which corresponds
to 0-50% of its traffic being malicious, and “bad”, which
corresponds to 51-100% of its traffic being malicious.

Step 4: Isolate Candidate Prefixes. We isolate as a can-
didate setC all prefixes inTold satisfying the following con-
ditions: (1) its classification error inTold,z exceedsγ, and
its classification error inTold,z−1 is belowτ ; (2) at leastθ
instances have been seen at the prefix. We then compare the
prediction labels of each prefix inC to the corresponding
prefix in Tcurr to check for a state change. If there is no
change in the prefix’s state, the change is not localized, and
we discard the prefix fromC.

Figure 8(a) shows the originalTold,z−1 (the states for
each node are not shown for readability, assume they are all
“good” in Told,z−1) (b) showsTold,z (again, the states of
each node are not shown, here assume all are “bad”). The
shaded prefixes (nodes B & C) have both sufficient IPs and
the necessary change in the classification error. Node A gets

5τ is typically set to a small value such as0.01%, but cannot be set to
0% because of noisy data.

discarded because it is not accurate enough inTold,z−1, and
node D gets discarded because it has too few IPs.

Step 5: Prune Redundant Changes. Not all candidate
prefixes isolated inC will represent a change in a distinct
part of the IP address space. Every parent of a∆-change
prefix will also have made the same mistakes. In some
cases, these mistakes may cause the parent prefix to also
have a high overall classification error (e.g., when no other
child of that parent originates substantial traffic). However,
some parents of a∆-change prefix may have a high classifi-
cation error due to changes in a different part of the address
space. To avoid over-counting, we include a prefix inC
only if the following two conditions hold: (1) it accounts
for an additionalθ IPs after the removal of all children∆-
change prefixes; (2) there is at leastγ classification error on
the IPs from the remaining prefixes inTold,z, and at mostτ
error inTold,z. Figure 7(c) shows this step: we discard the
parent /17 prefix (node B) from the list of∆-change pre-
fixes, because it does not account for an additionalθ = 50
IPs after we remove the contribution of its∆-change /18
child (node C).

Step 6: Discover New Children. The treeTcurr may
have grown new subtrees (with multiple children) to ac-
count for the changes in the input IP stream. We compare
each prefixc ∈ C with the corresponding prefixes inTcurr

to see if new subtrees ofc have been grown. If these sub-
trees differ fromc in their prediction labels, we annotatec
with these subtrees to report to the operator. Figure 8(d)
showsTcurr and the corresponding subtrees (of depth 1
in this example) of the∆-change prefix (node C) inTold,
which are annotated with node C for output.

To wrap up the∆-Change algorithm, we discuss the two
parameters we did not specify earlier. First, we need to de-
fine how we obtainTold from Tcurr. SinceTold needs to
have its accuracy measured in intervalz − 1, it needs to be
learnt no later thanz − 2. So,Told = Tz−2 for the sequence
sz, and at every interval, we updateTold to be the tree learnt
2 intervals before the current one. We also need to derive
γ from the set of statesD. Since each state is defined by



an interval in[0, 1], we can use the interval boundaries to
deriveD. Thus, for example, if each stateD has the same
interval length, thenγ = 1

|D| .
Properties of∆-Change: Efficiency and Correctness

The∆-Change algorithm meets our goals of operating on-
line on streaming data and our computational requirements
as each step involves only the following operations: learn-
ing an IPtree, comparing two IPtrees or applying an IPtree
on the input data. The first operation is performed by the
TrackIPTree algorithm, which is an online learning algo-
rithm, and the remaining operations require storing only the
IPtrees themselves, thus requiring only constant additional
storage.

More precisely, the key data structures of∆-Change are
three IPtrees, i.e.,Told,z−1, Told,z, Tcurr. The basic IPTree
data structure has a space complexity ofO(k) for a tree
with k leaves [29], as TrackIPTree only stores a number of
weights and counters per prefix. For∆-Change algorithm,
as described in Step 2, we need to augment the basic IP-
tree structure with four additional counters for each prefix.
Thus, the space complexity for∆-Change remainsO(k).

Next, we describe the run-time complexity of∆-Change.
Steps 1, 2 and 3 are applied to every IP in the input se-
quence, but each step has at mostO(log k) complexity: for
each IP, we examine all its parents inTcurr andTold a con-
stant number of times (only once in Step 2, 2-4 times in
Steps 1 & 3 as part of the subroutines of TrackIPTree), so
the run-time per IP isO(logk). In Step 4, we compare each
pair of prefixes inTold,z andTold,z−1, so our run-time for
Step 4 isO(k). In Step 5, we examine potential∆-change
prefix together with its parents, so our run-time is bounded
by O(k log k). For Step 6, we examine each potential∆-
change prefix together with its children subtrees inTcurr,
and sinceTcurr is a k-IPtree, the run-time is bounded by
O(k). Thus, the total run-time of∆-Change, for an input
sequence of lengthn, becomesO(n log k + k log k).

We conclude with a note about accuracy: by design, ev-
ery ∆-change prefix discovered is guaranteed to reflect a
change in the IPs between the sequencessz andsz−1. If
a prefix has had high classification error inTold,z and low
classification error inTold,z−1, then that prefix is indeed
originating a different kind of traffic insz−1 than it did in
sz. Thus, the∆-Change algorithm will have no false pos-
itives (though it may not find all∆-change prefixes, since
theTcurr andTold are approximate).

3.3 The∆-Motion Algorithm
In this section, we address the second question posed in

our problem: What regions of the Internet are prone to fre-
quent changes? The answer to this helps us pinpoint struc-
tural properties of the∆-change prefixes.

A straightforward approach might be to use the∆-
change prefixes output by∆-Change, but as just described
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IP address space into “change” and “no-change” re-
gions. This is just like the regular IPTree in Figure 1, but
with the leaf labels denoting “change” or “no-change”.

in Section 3.2, this list of∆-change prefixes may be incom-
plete:∆-Change can only ensure that every identified prefix
is truly a∆-change prefix (i.e., there are no false positives),
but not that every∆-change prefix is discovered (i.e., there
may be false negatives). However, there is additional infor-
mation in the structure of the learned IPtreeTold as well as
the input data sequencesz that we can exploit.

To answer our question, we need to partition the IP ad-
dress space into regions that change quickly and regions that
change slowly. We first observe that this problem may be
modeled as another instance of the problem of learning an
IPtree – we need simply to learn a decision tree over the IP
address spacewhere the leaf labels denote “change” or “no
change”, rather than “malicious” or “non-malicious”. For
clarity, we define this IPTree as achange-IPTree; Figure 10
shows an example of such an IPtree. Therefore, if we get
access to IPs labelled with “change” or “no change” (rather
than our usual sequences of IPs labelled with “malicious” or
“non-malicious”), and we directly use TrackIPTree to solve
this problem.

Recall that we denotesz to be the part of the stream that
appears in intervalz. ∆-Motion uses the IPtreeTz−1 to an-
notate each IPi in sz. If the label of IPi matches the predic-
tion ofTz−1, it pairs IPi with label ”no change”, and if they
do not match, it pairs the IP with a label ”change”. We thus
have a new streams′z derived fromsz , where the label of
each IP is ”change” or ”no change”. Next, we apply Track-
IPTree on this new stream, and the resulting change-IPtree



differentiates prefixes that change frequently from those do
not change frequently. We useWz to denote this change-
IPtree built on the streams′z of IPs labeled with ”change”
or ”no change”. Even though the IPtreeTz−1 we use to
generate the new labels is approximate, it typically has a
very high accuracy and so the new stream will typically
have only a little noise. We note that the space and run-
time complexity of∆-Motion is identical to TrackIPTree:
its data structure uses only three IPTrees (a change-IPTree
and two regular IPTrees); each step of∆-Motion applies a
part of TrackIPTree, and the different parts of TrackIPTree
are applied three times in∆-Motion.

4 Experimental Results
Data. Our first data set uses spam as our source of ma-
licious activity. Our data is collected from the operational
mailservers of a tier-1 ISP which handle mail for total of
over 8 million subscribers. We collected data in two pe-
riods: from mid-April to mid-August 2010 over 120 days,
and from mid June to late July 2012, over 41 days. Our data
set includes the IP addresses of the senders’ mail servers and
the number of spam and legitimate messages that each mail
server sends in a 5-minute interval; we do not collect any
other information. We use the mailserver’s spam-filtering
system (Brightmail) as labels for IP addresses in our learn-
ing algorithm; a single IP address can thus be labeled mali-
cious at one point in time and non-malicious at a different
point, as it may send legitimate messages at some points and
spam at others. In total, the IP addresses in our data have
sent over 5.3 billion spam and 310 million legitimate mes-
sages. While our data may have some noise in labeling (due
to Brightmail mislabeling spam as legitimate mail and vice-
versa), because the algorithm is adaptive and noise-tolerant,
a small fraction of inaccurate labels in the data will not have
a significant long-term impact on the tree.

Our second data set is based on botnet activity from Oc-
tober 2011 to January 2012. For this data set, we first ob-
tain a distribution of the active IP addresses across the Inter-
net by collecting daily snapshots of flows sampled from IP
backbone traffic. All together, our monitoring points cover
80% of the traffic carried by the IP backbone. On any given
day, our data includes 24-28 million unique IP addresses.
We use botnet activity to label these IP addresses as ma-
licious or non-malicious for our algorithms. In particular,
we obtain a daily snapshot of IP addresses within a tier-1
ISP that are part of a botnet, as identified by the ISP’s secu-
rity vendors. These security vendors employ a combination
of monitoring algorithms, sinkholes, spam traps and mal-
ware binary analysis to identify and track bot IP addresses,
and the daily snapshot includes all the bot IPs observed by
the vendors on that particular day – specifically, a bot IP is
included in the list for a particular day only if it has gen-
erated activity matching a signature on that particular day

6 The botnet feed contains around 30,000-100,000 unique
IP addresses daily (these include drones as well as the re-
sponsible C&C servers), and the feed includes over 2.64
million unique bot IP addresses in total across 94 days of
data. We label an IP address as malicious on dayi if it ap-
pears in the botnet feed on dayi. As in the spam data set,
any noise in the input data stream will be carried over to our
results; however, if there is a only small amount of noise
in the labeling, the adaptive nature of the algorithm ensures
that there will not be a long-term impact on the tree.

Our results demonstrate that our algorithms are able to
discover many changes in the Internet’s malicious activ-
ity, and do so substantially better than alternate approaches.
The exact∆-change prefixes we detect are, of course, spe-
cific to our data sets, and for confidentiality reasons, we
anonymize the owning entities of all the prefixes in the re-
sults. Our results show two examples of how our algorithm
can be applied on real data sets from operational networks,
and discover changes that operators were unaware of.

Experiment Setup. Throughout our experiments, we
keep the algorithm parameters fixed. We setǫ = 0.05,
following [29]. We use IPtrees of sizek = 100, 000 for
spam data andk = 50, 000 for the botnet data, as they
make accurate predictions on the input stream, and a fur-
ther increase ink does not substantially increase the tree’s
accuracy. We measure the accuracy of our algorithms on
a per-IP basis (following [29]), and the accuracy of our
constructed IPtrees are similar to [29]. All our change-
detection experiments are performed on day-length inter-
vals, i.e., each of the three trees is built, tested and compared
across different days. We use three states for the prefixes,
split by legitimate-ratio thresholds:[0, 0.33), [0.33, 0.75),
and [0.75, 1]. We term these statesbad, neutral andgood
states respectively, and this means that a prefix state is as-
signed as “good” if it sends at least75% non-malicious traf-
fic, “neutral” if it sends33% − 75% non-malicious traffic,
and “bad” if it sends less than33% non-malicious traffic.
With the thresholds of the set of states, we deriveγ = 33%.
We set allowable errorτ = 5% throughout, and the mini-
mum traffic neededθ = 0.01% and0.05%. We chose these
values forτ andθ because in our experiments, we are able
to obtain a list of∆-change prefixes that is small enough to
be manually analyzed, and yet large enough for us to dis-
cover interesting trends across our data sets. Our parame-
ters remain stable throughout our data set when we seek to
analyze changes across day-long intervals. As operator re-
sources allow, these parameters can be changed to allow for
the discovery of either more fine-grained changes (say, with
smaller ofθ or larger values ofk) or more coarse-grained

6While there are bound to be inaccuracies – both false positives and
false negatives – in this dataset due to the difficulty of identifying botnets,
our results demonstrate that our algorithms are able to highlight those pre-
fixes where significant changes occur as a function of the input data.



changes. Our experiments were run on a on a 2.4GHz
Sparc64-VI core. Our current (unoptimized) implementa-
tion takes 20-22 minutes to process a day’s trace (around
30-35 million IP addresses) and requires less than 2-3 MB
of memory storage.

We note that the ground truth in our data provides labels
for the individual IP addresses, but does not tell us the pre-
fixes that have changed. Thus, our ground truth allows us to
confirm that the learned IPTree has high accuracy, but we
cannot directly measure false positive rate and false nega-
tive rate of the change-detection algorithms. Thus, our ex-
perimental results instead demonstrate that our algorithm
can find small changes in prefix behaviour very early on real
data, and can do so substantially better than competing ap-
proaches. Our operators were previously unaware of most
of these∆-change prefixes, and as a consequence, our sum-
marization makes it easy for operators to both note changes
in behaviour of specific entities, as well as observe trends in
malicious activity.7

4.1 Comparisons with Alternate Approaches
We first compare∆-Change with previous approaches

and direct extensions to previous work. We compare two
different possible alternate approaches with∆-Change: (1)
using a fixed set of network-based prefixes (i.e., network-
aware clusters, see Sec. 2.2) instead of a customized IP-
Tree, (2) directly differencing the IPTrees instead of using
∆-Change. We focus here on only spam data for space rea-
sons.

Network-aware Clusters. As we described in Sec-
tion 3.2, our change-detection approach has no false pos-
itives – every change we find will indeed be a change in
the input data stream. Thus, we only need to demonstrate
that ∆-Change finds substantially more∆-changes than
network-aware clusters (i.e., has a lower false negative rate),
and therefore, is superior at summarizing changes in mali-
cious activity to the appropriate prefixes for operator atten-
tion.

We follow the methodology of [29] for labeling the
prefixes of the network-aware clusters optimally (i.e., we
choose the labeling that minimizes errors), so that we can
test the best possible performance of network-aware clus-
ters against∆-Change. We do this allowing the network-
aware clusters multiple passes over the IP addresses (even
though∆-Change is allowed only a single pass), as detailed
in [29]. We then use these clusters in place of the learned
IPTree in our change-detection algorithms.

We first compare∆-change prefixes identified by the
network-aware clustering and∆-Change. This compari-
son cannot be directly on the prefixes output by the two ap-

7As discussed in Section 1, our evaluation focuses exclusively on
changes in prefix behaviour, since prior work [28, 29] already finds per-
sistent malicious behaviour.
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Figure 11. Comparing ∆-Change algorithm with
network-aware clusters on the spam data:∆-Change
always finds more prefixes and covers more IPs

proaches, as slightly different prefixes may reflect the same
underlying change in the data stream, e.g., network-aware
clusters might identify a /24 while∆-Change identifies a
/25. In order to account for such differences, we group
together prefixes into distinct subtrees, and match a group
from the network-aware clustering to the appropriate group
from ∆-Change if at least50% of the volume of changed
IPs in network-aware clustering was accounted for in∆-
Change. In our results, network-aware clustering identified
no∆-change prefixes that werenot identified by∆-Change;
otherwise, we would have do the reverse matching as well.
Furthermore, this is what allows us to compare the num-
ber of ∆-changes that were identified by both algorithms,
otherwise we would not be able to make this comparison.

Fig. 11(a) shows the results of our comparison for 37
days. Network-aware clustering typically finds only a small
fraction of the∆-change prefixes discovered by∆-Change,
ranging from10% − 50%. On average,∆-Change finds
over 2.5 times as many∆-change prefixes as network-aware
clusters. We compare also the number of IPs in∆-change
prefixes identified by the network-aware clustering and∆-
Change in Fig. 11(b). The∆-change prefixes discovered
by ∆-Change typically account for a factor of 3-5× IP ad-
dresses as those discovered by the network-aware cluster-
ing. It indicates that network-aware clustering does not dis-
cover many changes that involve a substantial volume of the
input data. On many days, especially on days with changes,
the fraction of IP addresses not identified by network-aware
clusters, however, is still smaller than the fraction of pre-
fixes that it does not identify. This indicates that network-
aware clustering identifies the larger, coarser changes, but
misses the fine-grained changes.

Network-aware clusters perform so poorly because the
prefix granularity required to identify∆-changes typically
does not appear at all in routing tables. Indeed, as our anal-
ysis in Section 4.2 shows, a large number of∆-change pre-
fixes come from hosting providers, many of which do not
even appear in BGP prefix tables.

Possible Differencing of IPTrees. We now show that
the possible differencing approach described in Section 2.2



produces an extremely high false positive rate. For this ex-
periment, we learn two trees (denotedTx andTy) over two
consecutive day-long intervals,i, i+1 respectively. We cal-
culate the differing common prefixes in the trees, and then
use a basic mathematical argument to prove that there must
be a very high false positive rate among these prefixes.

Each treeTx andTy has an overall accuracy rate exceed-
ing 95.2% on each of the daysi andi + 1 (we measure this
separately across all IPs in each dayi andi+1). Since each
tree makes less than5% error, the two trees can differ on at
most10% of the IPs on each dayi andi + 1 (e.g., the trees
may make errors on disjoint sets of IPs on each day); denote
this set of IPs where the trees differ asM . Now, consider
the set of prefixes that appear in both trees, and contain at
least0.01% of the data (and discard the redundant parents
from this set that account for the same traffic). In order for a
prefix to qualify as∆-change, at least33% of the IPs it sees
must be from the setM . However, by the pigeonhole prin-
ciple, there can be at most3400 prefixes can (1) account for
at least0.01% of the IPs, and (2) have at least33% of their
IPs come from the setM . However, when we measured the
number of the prefixes present in these two trees that were
different, based either on leaf label or on traffic volume for
interior nodes (ensuring we discard redundant parents), we
found5021 prefixes present in bothTx andTy, with at least
0.01% of the traffic. Thus, at least1621 of the prefixes have
to be incorrect, giving a47% false positive rate.

4.2 Characterization: Spam Data

Summary. We present a summary of∆-changes dis-
covered in the 2010 spam data, as it covers a longer pe-
riod (120 days) compared to the 2012 data. Table 1(a)
(Fig. 12) summarizes the∆-change prefixes discovered by
∆-Change, categorized by the kind of behavioral change
that they have undergone. The table shows results for dif-
ferent values of the thresholdθ = 0.05%, 0.01%. As we
expect, whenθ decreases, the number of prefixes identified
as∆-change increases, since there are more prefixes with
at leastθ IPs. Note that the majority of the changes come
from prefixes that progressively originate more spam, i.e.,
nearly 75%∆-change prefixes are∆-bad. Further, regard-
less ofθ, very few spamming prefixes actually change for
the better. These observations are consistent with the ear-
lier studies on spam origin and spammer behavior – while
spammers tend to move around the address space, perhaps
dependent on the bots they own, legitimate mail servers tend
to remain stable. Further, when a region stops spamming, it
are much more likely to stop sending mail traffic altogether,
rather than start sending substantial volumes of legitimate
mail. Since∆-Change does not detect a prefix that simply
stops originating traffic, we see very few∆-good prefixes

in Table 1(a).8

Table 2 (Fig. 13) shows the∆-change prefixes split by
access type of the prefix (in this analysis, we include a prefix
only once even if it has appeared as a∆-change prefix mul-
tiple times) forθ = 0.05%. The majority of the∆-change
prefixes come from small ISPs and hosting providers, al-
though there are also a few large (tier-1) ISPs. As Table
1 shows, most of these prefixes are identified because they
start to send spam. In Fig. 15(a) we also show the distribu-
tion of prefix lengths of the∆-change prefixes: over 60% of
prefixes have lengths between /16 and /26, which matches
the prefix ranges expected of hosting providers and small
ISPs. Obviously, many of these small ISPs and hosting
providers obtain their IP address ranges from large ISPs,
but∆-Change identifies the small ISPs distinctly from their
respective owning larger ISP only because their spamming
activity differs significantly from the spamming activity of
their respective owning larger ISP. DHCP effects also in-
fluence the prefixes that are discovered – they force the
change in spamming activity to be identified at the gran-
ularity of the owning prefix, rather than the individual IP
addresses, and this is likely another factor in the predomi-
nance of small ISPs and hosting providers as frequent∆-
changes. Indeed, the predominance of small regional ISPs
and hosting providers as frequent∆-changes emphasizes
the need for techniques that can automatically infer changed
malicious activity – these providers tend to be substantially
more volatile and transient than large ISPs, making it much
harder to track them with pre-compiled lists.

Case Study 1: Individual Provider Spamming Activity.
Fig. 14 illustrates the spamming activity of three differ-
ent providers that we identified as∆-bad atθ = 0.05%.
ProviderA is a hosting provider (with a /19 prefix) based in
south-eastern US, providerB is a virtual web-hosting com-
pany in Netherlands (with a /26 prefix), and providerC is a
small ISP in mid-western US. (with a /22 prefix). Note that
each one of these providers starts and stops spammingmul-
tiple times over 4 months.∆-Change identifies all of these
changes, as we highlight in Fig 14 with arrows. Further, we
note that∆-Change identifies each∆-bad prefix early on,
beforetheir peak spamming activity. None of these three
prefixes are detected when BGP prefixes are used, as they
are much too small to appear in routing tables. Further, our
mail operators were unaware that these specific providers
were engaging in spamming activity, and would not have
found them without exhaustive manual analysis.

These three providers are just examples of the many that
were not detected by BGP prefixes and of which our opera-
tors were previously unaware.9 We highlighted these to il-

8Note also the design of TrackIPTree ensures that such prefixes even-
tually get discarded from IPtree, and thus after a period of time, these
prefixes will not be labeled malicious in the tree forever.

9Maintaining a list of hosting providers and using the list totrack their



Original State New State θ = 0.01% θ = 0.05%
Bad Good 31 11

Neutral 28 1
Good Neutral 122 24

Bad 205 33
Neutral Good 66 9

Bad 146 13

Original State New State θ = 0.01% θ = 0.05%
Bad Good 134 23

Neutral 189 16
Good Neutral 42 17

Bad 78 14
Neutral Good 201 98

Bad 285 43
Table 1(a) Spam Data Set Table 1(b) Botnet Data Set

Figure 12. Characterizing the ∆-change prefixes discovered for spam and botnet data sets.

ISP Type # Identified
Large ISPs 4
Small ISPs 11

Hosting Providers 9
Others 2

Figure 13. Table 2: Spam Data: ISP Types of∆-
change prefixes

lustrate spamming activity from these smaller providers that
repeatedly starts and stops. Our case study also illustrates
how difficult it is to ensure that systems are configured to
never spam, especially for hosting providers, since hosting
providers typically allow their customers to easily establish
new mail servers on their physical or virtual infrastructure,
and can repeatedly get caught into a cycle of accidentally
hosting spammers and cleaning up spamming activity.

Case Study 2: Drop in Internet-wide Spamming Activ-
ity. In our next case study, we examine the∆-good pre-
fixes discovered by∆-Change during the Grum botnet take-
down in July 2012. The Grum botnet was considered the
third largest spamming botnet and responsible for around
17% of all the spam on the Internet. [12]. This case study
illustrates what an operator would see with the∆-Change
algorithm during such a large event, with no a priori knowl-
edge that the event was happening.

Figure 15(b) shows the number of∆-good prefixes dis-
covered each day by∆-Change and network-aware clusters,
and the start of the botnet takedown is indicated (with an ar-
row). (As in Sec. 4.1, we count only∆-good prefixes that
correspond to distinct regions of the address space, in or-
der to have a fair comparison between∆-Change and the
network aware clusters.) Our first observation is that there
is sudden increase in the number of∆-good prefixes right
after the botnet takedown, showing that a number of pre-
fixes have suddenly changed their spamming activity. The
number of∆-good prefixes discovered every day remains
high for a number of days after the takedown – this hap-
pens because our algorithm discovers prefixes as∆-changes
when they actively generate traffic (e.g., by sending legiti-
mate mail instead of spam in this case). Thus, whenever a

spamming activity would be less effective, since hosting providers start
and shut down frequently.
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Figure 14. Case Study 1: Spamming Activity in Small
Providers A, B, C. ∆-Change discovers spamming ac-
tivity early in small ISPs and hosting providers (arrows
indicate every time the prefixes are discovered).

(previously) infected region become active after the botnet
takedown, its prefix blocks are identified as∆-good.

We also observe that∆-Change discovers far more∆-
good prefixes than the network-aware clusters (anywhere
between a factor of 3-10). Further analysis showed that
these prefixes had previously sent0.01% − 0.1% of the
daily spam volume in our data, and a few of them contained
over two thousand spamming IP addresses. Most of these
prefixes range are allocated to small regional ISPs (rang-
ing from /15 to /26), and many of them do not appear in
BGP routing tables, and so they cannot be detected with
network-aware clusters. Thus,∆-Change highlights to op-
erators where on the Internet a drop in spamming activity
took place.

4.3 Characterization: Botnet Data
Next, we examine the results of∆-Change on the bot-

net data. Recall that our data only identifies botnet activity
within a single large tier-1 ISP, and thus,∆-change only de-
tects changes internal to this ISP. This is especially useful
since large ISPs often allocate prefix blocks to many smaller
ISPs and other customers, many of which typically are are
managed independently and change over time as business
requirements change, and thus are likely to have very dif-
ferent security properties. In this scenario,∆-Change was
useful for highlighting to the operators a network-wide view
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(c) Case Study 3: New Botnet Activity

Figure 15. (a) shows sizes of∆-change prefixes. (b) shows Case Study 2:∆-good prefixes with drop in spamming activity
during the Grum takedown (arrow indicates when the takedownstarted). There is a sharp increase in∆-good prefixes
after the takedown. (c) shows Case Study 3:∆-change Prefixes in New Botnet Activity.A and B mark the ∆-bad prefixes
discovered when over 22,000-36,000 new bot IPs appeared in the feed.

of the changing malicious activity, since there is likely tobe
a diversity of malicious activity when new threats emerge.

Summary. Table 1(b) (Fig. 12) summarizes the differ-
ent prefixes forθ = 0.05%, 0.01%, categorized by the type
of change they have undergone. As in Section 4.2, the
prefixes discovered increases sharply whenθ is increased.
However, note that in this experiment, there are very signif-
icant numbers of∆-good prefixes discovered as well – over
56% of all the prefixes discovered are∆-good, unlike the
spam data. This is primarily because the active IP address
space changes very little, while bot IP addresses appear in
the feed for much shorter durations (e.g., this may be as bots
get cleaned, or bot signatures get outdated). A former bot
IP would then generate mostly legitimate traffic (its mali-
cious traffic would drop, but its legitimate activity remains
the same, and so it would get labelled as legitimate), and the
corresponding IP regions thus become∆-good.

Case Study 3: New Botnet Activity. Our case study
illustrates the value of discovering∆-bad prefixes internal
to a large ISP’s prefix blocks. Figure 15(c) shows the time-
series of the∆-change prefixes discovered over two months
of our data set. The highlighted days (A andB) mark two
sharp increases in the number of∆-change prefixes discov-
ered. These correspond to days with dramatic increases in
the number of new bot IPs seen in the data feed – 22.1 &
28.6 thousand at the two days marked asA and 36.8 thou-
sand atB Further analysis showed that on days markedA,
nearly all of of these new bot IPs are from the DNSChanger
botnet [8], and are responsible for 19 & 31∆-bad pre-
fixes. On dayB, these new bot IPs are from Sality [25]
and Conficker [6], and 66∆-bad prefixes correspond to the
new IPs from Sality and Conficker. By contrast, network-
aware clusters were only able to discover 5-12 prefix blocks
as∆-bad during these events. These∆-bad prefixes come
from smaller regional ISPs, the tier-1 ISP’s dial-up and DSL
blocks; most of these prefixes had little to botnet activity
(as identified by the vendor) earlier. Thus, in these two in-
stances,∆-Change effectively reduces the workload for op-

0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

TreeMotion

Figure 16. ROC curve for ∆-Motion’s accuracy

erator from manually investigating over 22,000-36,000 new
bot IPs to investigating 19-66 new IP prefixes, a drop of two
orders of magnitude.

4.4 Structural Analysis of IP Dynamics
Our earlier results demonstrate that there is constant

change in the Internet’s malicious activity. We now explore
the structure underlying these changes with the∆-Motion
algorithm, focusing our analysis on spam dataset due to
space. We use a snapshot of the change-IPtreeW generated
by ∆-Motion, 60 days into the dataset;W ’s high predictive
accuracy indicates it can distinguish frequently-changing
regions well, as shown by the ROC curve in Fig. 16. We
useW to classify every IP in our data set as ”change” or
”non-change”, and then aggregate the IPs by country and
owning company. We definefreq-ratio to be the fraction of
the total IPs of that entity that are marked as change IPs,
and analyze the freq-ratio of different aggregations.

Table 3 (Fig. 17) shows a breakdown for the origin of the
frequently changing IPs. Together, these countries account
for 90% of the data seen at our mail servers. We note that
countries like China, Korea, Russia [23], which are known
to harbor lot of spammers actually change very infrequently,
while countries like US and Canada change 3-4 times more
frequently. This makes sense, as countries where ISPs ag-
gressively fight spammer infestations are likely to experi-
ence a more frequent change in malicious activity. Table
4 shows a breakdown by ISP type. Once again, hosting
providers have a substantially higher ratio than the other cat-



Country freq-ratio
USA 6.9%
W. Europe 2.6%
Brazil 0.8%
Canada 9.1%
Russia 2.2%
Estonia 1.1%
Poland 1.5%
Argentina 3.9%
Korea 1.1%
Colombia 3.4%
China 2.3%

Table 3: Country

ISP Type freq-ratio
Large ISPs 6.6%
Small ISPs 4.9%

Hosting
Providers 12.2%

Others 1.1%
Table 4: ISP type

Figure 17. Analyzing the IPtree learnt by ∆-Motion:
the tables show frequently changing regions

egories, consistent with our results in Section 4.2, since it is
much easier to spam out of a hosting provider. We see both
large and small ISPs seem to have roughly the same fre-
quency of change, and that businesses (which constitute the
most of the ”other” category) have a tiny ratio, as expected.

The set of hosting providers discovered by∆-Motion
(which are the same as those that∆-Change identifies re-
peatedly as∆-bad prefixes) are of particular interest to mail
operators. As discussed in Section 4.2, hosting providers
are especially vulnerable to changes because they see a
wide variety of users, who sometimes take any opportu-
nity to spam. However, because these providers also have
many legitimate clients, they cannot be entirely blacklisted,
and therefore need to be closely monitored so that they do
not cause a significant performance impact. Indeed, this is
likely true of all new hosting providers as they appear on
the market, and it is this kind of structural insight about ma-
licious activity that∆-Motion could discover, which may
help operators prioritize their resources.

5 Related Work
Spam. There has recently been a lot of interest in de-
signing non-content based approaches to spam-filtering. Of
these, most closely related to our work are the IP-based
spam filtering approaches. These have included studies on
individual IP addresses, AS numbers and /24 prefixes [23],
BGP prefixes [27, 30], prefixes with dynamic IP assign-
ment [31], highly predictive blacklists [33], using a com-
bination of DNS clusters and BGP prefixes [22], and using
well-defined properties of spammers to discover IP address
ranges used by spam gangs [9]. Our work differs from all
of these as we are concerned with automatically discovering
the prefixes that change their malicious behavior, using only
a stream of IP addresses labelled spammer or legitimate;
we do not use a priori fixed clusters that originating from
network-based properties. There have also been behavior-
based spam filtering approaches [13, 24], and analysis and

identification of spam campaigns [2,18] and spamming bot-
nets [15, 32]; these take a very different angle, comple-
mentary to ours, for analyzing shifting malicious activity.
Lastly, there have been a number of studies showing the
relative inaccuracy of DNS-based blacklists [16,26] Again,
our results are complementary to (and consistent with) all
these analyses, as we show that even with a near-optimal
partitioning of the IP address space, there are still a large
number of changes in spamming behavior.

Other Related Work. Xie et al [31] consider the prob-
lem of discovering IP addresses that are dynamically as-
signed. Our problem is different from this work, as we are
interested in dynamic of malicious activity, not of IP ad-
dress assignment. Soldo et al. [28] study the problem of
filtering malicious activity but their algorithms only oper-
ate on offline data, not streaming data. Finally, note also
that our problem differs from work on identifying hierar-
chical heavy-hitters [7, 10, 34], and discovering significant
changes in the multi-dimensional aggregates [1, 4, 14, 17]:
these problems are concerned with volumetric changes on a
hierarchy, not on changes in classification of decision tree.

6 Conclusion
In this paper, we formulated and addressed the problem

of discovering changes in malicious activity across the In-
ternet. Our evaluations using a large corpus of mail data and
botnet activity indicate that our algorithms are fast, can keep
up with Internet scale traffic data, and can extract changes
in sources of spam activity substantially better (a factor of
2.5) than approaches based on using predetermined levels
of aggregation such as BGP-based network-aware clusters.
Using our algorithms, we find that some regions of the In-
ternet are prone to much faster changes than others, such as
a set of hosting providers that are of particular interest to
mail operators.
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