Efficient Private File Retrieval by Combining ORAM and PIR

Travis Mayberry
Erik-Oliver Blass
Agnes Chan

Hiding Access Patterns

Oblivious RAM

- Communication: High
- Rounds: Multiple
- Client computation: None
- Server computation: None

Private Information Retrieval

- Communication: Low
- Rounds: One
- Client computation: Low
- Server computation: High

Contributions

- We introduce a PIR bucket construction which allows recent ORAM protocols to be merged with PIR
- Consider the notion of an ORAM's data latency or online data
 - We define latency to be the amount of communication required before the client has full access to the requested data
- Using our bucket construction with the tree-based scheme of Shi et. al., we obtain an ORAM protocol with:
 - The lowest communication overhead of any constant-clientmemory Oblivious RAM
 - Optimal data latency
- We evaluate our scheme on Amazon AWS and show that it has very low overall query time and monetary cost per query

Notation

- n: Number of blocks in the ORAM
- ℓ : Size of each block in bits
- k: Size of one ciphertext in bits

Helpful sample values:

$$n = 2^{25}$$
 $\ell = 1 \text{ MB}$
 $k = 2048 \text{ bits}$

Database = 4 TB

Shi et al

- First poly-logarithmic worst-case oblivious RAM
- New tree based construction
- Achieves $O(\ell \cdot \log^3 n)$ communication, with relatively good constants
- Consists of two phases: data access, and eviction

Private Information Retrieval

- Traditionally very computationally expensive, conjectured that it might never be feasible [SC07]
- Recently advances in homomorphic encryption have lead to practical schemes [MBC13][MG08], especially when ℓ is large compared to n

Query

<u>Database</u>

E(0)	*	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}
E(1)	*	X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}
E(0)	*	X _{3,1}	X _{3,2}	X _{3,3}	X _{3,4}
E(0)	*	X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}

E(0)	E(0)	E(0)	E(0)
E(X _{2,1})	E(X _{2,2})	E(X _{2,3})	E(X _{2,4})
E(0)	E(0)	E(0)	E(0)
E(0)	E(0)	E(0)	E(0)

nk

Response

=

=

=

+

E(X _{2,1})	E(X _{2,2})	E(X _{2,3})	E(X _{2,4})
----------------------	----------------------	----------------------	----------------------

 ℓ

$$O(nk + \ell)$$

To change X_i to X', encrypt "delta": $Y_j = X'_j - X_{i,j}$

Query

Server Side

E(0)	*	E(Y ₁)	E(Y ₂)	E(Y ₃)	E(Y ₄)
E(1)	*	E(Y ₁)	E(Y ₂)	E(Y ₃)	E(Y ₄)
E(0)	*	E(Y ₁)	E(Y ₂)	E(Y ₃)	E(Y ₄)
E(0)	*	E(Y ₁)	E(Y ₂)	E(Y ₃)	E(Y ₄)

E(0)	E(0)	E(0)	E(0)
E(Y ₁)	E(Y ₂)	E(Y ₃)	E(Y ₄)
E(0)	E(0)	E(0)	E(0)
E(0)	E(0)	E(0)	E(0)

nk

 ℓ

$$O(nk + \ell)$$

Encrypted Delta

<u>Encr</u>	ypted	<u> Datak</u>	<u>oase</u>

E(0)	E(0)	E(0)	E(0)
E(Y ₁)	E(Y ₂)	E(Y ₃)	E(Y ₄)
E(0)	E(0)	E(0)	E(0)
E(0)	E(0)	E(0)	E(0)

		_	_	_
E(X _{1,1})	E(X _{1,2})	E(X _{1,3})	E(X _{1,4})	=
E(X _{2,1})	E(X _{2,2})	E(X _{2,3})	E(X _{2,4})	=
E(X _{3,1})	E(X _{3,2})	E(X _{3,3})	E(X _{3,4})	=
E(X _{4,1})	E(X _{4,2})	E(X _{4,3})	E(X _{4,4})	=

E(X _{1,1})	E(X _{1,2})	E(X _{1,3})	E(X _{1,4})
E(X' ₁)	E(X' ₂)	E(X' ₃)	E(X' ₄)
E(X _{3,1})	E(X _{3,2})	E(X _{3,3})	E(X _{3,4})
E(X _{4,1})	E(X _{4,2})	E(X _{4,3})	E(X _{4,4})

PIR Bucket

- Read blocks using linear PIR
- Write blocks using linear PIR-Writing
- Requires only additively homomorphic encryption!

What does this give us?

Better asymptotic communication

- Old: $O(\ell \cdot \log^3 n)$ - New: $O(k \cdot \log^3 n + \ell \cdot \log^2 n)$

	Worst-Case	Practical Worst-Case
Shi et al	$O(l \cdot \log^3(N))$	$O(l \cdot \log^2(N))$
Kushilevitz	$O(\frac{l \cdot \log^2(N)}{\log \log(N)})$	$O(l \cdot \log^3(N)$
Path-PIR Additive	$O(k \cdot \log^3(N) + l \cdot \log^2(N))$	$O(l \cdot \log(N))$
Path-PIR FHE	$O(k \cdot \log(N) + l \cdot \log(N))$	O(k+l)
Optimal	$O(\log(N) + l)$	$O(\log(N) + l)$

Also interesting: good latency!

1) Client requests to read block 5

- 1) Client requests to read block 5
- 2) Naïve way: use PIR to retrieve 1st element of each bucket

$$O((\ell + k) \cdot \log n)$$

- 1) Client requests to read block 5
- 2) Naïve way: use PIR to retrieve 1st element of each bucket
- 3) Use PIR again to retrieve 3rd element of previous results

$$O(k \cdot \log n + \ell)$$

This is optimal!

What good is that?

- Latency represents how responsive the ORAM is to client interactions
 - If most of the communication happens in the background, after the client receives their data, it is much more acceptable in real world scenarios
- Also allows the client to take advantage of interesting network asymmetries...

Cell network data is expensive ☺

Defer eviction while you are out

WiFi Data is cheap ☺

Complete "bookkeeping" when you get home

	Latency	Worst-Case	Practical Worst-Case
Shi et al	$O(l \cdot \log^2(N))$	$O(l \cdot \log^3(N))$	$O(l \cdot \log^2(N))$
Kushilevitz	$O(\frac{l \cdot \log^2(N)}{\log \log(N)})$	$O(\frac{l \cdot \log^2(N)}{\log \log(N)})$	$O(l \cdot \log^3(N)$
Path-PIR Additive	$O(k \cdot \log(N) + l)$	$O(k \cdot \log^3(N) + l \cdot \log^2(N))$	$O(l \cdot \log(N))$
Path-PIR FHE	O(k+l)	$O(k \cdot \log(N) + l \cdot \log(N))$	O(k+l)
Optimal	$O(\log(N) + l)$	$O(\log(N) + l)$	$O(\log(N) + l)$

Communication Comparison

But what about expensive computation?

Conclusion

- We have introduced a technique for applying PIR to ORAM protocols which results in significantly decreased communication
- Combining our technique with an existing scheme leads to an efficient ORAM protocol with very low (optimal) latency
- Our protocol was tested on Amazon AWS and shown to be cheaper and faster than related work