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Hiding Access Patterns

Oblivious RAM

Communication: High
Rounds: Multiple

Client computation: None
Server computation: None
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Private Information Retrieval

* Communication: Low
 Rounds: One

e Client computation: Low
e Server computation: High
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Contributions

e We introduce a PIR bucket construction which allows
recent ORAM protocols to be merged with PIR

* Consider the notion of an ORAM’s data latency or online
data

— We define latency to be the amount of communication required
before the client has full access to the requested data

* Using our bucket construction with the tree-based scheme
of Shi et. al., we obtain an ORAM protocol with:

— The lowest communication overhead of any constant-client-
memory Oblivious RAM

— Optimal data latency

* We evaluate our scheme on Amazon AWS and show that it has very
low overall query time and monetary cost per query
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Notation

e 1: Number of blocks in the ORAM
e { :Size of each block in bits
* k :Size of one ciphertext in bits

Helpful sample values:

n = 22° Database = 4 TB
¢ =1 MB
k = 2048 bits
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Shi et al

* First poly-logarithmic worst-case oblivious
RAM

* New tree based construction
. 3 L .
* Achieves O(£ - log” n) communication, with
relatively good constants

* Consists of two phases: data access, and
eviction
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Bucket ORAM

L O(logn)
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Private Information Retrieval

* Traditionally very computationally expensive,
conjectured that it might never be feasible
[SCO7]

* Recently advances in homomorphic
encryption have lead to practical schemes

[IMBC13][MGO08], especially when ¢ is large
compared to n
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Database
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O(nk + /)

E(O)

E(O)

E(O)

E(O)

E(Xy,1)

E(Xy,)

E(Xy3)

E(X,4)

E(O)

E(O)

E(0)

E(O)

E(O)

E(O)

E(O)

E(O)

E(Xy,1)

E(X2,)

E(Xy,3)

E(X2,4)

10
10




E(0)

E(1)

E(O)

E(O)

nk

To change X; to X’, encrypt “delta”:

Server Side

Y;= X'j - X
Query
* E(Y,) E(Y,) E(Ys) E(Y,)
* E(Y,) E(Y,) E(Ys) E(Y,)
* E(Y,) E(Y,) E(Ys) E(Y,)
* E(Y,) E(Y,) E(Ys) E(Y,)
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EO) |E(0) |E(0) |E(0)
E(Y) [E(Y2) [E(Ys) [E(Ya)
EO) |E(0) |E(0) |E(0)
EO) |E(0) |E(0) |E(0)
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Encrypted Delta
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Encrypted Database

E(O) E(O) E(O) E(0) + E(Xy1) |E(X12) [E(Xy3) |E(Xy4)
E(Y:) [E(Y2) |E(Ys) [E(Yl) + E(X21) [E(Xy2) JE(Xy3) [E(Xy4)
E(0) |E(0) |E(0) |E(O) + E(Xs1) [E(X3,) [E(X33) |E(X3,)
E(0) |E(0) |E(0) |E(O) + E(Xs1) [E(Xaz) [E(Xg3) |E(Xg4)

E(X11) [E(Xn) [E(Xy3) |E(Xp4)

E(X'1) [E(X,) |E(X'3) [E(X)

E(Xs1) [E(X3,) [E(X33) |E(X3,)

E(Xs1) [E(Xa2) [E(Xg3) |E(Xg,4)
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Bucket ORAM

— O(logn)
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PIR Bucket
Buc M

~— O(logn)
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> O(logn -k + )
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PIR Bucket

* Read blocks using linear PIR
* Write blocks using linear PIR-Writing

* Requires only additively homomorphic
encryption!
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What does this give us?

* Better asymptotic communication
~old:  O(¢ - log® n)
—New: O(k -log®n + £ - log®n)

Worst-Case Practical Worst-Case
Shi et al O(l -log”(N)) O(l -log®(N))
Kushilevitz O(llogoiz((]]v\,))) O(l - log®(N)
Path-PIR Additive | O(k - log®(N) + 1 - log®(N) O(1 - log(N))
Path-PIR FHE O(k -log(N) +1-log(N)) O(k+1)
Optimal O(log(N) +1) O(log(N) +1)

Also interesting: good latency!




1) Client requests to read block 5
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1) Client requests to read block 5

2) Naive way: use PIR to retrieve 15t element of each bucket

|

00—
N

O((£+ k) -logn)
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1) Client requests to read block 5

2) Naive way: use PIR to retrieve 15t element of each bucket

3) Use PIR again to retrieve 3 element of previous results

|

00—
N

O(k -logn + ¢)

This is optimal!
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What good is that?

* Latency represents how responsive the ORAM
is to client interactions

— If most of the communication happens in the
background, after the client receives their data, it
is much more acceptable in real world scenarios

* Also allows the client to take advantage of
interesting network asymmetries...
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Cell network data is expensive ® WIiFi Data is ©

Defer eviction while you are out Complete “bookkeeping” when you
get home
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Latency Worst-Case Practical Worst-Case
Shi et al O(l -1og*(N)) O(l -1og”(N)) O(l -1og*(N))
Kushilevitz O (e ) O( e ). O(l - log3(N)
Path-PIR Additive | O(k - log(N) +1) | O(k -log®(N) + [ - log®(N) O(1 -log(N))
Path-PIR FHE O(k+1) O(k -log(N) +1-log(N)) Ok +1)
Optimal O(log(N) +1) O(log(N) +1) O(log(N) +1)
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Communication (MB)
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But what about expensive

computation?

Total Time (per query)
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Conclusion

 We have introduced a technique for applying
PIR to ORAM protocols which results in
significantly decreased communication

 Combining our technique with an existing
scheme leads to an efficient ORAM protocol
with very low (optimal) latency

* Our protocol was tested on Amazon AWS and
shown to be cheaper and faster than related
work
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