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Abstract

Network intrusion detection and prevention systems

commonly use regular expression (RE) signatures to rep-

resent individual security threats. While the corresponding

DFA for any one RE is typically small, the DFA that cor-

responds to the entire set of REs is usually too large to be

constructed or deployed. To address this issue, a variety

of alternative automata implementations that compress the

size of the final automaton have been proposed such as XFA

and D2FA. The resulting final automata are typically much

smaller than the corresponding DFA. However, the previ-

ously proposed automata construction algorithms do suffer

from some drawbacks. First, most employ a “Union then

Minimize” framework where the automata for each RE are

first joined before minimization occurs. This leads to an

expensive NFA to DFA subset construction on a relatively

large NFA. Second, most construct the corresponding large

DFA as an intermediate step. In some cases, this DFA is so

large that the final automaton cannot be constructed even

though the final automaton is small enough to be deployed.

In this paper, we propose a “Minimize then Union” frame-

work for constructing compact alternative automata focus-

ing on the D2FA. We show that we can construct an almost

optimal final D2FA with small intermediate parsers. The

key to our approach is a space and time efficient routine

for merging two compact D2FA into a compact D2FA. In

our experiments, our algorithm runs up to 302 times faster

and uses 1390 times less memory than previous algorithms.

For example, we are able to construct a D2FA with over

80,000,000 states using only 1GB of main memory in only

77 minutes.

1 Introduction

1.1 Background and Problem Statement

The core component of today’s network security devices

such as Network Intrusion Detection and Prevention Sys-

tems is signature based deep packet inspection. The con-

tents of every packet need to be compared against a set of

signatures. Application level signature analysis can also be

used for detecting peer-to-peer traffic, providing advanced

QoS mechanisms. In the past, the signatures were speci-

fied as simple strings. Today, most deep packet inspection

engines such as Snort [1, 24], Bro [23], TippingPoint X505

and Cisco security appliances use regular expressions (REs)

to define the signatures. REs are used instead of simple

string patterns because REs are fundamentally more expres-

sive and thus are able to describe a wider variety of attack

signatures [28]. As a result, there has been a lot of recent

work on implementing high speed RE parsers for network

applications.

Most RE parsers use some variant of the Deterministic

Finite State Automata (DFA) representation of REs. A DFA

is defined as a 5-tuple (Q,Σ, δ, q0, A), where Q is a set of

states, Σ is an alphabet, δ : Q × Σ → Q is the transition

function, q0 ∈ Q is the start, andA ⊆ Q is the set of accept-

ing states. Any set of REs can be converted into an equiv-

alent DFA with the minimum number of states [13, 14].

DFAs have the property of needing constant memory ac-

cess per input symbol, and hence result in predictable and

fast bandwidth. The main problem with DFAs is space ex-

plosion: a huge amount of memory is needed to store the

transition function which has |Q|×|Σ| entries. Specifically,

the number of states can be very large (state explosion), and

the number of transitions per state is large (|Σ|).

To address the DFA space explosion problem, a variety

of DFA variants have been proposed that require much less

memory than DFAs to store. For example, there is the De-



layed Input DFA (D2FA) proposed by Kumar et al. [17].

The basic idea of D2FA is that in a typical DFA for real

world RE set, given two states u and v, δ(u, c) = δ(v, c)
for many symbols c ∈ Σ. We can remove all the transitions

for v from δ for which δ(u, c) = δ(v, c) and make a note

that v’s transitions were removed based on u’s transitions.

When the D2FA is later processing input and is in state v

and encounters input symbol x, if δ(v, x) is missing, the

D2FA can use δ(u, x) to determine the next state. We can

do the same thing for most states in the DFA, and it results

in tremendous transition compression. Kumar et al. observe

an average decrease of 97.6% in the amount of memory re-

quired to store a D2FA when compared to its corresponding

DFA.

In more detail, to build a D2FA from a DFA, just do the

following two steps. First, for each state u ∈ Q, pick a

deferred state, denoted by F (u). (We can have F (u) = u.)

Second, for each state u ∈ Q for which F (u) 6= u, remove

all the transitions for u for which δ(u, x) = δ(F (u), x).

When traversing the D2FA, if on current state u and cur-

rent input symbol x, δ(u, x) is missing (i.e. has been re-

moved), we can use δ(F (u), x) to get the next state. Of

course, δ(F (u), x) might be missing too, in which case we

then use δ(F (F (u)), x) to get the next state, and so on. The

only restriction on selecting deferred states is that the func-

tion F cannot create a cycle other than a self-loop on the

states; otherwise all states on that cycle might have their

transitions on some x ∈ Σ removed and there would no

way of finding the next state.

Figure 1(a) shows a DFA for the REs set {.*a.*bcb,

.*c.*bcb}, and Figure 1(c) shows the D2FA built from

the DFA. The dashed lines represent deferred states. The

DFA has 13 × 256 = 3328 transitions, whereas the D2FA

only has 1030 actual transitions and 9 deferred transitions.

D2FA are very effective at dealing with the DFA space

explosion problem. In particular, D2FA exhibit tremen-

dous transition compression reducing the size of the DFA

by a huge factor; this makes D2FA much more practical

for a software implementation of RE matching than DFAs.

D2FAs are also used as starting point for advanced tech-

niques like those in [18, 20].

This leads us to the fundamental problem we address in

this paper. Given as input a set of REs R, build a compact

D2FA as efficiently as possible that also supports frequent

updates. Efficiency is important as current methods for con-

structing D2FA may be so expensive in both time and space

that they may not be able to construct the final D2FA even

if the D2FA is small enough to be deployed in networking

devices that have limited computing resources. Such issues

become doubly important when we consider the issue of

the frequent updates (typically additions) to R that occur

as new security threats are identified. The limited resource

networking device must be able to efficiently compute the

new D2FA. One subtle but important point about this prob-

lem is that the resulting D2FA must report which RE (or

REs) from R matched a given input; this applies because

each RE typically corresponds to a unique security threat.

Finally, while we focus on D2FA in this paper, we believe

that our techniques can be generalized to other compact RE

matching automata solutions [5, 8, 16, 26, 27].

1.2 Summary of Prior Art

Given the input RE set R, any solution that builds a

D2FA for R will have to do the following two operations:

(a) union the automata corresponding to each RE in R and

(b) minimize the automata, both in terms of the number of

states and the number of edges. Previous solutions [6, 17]

employ a “Union then Minimize” framework where they

first build automata for each RE within R, then perform

union operations on these automata to arrive at one com-

bined automaton for all the REs in R, and only then mini-

mize the resulting combined automaton. In particular, pre-

vious solutions typically perform a computationally expen-

sive NFA to DFA subset construction followed by or com-

posed with DFA minimization (for states) and D2FA mini-

mization (for edges).

Consider the D2FA construction algorithm proposed by

Kumar et al. [17]. They first apply the Union then Mini-

mize framework to produce a DFA that corresponds to R
and then construct the corresponding minimum state DFA.

Next, in order to maximum transition compression, they es-

sentially solve a maximum weight spanning tree problem

on the following weighted graph which they call a Space

Reduction Graph (SRG). The SRG has DFA states as its

vertices. The SRG is a complete graph with the weight of

an edge w(u, v) equal to the number of common transitions

between DFA states u and v. Once the spanning tree is

selected, a root state is picked and all edges are directed to-

wards the root. These directed edges give the deferred state

for each state. Figure 1(b) shows the SRG built for the DFA

in Figure 1(a). Using the resulting maximum weight span-

ning tree on the SRG, they then set the deferment state for

each state eliminating redundant transitions.

Becchi and Crowley also use the Union then Minimize

Framework to arrive at a minimum state DFA [6]. At this

point, rather than using an SRG to set deferment states for

each state, Becchi and Crowley use state levels where the

level of a DFA state u is the length of the shortest string that

takes the DFA from the start state to state u. Becchi and

Crowley observed that if all states defer to a state that is at

a lower level than itself, then the deferment function F can

never produce a cycle. Furthermore, when processing any

input string of length n, at most n − 1 deferred transitions

will be processed. Thus, for each state u, among all the

states at a lower level than u, Becchi and Crowley set F (u)
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Figure 1. (a) DFA for RE set {.*a.*bcb, .*c.*bcb}. (b) SRG for the DFA. Edges with weight ≤ 1 are

not shown. Unlabeled edges have weight 255. (c) The D2FA. Dashed edges represent deferment.

to be the state which shares the most transitions with u. The

resulting D2FA is typically a bit larger in size than the D2FA

built using the SRG which does not have the deferring to

lower level state restriction.

1.3 Limitations of Prior Art

Prior methods have three fundamental limitations. First,

they follow the Union then Minimize framework which

means they create large automata and only minimize them

at the end. This also means they must employ the expensive

NFA to DFA subset construction. Second, prior methods

build the corresponding minimum state DFA before con-

structing the final D2FA. This is very costly in both space

and time. The D2FA is typically 50 to 100 times smaller

than the DFA, so even if the D2FA would fit in available

memory, the intermediate DFA might be too large, mak-

ing it impractical to build the D2FA. This is exacerbated

in the case of the Kumar et al. algorithm which needs the

SRG which ranges from about the size of the DFA itself to

over 50 times the size of the DFA. The resulting space and

time required to build the DFA and SRG impose serious

limits on the D2FA that can be practically constructed. We

do observe that the method proposed in [6] does not need

to create the SRG. Furthermore, as the authors have noted,

there is a way to go from the NFA directly to the D2FA, but

implementing such an approach is still very costly in time

as many transition tables need to be repeatedly recreated in

order to realize these space savings. Third, none of the pre-

vious methods provide efficient algorithms for updating the

D2FA when a new RE is added to R.

1.4 Our Approach

To address these limitations, we propose a Minimize

then Union framework. Specifically, we first minimize the

small automata corresponding to each RE from R and then

union the minimized automata together. A key property

of our method is that our union algorithm automatically

produces a minimum state D2FA for the regular expres-

sions involved without explicit state minimization. Like-

wise, we create deferment states efficiently while perform-

ing the union operation using deferment information from

the input D2FAs. Together, these optimizations lead to a

vastly more efficient D2FA construction algorithm in both

time and space.

In more detail, given R, we first build a DFA and D2FA

for each individual RE in R. The heart of our technique

is the D2FA merge algorithm that performs the union. It

merges two smaller D2FAs into one larger D2FA such that

the merged D2FA is equivalent to the union of REs that the

D2FAs being merged were equivalent to. Starting from the

the initial D2FAs for each RE, using this D2FA merge sub-

routine, we merge two D2FAs at a time until we are left with

just one final D2FA. The initial D2FAs are each equivalent

to their respective REs, so the final D2FA will be equiv-

alent to the union of all the REs in R. Figures 2(a) and

2(b) show the initial D2FAs for the RE set {.*a.*bcb,

.*c.*bcb}. The resulting D2FA from merging these two

D2FAs using the D2FA merge algorithm is shown in Fig-

ure 2(c).

Advantages of our algorithm One of the main advan-

tages of our algorithm is a dramatic increase in time and

space efficiency. These efficiency gains are partly due to

our use of the Minimize then Union framework instead of

the Union then Minimize framework. More specifically, our

improved efficiency comes about from the following four

factors. First, other than for the initial DFAs that corre-

spond to individual REs in R, we build D2FA bypassing

DFAs. Those initial DFAs are very small (typically < 50
states), so the memory and time required to build the ini-
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Figure 2. (a) D1, the D2FA for RE .*a.*bcb. (b) D2, the D2FA for RE .*c.*bcb. (c) D3, the merged

D2FA. (d) Illustration of setting deferment for some states in D3.

tial DFAs and D2FAs is negligible. The D2FA merge algo-

rithm directly merges the two input D2FAs to get the output

D2FA without creating the DFA first. Second, other than

for the initial DFAs, we never have to perform the NFA to

DFA subset construction. Third, other than for the initial

DFAs, we never have to perform DFA state minimization.

Fourth, when setting deferment states in the D2FA merge

algorithm, we use deferment information from the two in-

put D2FA. This typically involves performing only a con-

stant number of comparisons per state rather than a linear

in the number of states comparison per state as is required

by previous techniques. All told, our algorithm has a prac-

tical time complexity of O(n|Σ|) where n is the number of

states in the final D2FA and |Σ| is the size of the input al-

phabet. In contrast, Kumar et al.’s algorithm [17] has a time

complexity of O(n2(log(n) + |Σ|)) and Becchi and Crow-

ley’s algorithm [6] has a time complexity of O(n2|Σ|) just

for setting the deferment state for each state and ignoring

the cost of the NFA subset construction and DFA state min-

imization. See Section 5.4 for a more detailed complexity

analysis.

These efficiency advantages allow us to build much

larger D2FAs than are possible with previous methods. For

the synthetic RE set that we consider in Section 6, given

a maximum working memory size of 1GB, we can build a

D2FA with 80, 216, 064 states with our D2FA merge algo-

rithm whereas the Kumar et al. algorithm can only build

a D2FA with 397, 312 states. Also from Section 6, our al-

gorithm is typically 25 to 300 times faster than previous

algorithms on our RE sets.

Besides being much more efficient in constructing D2FA

from scratch, our algorithm is very well suited for frequent

RE updates. When an RE needs to be added to the cur-

rent set, we just need to merge the D2FA for the RE to the

current D2FA using our merge routine which is a very fast

operation.

Technical Challenges For our approach to work, the

main challenge is to figure out how to efficiently union

two minimum state D2FAs D1 and D2 so that the result-

ing D2FA D3 is also a minimum state D2FA. There are two

aspects to this challenge. First, we need to make sure that

D2FA D3 has the minimum number of states. More specifi-

cally, suppose D1 and D2 are equivalent to RE sets R1 and

R2, respectively. We need to ensure that D3 has the mini-

mum number of states of any D2FA equivalent to R1 ∪R2.

We use an existing union cross product construction for this

and prove that it results in a minimum state D2FA for our

purpose. We emphasize that this is not true in general but

holds for applications where D3 must identify which REs

from R1 ∪ R2 match a given input string. Many security

applications meet this criteria.

Our second challenge is building the D2FA D3 without

building the entire DFA equivalent to D3 while ensuring

that D3 achieves significant transition compression; that is,

the number of actual edges stored in D2FA D3 must be

small. More concretely, as each state in D3 is created, we

need to immediately set a deferred state for it; otherwise,

we would be storing the entire DFA. Furthermore, we need

to choose a good deferment state that eliminates as many



edges as possible. We address this challenge by efficiently

choosing a good deferment state for D3 by using the de-

ferment information from D1 and D2. Typically, the algo-

rithm only needs to compare a handful of candidate defer-

ment states.

Key Contributions In summary, we make the following

contributions: (1) We propose a novel Minimize then Union

framework for construcing D2FA for network security RE

sets that we believe will generalize to other RE matching

automata. Note, Smith et al. used the Minimize then Union

Framework when constructing XFA [26, 27], though they

did not prove any properties about their union algorithms.

(2) To implement this framework, we propose a very effi-

cient D2FA merge algorithm for performing the union of

two D2FAs. (3) To prove the correctness of this D2FA

merge algorithm, we prove a fundamental property about

the standard union cross product construction and minimum

state DFAs when applied to network security RE sets that

can be applied to other RE matching automata. We imple-

mented our algorithms and conducted experiments on real-

world and synthetic RE sets. Our experiments indicate that:

(a) Our algorithm generates D2FA with a fraction of the

memory required by existing algorithms making it feasible

to build D2FA with many more states. For the real world

RE sets we consider in the experimental section, our algo-

rithm requires an average of 1390 times less memory than

the algorithm proposed in [17] and 31 times less memory

than the algorithm proposed in [6]. (b) Our algorithm runs

much faster then existing algorithms. For the real world

RE sets we consider in the experimental section, our algo-

rithm runs an average of 302 times faster than the algorithm

proposed in [17] and 28 times faster than the algorithm pro-

posed in [6]. (c) Even with the huge space and time effi-

ciency gains, our algorithm generates D2FA only slightly

larger than existing algorithms in the worst case.

The rest of the paper is organized as follows. We review

related work in Section 2. In Section 3 we present our con-

struction for efficiently building DFA for pattern matching

RE sets. In Section 4 we present our D2FA merge algo-

rithm and the incrementally building approach. Section 5

presents some properties of our D2FA merge algorithm, and

some variations of it. We present experimental results and

conclusions in Sections 6 and 7 respectively. For space rea-

sons, the proofs of Theorems and Lemmas and algorithm

pseudocode are given in the Appendix.

2 Related Work

Initially network intrusion detection and prevention sys-

tems used string patterns to specify attack signatures [2,

3, 29, 31–33, 36]. Sommer and Paxson [28] first pro-

posed using REs instead of strings to specify attack sig-

natures. Today network intrusion detection and prevention

systems mostly use REs for attack signatures. RE matching

solutions are typically software-based or hardware-based

(FPGA or ASIC).

Software-based approaches are cheap and deployable on

general purpose processors, but their throughput may not be

high. To achieve higher throughput, software solutions can

be deployed on customized ASIC chips at the cost of low

versatility and high deployment cost. To achieve determin-

istic throughput, software-based solutions must use DFAs,

which face a space explosion problem. Specifically, there

can be state explosion where the number of states increases

exponentially in the number of REs, and the number of tran-

sitions per state is extremely high. To address the space

explosion problem, transition compression and state mini-

mization software-based solutions have been developed.

Transition compression schemes that minimize the num-

ber of transitions per state have mostly used one of two tech-

niques. One is alphabet re-encoding, which exploits redun-

dancy within a state, [6, 7, 10, 15]. The second is default

transitions or deferment states which exploits redundancy

among states [4,6,17,18]. Kumar et al. [17] originally pro-

posed the use of default transitions. Becchi and Crowley [6]

proposed a more efficient way of using default transitions.

Our work falls into the category of transition compression

via default transitions. Our algorithms are much more effi-

cient than those of [6, 17] and thus can be applied to much

larger RE sets. For example, if we are limited to 1GB of

memory to work with, we show that Kumar et al.’s origi-

nal algorithm can only build a D2FA with less than 400,000

states whereas our algorithm can build a D2FA with over

80,000,000 states.

Two basic approaches have been proposed for state min-

imization. One is to partition the given RE set and build a

DFA for each partition [35]. When inspecting packet pay-

load, each input symbol needs to be scanned against each

partition’s DFA. Our work is orthogonal to this technique

and can be used in combination with this technique. The

second approach is to modify the automata structure and/or

use extra memory to remember history and thus avoid state

duplication [5,8,16,26,27]. We believe our merge technique

can be adopted to work with some of these approaches. For

example, Smith et al. also use the Minimize then Union

framework when constructing XFA [26, 27]. One poten-

tial drawback with XFA is that there is no fully automated

procedure to construct XFAs from a set of regular expres-

sions. Paraphrasing Yang, Karim, Ganapathy, and Smith

[34], constructing an XFA from a set of REs requires man-

ual analysis of the REs to identify and eliminate ambiguity.

FPGA-based solutions typically exploit the parallel pro-

cessing capabilities of FPGAs to implement a Nondeter-

ministic Finite Automata (NFA) [5,7,11,12,21,25,30] or to

implement multiple parallel DFAs [22]. TCAM based solu-



tions have been proposed for string matching in [3,9,31,36]

and for REs in [20]. Our work can potentially be applied to

these solutions as well.

Recently and independently, Liu et al. proposed to con-

struct DFA by hierarchical merging [19]. That is, they es-

sentially propose the Minimize then Union framework for

DFA construction. They consider merging multiple DFAs

at a time rather than just two. However, they do not con-

sider D2FA, and they do not prove any properties about their

merge algorithm including that it results in minimum state

DFAs.

3 Pattern Matching DFAs

3.1 Pattern Matching DFA Definition

In a standard DFA, defined as a 5-tuple (Q,Σ, δ, q0, A),
each accepting state is equivalent to any other accepting

state. However, in many pattern matching applications

where we are given a set of REs R, we must keep track of

which REs have been matched. For example, each RE may

correspond to a unique security threat that requires its own

processing routine. This leads us to define Pattern Match-

ing Deterministic Finite State Automata (PMDFA). The key

difference between a PMDFA and a DFA is that for each

state q in a PMDFA, we cannot simply mark it as accepting

or rejecting; instead, we must record which REs from R are

matched when we reach q. More formally, given as input a

set of REs R, a PMDFA is a 5-tuple (Q,Σ, δ, q0,M) where

the last term M is now defined as M : Q→ 2R.

3.2 Minimum State PMDFA construction

Given a set of REs R, we can build the corresponding

minimum state PMDFA using the standard Union then Min-

imize framework: first build an NFA for the RE that corre-

sponds to an OR of all the REs r ∈ R, then convert the NFA

to a DFA, and finally minimize the DFA treating accepting

states as equivalent if and only if they correspond to the

same set of regular expressions. This method can be very

slow, mainly due to the NFA to DFA conversion, which of-

ten results in an exponential growth in the number of states.

Instead, we propose a more efficient Minimize then Union

framwork.

Let R1 and R2 denote any two disjoint subsets of R,

and let D1 and D2 be their corresponding minimum state

PMDFAs. We use the standard union cross product con-

struction to construct a minimum state PMDFA D3 that

corresponds to R3 = R1 ∪ R2. Specifically, suppose we

are given the two PMDFAs D1 = (Q1,Σ, δ1, q01,M1)
and D2 = (Q2,Σ, δ2, q02,M2). The union cross product

PMDFA of D1 and D2, denoted as UCP(D1, D2), is given

by D3 = UCP(D1, D2) = (Q3,Σ, δ3, q03,M3) where

Q3 = Q1 × Q2, δ3(〈qi, qj〉, x) = 〈δ1(qi, x), δ2(qj , x)〉,
q03 = 〈q01, q02〉, and M3(〈qi, qj〉) =M1(qi) ∪M2(qj).

Each state inD3 corresponds to a pair of states, one from

D1 and one from D2. For notational clarity, we use 〈 and 〉
to enclose an ordered pair of states. Transition function δ3
just simulates both δ1 and δ2 in parallel. Many states in Q3

might not be reachable from the start state q03. Thus, while

constructing D3, we only create states that are reachable

from q03.

We now argue that this construction is correct. This is a

standard construction, so the fact that D3 is a PMDFA for

R3 = R1 ∪ R2 is straightforward and covered in standard

automata theory textbooks (e.g. [14]). We now show that

D3 is also a minimum state PMDFA forR3 assumingR1 ∩
R2 = ∅, a result that does not follow for standard DFAs.

Theorem 3.1. Given two RE sets, R1 and R2, and equiva-

lent minimum state PMDFAs, D1 and D2, the union cross

product DFA D3 = UCP(D1, D2), with only reachable

states constructed, is the minimum state PMDFA equivalent

to R3 = R1 ∪R2 if R1 ∩R2 = ∅.

Proof. First since only reachable states are constructed,D3

cannot be trivially reduced. Now assume D3 is not min-

imum. That would mean there are two states in D3, say

〈p1, p2〉 and 〈q1, q2〉, that are indistinguishable. This im-

plies that

∀x ∈ Σ∗, M3(δ3(〈p1, p2〉, x)) =M3(δ3(〈q1, q2〉, x)).

Working on both sides of this equality, we get ∀x ∈ Σ∗,

M3(δ3(〈p1, p2〉, x)) =M3(〈δ1(p1, x), δ2(p2, x)〉)

=M1(δ1(p1, x)) ∪M2(δ2(p2, x))

as well as ∀x ∈ Σ∗,

M3(δ3(〈q1, q2〉, x)) =M3(〈δ1(q1, x), δ2(q2, x)〉)

=M1(δ1(q1, x)) ∪M2(δ2(q2, x))

This implies that

∀x ∈ Σ∗M1(δ1(p1, x)) ∪M2(δ2(p2, x)) =

M1(δ1(q1, x)) ∪M2(δ2(q2, x)).

Now since R1 ∩R2 = ∅, this gives us

∀x ∈ Σ∗, M1(δ1(p1, x)) =M1(δ1(q1, x)) and

∀x ∈ Σ∗, M2(δ1(p2, x)) =M2(δ1(q2, x))

This implies that p1 and q1 are indistinguishable in D1

and p2 and q2 are indistinguishable in D2, implying that

both D1 and D2 are not minimum state PMDFAs, which is

a contradiction and the result follows.



Our efficient construction algorithm works as follows.

First, for each RE r ∈ R, we build an equivalent minimum

state PMDFA D for r using the standard method, resulting

in a set of PMDFAs D. Then we merge two PMDFAs from

D at a time using the above UCP construction until there

is just one PMDFA left in D. The merging in done in a

greedy manner: in each step, the two PMDFAs with the

fewest states are merged together. Note the condition R1 ∩
R2 ∅ is always satisfied in all the merges.

In our experiments, our Minimize then Union technique

runs exponentially faster than the standard Union then Min-

imize technique because we only apply the NFA to DFA

step to the NFAs that correspond to each individual regu-

lar expression rather than the composite regular expression.

This makes a significant difference even when we have a

relatively small number of regular expressions. For exam-

ple, for our C7 RE set which contains 7 REs, the standard

technique requires 385.5 seconds to build the PMDFA, but

our technique builds the PMDFA in only 0.66 seconds. For

the remainder of this paper, we use DFA to stand for mini-

mum state PMDFA.

4 Efficient D2FA Construction

In this section, we first formally define what a D2FA is

and then describe how we can extend the Minimize then

Union technique to D2FA bypassing DFA construction.

4.1 D2FA Definition

Let D = (Q,Σ, δ, q0,M) be a DFA. A corresponding

D2FA D′ is defined as a 6-tuple (Q,Σ, ρ, q0,M, F ). To-

gether, function F : Q → Q and partial function ρ : Q ×
Σ → Q are equivalent to DFA transition function δ. Specif-

ically, F defines a unique deferred state for each state in

Q, and ρ is a partially defined transition function. We

use dom(ρ) to denote the domain of ρ, i.e. the values for

which ρ is defined. The key property of a D2FA D′ that

corresponds to DFA D is that ∀〈q, c〉 ∈ Q × Σ, 〈q, c〉 ∈
dom(ρ) ⇐⇒ (F (q) = q ∨ δ(q, c) 6= δ(F (q), c)); that is

for each state, ρ only has those transitions that are different

from that of its deferred state in the underlying DFA. When

defined, ρ(q, c) = δ(q, c). States that defer to themselves

must have all their transitions defined. We only consider

D2FA that correspond to minimum state DFA, though the

definition applies to all DFA.

The function F defines a directed graph on the states of

Q. A D2FA is well defined if and only if there are no cycles

of length > 1 in this directed graph which we call a defer-

ment forest. We use p→q to denote F (p) = q, i.e. p directly

defers to q. We use p։q to denote that there is a path from

p to q in the deferment forest defined by F . We use p⊓ q to

denote the number of transitions in common between states

p and q; i.e. p ⊓ q = |{c | c ∈ Σ ∧ δ(p, c) = δ(q, c)}|.
The total transition function for a D2FA is defined as

δ′(u, c) =

{

ρ(u, c) if 〈u, c〉 ∈ dom(ρ)
δ′(F (u), c) else

It is easy to see that δ′ is well defined and equal to δ if the

D2FA is well defined.

4.2 D2FA Merge Algorithm

The UCP construction merges two DFAs together. We

extend the UCP construction to merge two D2FAs together

as follows. During the UCP construction, as each new state

u is created, we define F (u) at that time. We then define ρ

to only include transitions for u that differ from F (u).
To help explain our algorithm, Figure 2 shows an ex-

ample execution of the D2FA merge algorithm. Figures

2(a) and 2(b) show the D2FA for the REs .*a.*bcb and

.*c.*bcb, respectively. Figure 2(c) shows the merged

D2FA for the D2FAs in figures 2(a) and 2(b). We use the

following conventions when depicting a D2FA. The dashed

lines correspond to the deferred state for a given state. For

each state in the merged D2FA, the pair of numbers above

the line refer to the states in the original D2FAs that corre-

spond to the state in the merged D2FA. The number below

the line is the state in the merged D2FA. The number(s) af-

ter the ‘/’ in accepting states give the id(s) of the pattern(s)

matched. Figure 2(d) shows how the deferred state is set

for a few states in the merged D2FAs D3. We explain the

notation in this figure as we give our algorithm description.

For each state u ∈ D3, we set the deferred state F (u)
as follows. While merging D2FAs D1 and D2, let state

u = 〈p0, q0〉 be the new state currently being added to the

merged D2FA D3. Let p0→p1→· · ·→pl be the maximal de-

ferment chain DC1 (i.e. pl defers to itself) in D1 starting at

p0, and q0→q1→· · ·→qm be the maximal deferment chain

DC2 in D2 starting at q0. For example, in Figure 2 (d),

we see the maximal deferment chains for u = 5 = 〈0, 2〉,
u = 7 = 〈2, 2〉, u = 9 = 〈4, 2〉, and u = 12 = 〈4, 4〉. For

u = 9 = 〈4, 2〉, the top row is the deferment chain of state

4 inD1 and the bottom row is the deferment chain of state 2
in D2. We will choose some state 〈pi, qj〉 where 0 ≤ i ≤ l

and 0 ≤ j ≤ m to be F (u). In Figure 2(d), we represent

these candidate F (u) pairs with edges between the nodes

of the deferment chains. For each candidate pair, the num-

ber on the top is the corresponding state number in D3 and

the number on the bottom is the number of common tran-

sitions in D3 between that pair and state u. For example,

for u = 9 = 〈4, 2〉, the two candidate pairs represented

are state 7 (〈2, 2〉) which shares 256 transitions in common

with state 9 and state 4 (〈1, 1〉) which shares 255 transi-

tions in common with state 9. Note that a candidate pair



is only considered if it is reachable in D3. In Figure 2(d)

with u = 9 = 〈4, 2〉, three of the candidate pairs corre-

sponding to 〈4, 1〉, 〈2, 1〉, and 〈1, 2〉 are not reachable, so

no edge is included for these candidate pairs. Ideally, we

want i and j to be as small as possible though not both

0. For example, our best choices are typically 〈p0, q1〉 or

〈p1, q0〉. In the first case, p0 ⊓ p1 = 〈p0, q0〉 ⊓ 〈p1, q0〉,
and we already have p0→ p1 in D1. In the second case,

q0 ⊓ q1 = 〈p0, q0〉 ⊓ 〈p0, q1〉, and we already have q0→q1
in D2. In Figure 2 (d), we set F (u) to be 〈p0, q1〉 for

u = 5 = 〈0, 2〉 and u = 12 = 〈4, 4〉, and we use 〈p1, q0〉
for u = 9 = 〈4, 2〉. However, it is possible that both states

are not reachable from the start state in D3. This leads us

to consider other possible 〈pi, qj〉. For example, in Figure

2 (d), both 〈2, 1〉 and 〈1, 2〉 are not reachable in D3, so we

use reachable state 〈1, 1〉 as F (u) for u = 7 = 〈2, 2〉.

We consider a few different algorithms for choosing

〈pi, qj〉. The first algorithm which we call the first match

method is to find a pair of states (pi, qj) for which 〈pi, qj〉 ∈
Q3 and i + j is minimum. Stated another way, we find the

minimum z ≥ 1 such that the set of states Z = {〈pi, qz−i〉 |
(max(0, z−m) ≤ i ≤ min(l, z))∧(〈pi, qz−i〉 ∈ Q3)} 6= ∅.

From the set of states Z , of which there are at most two

choices, we choose the state that has the most transitions

in common with 〈p0, q0〉 breaking ties arbitrarily. If Z is

empty for all z > 1, then we just pick 〈p0, q0〉, i.e. the de-

ferment pointer is not set (or the state defers to itself). The

idea behind the first match method is that 〈p0, q0〉 ⊓ 〈pi, qj〉
decreases as i+ j increases. In Figure 2(d), all the selected

F (u) correspond to the first match method.

A second more complete algorithm for setting F (u)
is the best match method where we always consider all

(l + 1) × (m + 1) − 1 pairs and pick the pair that is in

Q3 and has the most transitions in common with 〈p0, q0〉.
The idea behind the best match method is that it is not al-

ways true that 〈p0, q0〉 ⊓ 〈px, qy〉 ≥ 〈p0, q0〉 ⊓ 〈px+i, qy+j〉
for i+ j > 0. For instance we can have p0 ⊓ p2 < p0 ⊓ p3,

which would mean 〈p0, q0〉 ⊓ 〈p2, q0〉 < 〈p0, q0〉 ⊓ 〈p3, q0〉.
In such cases, the first match method will not find the pair

along the deferment chains with the most transitions in com-

mon with 〈p0, q0〉. In Figure 2(d), all the selected F (u) also

correspond to the best match method. It is difficult to create

a small example where first match and best match differ.

When adding the new state u to D3, it is possible that

some state pairs along the deferment chains that were not

in Q3 while finding the deferred state for u will later on

be added to Q3. This means that after all the states have

been added to Q3, the deferment for u can potentially be

improved. Thus, after all the states have been added, for

each state we again find a deferred state. If the new deferred

state is better than the old one, we reset the deferment to the

new deferred state. Algorithm 1 shows the pseudocode for

the D2FA merge algorithm with the first match method for

choosing a deferred state. Note that we use u and 〈u1, u2〉
interchangeably to indicate a state in the merged D2FA D3

where u is a state in Q3, and u1 and u2 are the states in Q1

and Q2, respectively, that state u corresponds to.

Algorithm 1: D2FAMerge(D1, D2)

Input: A pair of D2FAs, D1 = (Q1,Σ, ρ1, q01,M1, F1)
and D2 = (Q2,Σ, ρ2, q02,M2, F2), corresponding

to RE sets, say R1 and R2, with R1 ∩R2 = ∅.

Output: A D2FA corresponding to the RE set R1 ∪ R2

1 Initialize D3 to an empty D2FA;

2 Initialize queue as an empty queue;

3 queue.push (〈q01 , q02〉);
4 while queue not empty do

5 u = 〈u1, u2〉 := queue.pop();
6 Q3 := Q3 ∪ {u};

7 foreach c ∈ Σ do

8 nxt := 〈δ′1(u1, c), δ
′

2(u2, c)〉;
9 if nxt /∈ Q3 ∧ nxt /∈ queue then queue.push

(nxt);

10 Add (u, c) → nxt transition to ρ3;

11 M3(u) :=M1(u1) ∪M2(u2);
12 F3(u) := FindDefState(u);
13 Remove transitions for u from ρ3 that are in common

with F3(u);

14 foreach u ∈ Q3 do

15 newDptr := FindDefState(u);
16 if (newDptr 6= F3(u)) ∧ (newDptr⊓ u > F3(u) ⊓ u)

then

17 F3(u) := newDptr;

18 Reset all transitions for u in ρ3 and then remove

ones that are in common with F3(u);

19 return D3;

20 FindDefState (〈v1, v2〉)
21 Let 〈p0 = v1, p1, . . . , pl〉 be the list of states on the

deferment chain from v1 to the root in D1;

22 Let 〈q0 = v2, q1, . . . , qm〉 be the list of states on the

deferment chain from v2 to the root in D2;

23 for z = 1 to (l +m) do

24 S := {〈pi, qz−i〉 |
(max(0, z −m) ≤ i ≤ min(l, z))∧
(〈pi, qz−i〉 ∈ Q3)};

25 if S 6= ∅ then return argmax
v∈S

(〈v1, v2〉 ⊓ v);

26 return 〈v1, v2〉;

4.3 Direct D2FA construction for RE set

Similar to efficient DFA construction, we first build the

D2FA for each RE in R using the method described in [20].

We then merge the D2FAs together using a balanced binary

tree structure to minimize the worst-case number of merges

that any RE experiences.



5 D2FA Merge Algorithm Properties

5.1 Proof of Correctness

The D2FA merge algorithm exactly follows the UCP

construction to create the states. So the correctness of the

underlying DFA follows from the the correctness of the

UCP construction.

Theorem 5.1 shows that the merged D2FA is also well

defined (no cycles in deferment forest).

Lemma 5.1. In the D2FA D3 = D2FAMerge(D1, D2),
〈u1, u2〉։〈v1, v2〉 ⇒ u1։v1 ∧ u2։v2.

Proof. If 〈u1, u2〉 = 〈v1, v2〉 then the lemma is trivially

true. Otherwise, let 〈u1, u2〉→〈w1, w2〉։ 〈v1, v2〉 be the

deferment chain in D3. When selecting the deferred state

for 〈u1, u2〉, D2FA Merge always choose a state that cor-

responds to a pair of states along deferment chains for u1
and u2 in D1 and D2, respectively. Therefore, we have that

〈u1, u2〉→〈w1, w2〉 ⇒ u1։w1 ∧ u2։w2. By induction

on the length of the deferment chain and the fact that the ։

relation is transitive, we get our result.

Theorem 5.1. If D2FAs D1 and D2 are well defined, then

the D2FA D3 = D2FAMerge(D1, D2) is also well defined.

Proof. Since D1 and D2 are well defined, there are no cy-

cles in their deferment forests. Now assume that D3 is not

well defined, i.e. there is a cycle in its deferment forest.

Let 〈u1, u2〉 and 〈v1, v2〉 be two distinct states on the cycle.

Then, we have that

〈u1, u2〉։〈v1, v2〉 ∧ 〈v1, v2〉։〈u1, u2〉

Using Lemma 5.1 we get

(u1։v1 ∧ u2։v2) ∧ (v1։u1 ∧ v2։u2)

i.e. (u1։v1 ∧ v1։u1) ∧ (u2։v2 ∧ v2։u2)

Since 〈u1, u2〉 6= 〈v1, v2〉, we have u1 6= v1 ∨ u2 6= v2
which implies that at least one of D1 or D2 has a cycle in

their deferment forest which is a contradiction.

5.2 Limiting Deferment Depth

Since no input is consumed while traversing a deferred

transition, in the worst case, the number of lookups needed

to process one input character is given by the depth of the

deferment forest. As previously proposed, we can guaran-

tee a worst case performance by limiting the depth of the

deferment forest.

For a state u1 of a D2FA D1, the deferment depth of u1,

denoted as ψ(u1), is the length of the maximal deferment

chain in D1 from u1 to the root. Ψ(D1) = maxv∈Q1
ψ(v)

denotes the deferment depth of D1 (i.e. the depth of the

deferment forest in D1).

Lemma 5.2. In the D2FA D3 = D2FAMerge(D1, D2),
∀〈u1, u2〉 ∈ Q3, ψ(〈u1, u2〉) ≤ ψ(u1) + ψ(u2).

Proof. Let ψ(〈u1, u2〉) = d. If ψ(〈u1, u2〉) = 0, then

〈u1, u2〉 is a root and the lemma is trivially true. So, we

consider d ≥ 1 and assume the lemma is true for all states

with ψ < d. Let 〈u1, u2〉→〈w1 , w2〉։〈v1, v2〉 be the de-

ferment chain in D3. Using the inductive hypothesis, we

have

ψ(〈w1, w2〉) ≤ ψ(w1) + ψ(w2)

Given 〈u1, u2〉 6= 〈w1, w2〉, we assume without loss of gen-

erality that u1 6= w1. Using Lemma 5.1 we get that u1։w1.

Therefore ψ(w1) ≤ ψ(u1) − 1. Combining the above, we

getψ(〈u1, u2〉) = ψ(〈w1, w2〉)+1 ≤ ψ(w1)+ψ(w2)+1 ≤
(ψ(u1)− 1) + ψ(u2) + 1 ≤ ψ(u1) + ψ(u2).

Lemma 5.2 directly gives us the following Theorem.

Theorem 5.2. If D3 = D2FAMerge(D1, D2), then

Ψ(D3) ≤ Ψ(D1) + Ψ(D2).

For an RE set R, if the initial D2FAs have Ψ = d, in the

worst case, the final merged D2FA corresponding to R can

have Ψ = d×|R|. Although Theorem 5.2 gives the value of

Ψ in the worst case, in practical cases, Ψ(D3) is very close

to max(Ψ(D1),Ψ(D2)). Thus the deferment depth of the

final merged D2FA is usually not much higher than d.

Let Ω denote the desired upper bound on Ψ. To guaran-

tee Ψ(D3) ≤ Ω, we modify the FindDefState subrou-

tine in Algorithm 1 as follows: When selecting candidate

pairs for the deferred state, we only consider states with

ψ < Ω. Specifically, we replace line 24 with the following

S := {〈pi, qz−i〉 |(max(0, z −m) ≤ i ≤ min(l, z))∧

〈pi, qz−i〉 ∈ Q3) ∧ (ψ(〈pi, qz−i〉) < Ω)}

When we do the second pass (lines 14-19), we may in-

crease the deferment depth of nodes that defer to nodes that

we readjust. We record the affected nodes and then do a

third pass to reset their deferment states so that the max-

imum depth bound is satisfied. In practice, this happens

very rarely.

When constructing a D2FA with a given bound Ω, we

first build D2FAs without this bound. We only apply the

bound Ω when performing the final merge of two D2FAs to

create the final D2FA.

5.3 Deferment to a Lower Level

In [6], the authors propose a technique to guarantee an

amortized cost of 2 lookups per input character without lim-

iting the depth of the deferment tree. They achieve this by

having states only defer to lower level states where the level

of any state u in a DFA (or D2FA), denoted level(u), is

defined as the length of the shortest string that ends in that



state (from the start state). More formally, they ensure that

for all states u, level(u) > level(F (u)) if u 6= F (u). We

call this property the back-pointer property. If the back-

pointer property holds, then every deferred transition taken

decreases the level of the current state by at least 1. Since

a regular transition on an input character can only increase

the level of the current state by at most 1, there have to be

fewer deferred transitions taken on the entire input string

than regular transitions. This gives an amortized cost of at

most 2 transitions taken per input character.

In order to guarantee the D2FA D3 has the back-
pointer property, we perform a similar modification to the
FindDefState subroutine in Algorithm 1 as we per-
formed when we wanted to limit the maximum deferment
depth. When selecting candidate pairs for the deferred state,
we only consider states with a lower level. Specifically, we
replace line 24 with the following:

S := {〈pi, qz−i〉 | (max(0, z −m) ≤ i ≤ min(l, z))∧

(〈pi, qz−i〉 ∈ Q3) ∧ (level(〈v1, v2〉) > level(〈pi, qz−i〉))}

For states for which no candidate pairs are found, we just

search through all states in Q3 that are at a lower level for

the deferred state. In practice, this search through all the

states needs to be done for very few states because if D2FAs

D1 and D2 have the back-pointer property, then almost all

the states in D2FAs D3 have the back-pointer property. As

with limiting maximum deferment depth, we only apply this

restriction when performing the final merge of two D2FAs

to create the final D2FA.

5.4 Algorithmic Complexity

The time complexity of the original D2FA algorithm pro-

posed in [17] is O(n2(log(n) + |Σ|)). The SRG has O(n2)
edges, and O(|Σ|) time is required to add each edge to the

SRG and O(log(n)) time is required to process each edge

in the SRG during the maximum spanning tree routine. The

time complexity of the D2FA algorithm proposed in [6] is

O(n2|Σ|). Each state is compared with O(n) other states,

and each comparison requires O(|Σ|) time.

The time complexity of our new D2FAMerge algorithm

to merge two D2FAs is O(nΨ1Ψ2|Σ|), where n is the num-

ber of states in the merged D2FA, and Ψ1 and Ψ2 are the

maximum deferment depths of the two input D2FAs. When

setting the deferment for any state u = 〈u1, u2〉, in the

worst case the algorithm compares 〈u1, u2〉 with all the

pairs along the deferment chains of u1 and u2, which are

at most Ψ1 and Ψ2 in length, respectively. Each compari-

son requires O(|Σ|) time. In practice, the time complexity

is O(n|Σ|) as each state needs to be compared with very

few states for the following three reasons. First, the maxi-

mum deferment depth Ψ is usually very small. The largest

value of Ψ among our 8 primary RE sets in Section 6 is 7.

Second, the length of the deferment chains for most states

is much smaller than Ψ. The largest value of average defer-

ment depth ψ among our 8 RE sets is 2.54. Finally, many

of the state pairs along the deferment chains are not reach-

able in the merged D2FA. Among our 8 RE sets, the largest

value of the average number of comparisons needed is 1.47.

When merging all the D2FAs together for an RE set

R, the total time required in the worst case would be

O(nΨ1Ψ2|Σ| log(|R|)). The worst case would happen

when the RE set contains strings and there is no state explo-

sion. In this case, each merged D2FA would have a number

of states roughly equal to the sum of the sizes of the D2FAs

being merged. When there is state explosion, the last D2FA

merge would be the dominating factor, and the total time

would just be O(nΨ1Ψ2|Σ|).
When modifying the D2FAMerge algorithm to maintain

back-pointers, the worst case time would be O(n2|Σ|) be-

cause we would have to compare each state withO(n) other

states if none of the candidate pairs are found at a lower

level than the state. In practice, this search needs to be done

for very few states, typically less than 1%.

6 Experimental Results

In this section, we evaluate the effectiveness of our algo-

rithm (D2FAMERGE) on real-world and synthetic RE sets.

We compare D2FAMERGE with the original D2FA algo-

rithm proposed in [17] (ORIGINAL) that optimizes transi-

tion compression and the D2FA algorithm proposed in [6]

(BACKPTR) that enforces the back-pointer property de-

scribed in Section 5.3.

6.1 Methodology

6.1.1 Data Sets

Our main results are based on eight real RE sets, four pro-

prietary RE sets C7, C8, C10, and C613 from a large net-

working vendor and four public RE sets Bro217, Snort 24,

Snort31, and Snort 34, that we partition into three groups,

STRING, WILDCARD, and SNORT, based upon their RE

composition. For each RE set, the number indicates the

number of REs in the RE set. The STRING RE sets, C613

and Bro217, contain mostly string matching REs. The

WILDCARD RE sets, C7, C8 and C10, contain mostly REs

with multiple wildcard closures ‘.*’. The SNORT RE sets,

Snort24, Snort31, and Snort34, contain a more diverse set

of REs, roughly 40% of which have wildcard closures. To

test scalability, we use Scale, a synthetic RE set consist-

ing of 26 REs of the form /.*cu0123456.*cl789!#%&/,

where cu and cl are the 26 uppercase and lowercase alpha-

bet letters. Even though all the REs are nearly identical

differing only in the character after the two .*’s, we still get



the full multiplicative effect where the number of states in

the corresponding minimum state DFA roughly doubles for

every RE added.

6.1.2 Metrics

We use the following metrics to evaluate the algorithms.

First, we measure the resulting D2FA size (# transi-

tions) to assess transition compression performance. Our

D2FAMERGE algorithm typically performs almost as well

as the other algorithms even though it builds up the D2FA

incrementally rather than compressing the final minimum

state DFA. Second, we measure the the maximum defer-

ment depth (Ψ) and average deferment depth (ψ) in the

D2FA to assess how quickly the resulting D2FA can be used

to perform regular expression matching. Smaller Ψ and ψ

mean that fewer deferment transitions that process no in-

put characters need to be traversed when processing an in-

put string. Our D2FAMERGE significantly outperforms the

other algorithms. Finally, we measure the space and time re-

quired by the algorithm to build the final automaton. Again,

our D2FAMERGE significantly outperforms the other algo-

rithms. When comparing the performance of D2FAMERGE

with another algorithm A on a given RE or RE set, we de-

fine the following quantities to compare them: transition

increase is (D2FAMERGE D2FA size - A D2FA size) di-

vided byAD2FA size, transition decrease is (AD2FA size -

D2FAMERGE D2FA size) divided byAD2FA size, average

(maximum) deferment depth ratio is A average (maximum)

deferment depth divided by D2FAMERGE average (maxi-

mum) deferment depth, space ratio is A space divided by

D2FAMERGE space, and time ratio is A build time divided

by D2FAMERGE build time.

6.1.3 Measuring Space

When measuring the required space for an algorithm, we

measure the maximum amount of memory required at any

point in time during the construction and then final storage

of the automaton. This is a difficult quantity to measure ex-

actly; we approximate this required space for each of the al-

gorithms as follows. For D2FAMERGE, the dominant data

structure is the D2FA. For a D2FA, the transitions for each

state can be stored as pairs of input character and next state

id, so the memory required to store a D2FA is calculated

as = (#transitions) × 5 bytes. However, the maximum

amount of memory required while running D2FAMERGE

may be higher than the final D2FA size because of the fol-

lowing two reasons. First, when merging two D2FAs, we

need to maintain the two input D2FAs as well as the output

D2FA. Second, we may create an intermediate output D2FA

that has more transitions than needed; these extra transitions

will be eliminated once all D2FA states are added. We keep

track of the worst case required space for our algorithm dur-

ing D2FA construction. This typically occurs when merging

the final two intermediate D2FA to form the final D2FA.

For ORIGINAL, we measure the space required by the

minimized DFA and the SRG. For the DFA, the transitions

for each state can be stored as an array of size Σ with each

array entry requiring four bytes to hold the next state id. For

the SRG, each edge requires 17 bytes as observed in [6].

This leads to a required memory for building the D2FA of

= |Q| × |Σ| × 4 + (#edges in SRG)× 17 bytes.

For BACKPTR, we consider two variants. The first vari-

ant builds the minimized DFA directly from the NFA and

then sets the deferment for each state. For this variant, no

SRG is needed, so the space required is the space needed for

the minimized DFA which is |Q| × |Σ| × 4 bytes. The sec-

ond variant goes directly from the NFA to the final D2FA;

this variant uses less space but is much slower as it stores

incomplete transition tables for most states. Thus, when

computing the deferment state for a new state, the algo-

rithm must recreate the complete transition tables for each

state to determine which has the most common transitions

with the new state. For this variant, we assume the only

space required is the space to store the final D2FA which

is = (#transitions)× 5 bytes even though more memory

is definitely needed at various points during the computa-

tion. We also note that both implementations must perform

the NFA to DFA subset construction on a large NFA which

means even the faster variant runs much more slowly than

D2FAMERGE.

6.1.4 Correctness

We tested correctness of our algorithms by verifying the fi-

nal D2FA is equivalent to the corresponding DFA. Note, we

can only do this check for our RE sets where we were able

to compute the corresponding DFA. Thus, we only verified

correctness of the final D2FA for our eight real RE sets and

the smaller Scale RE sets.

6.2 D2FAMERGE versus ORIGINAL

We first compare D2FAMERGE with ORIGINAL that

optimizes transition compression when both algorithms

have unlimited maximum deferment depth. These results

are shown in Table 1 for our 8 primary RE sets. Table 2

summarizes these results by RE group. We make the fol-

lowing observations.

(1) D2FAMERGE uses much less space than ORIGINAL.

On average, D2FAMERGE uses 1390 times less memory

than ORIGINAL to build the resulting D2FA. This differ-

ence is most extreme when the SRG is large, which is true

for the two STRING RE sets and Snort24 and Snort34. For

these RE sets, D2FAMERGE uses between 347 and 3613



RE set
#

States

ORIGINAL D2FAMERGE

# Trans
Def. depth RAM Time

# Trans
Def. depth RAM Time

Avg. Max. (MB) (s) Avg. Max. (MB) (s)

Bro217 6533 9816 3.90 8 179.3 542.1 12325 2.16 5 0.10 6.1

C613 11308 21633 4.38 11 1042.7 1892.5 34991 2.54 7 0.29 17.1

C7 24750 205633 16.38 27 47.4 1274.7 208564 1.14 3 1.07 2.1

C8 3108 23209 8.60 14 4.9 36.3 24604 1.14 2 0.14 0.5

C10 14868 96793 16.39 26 25.5 505.6 99124 1.17 3 0.53 1.6

Snort24 13886 38485 9.67 18 861.2 1856.2 44883 1.56 4 0.35 0.5

Snort31 20068 70701 9.17 16 298.5 1086.8 94339 1.97 6 0.86 5.3

Snort34 13825 40199 10.95 18 795.2 1911.3 45642 1.38 5 0.28 3.7

Table 1. The D2FA size, D2FA average ψ and maximum Ψ deferment depths, space estimate and time

required to build the D2FA for ORIGINAL and D2FAMERGE on our eight primary RE sets.

RE set group
Trans Def. depth ratio Space Time

increase Avg. Max. ratio ratio

All 20.1% 7.3 4.8 1390.0 301.6

STRING 44.0% 1.8 1.6 2672.8 99.5

WILDCARD 3.0% 12.0 8.2 42.7 338.2

SNORT 21.3% 6.3 3.6 1882.1 399.7

Table 2. Average values of transition increase,

deferment depth ratios, space ratios, and
time ratios for D2FAMERGE compared with

ORIGINAL for our RE set groups.

times less memory than ORIGINAL. For the RE sets with

relatively small SRGs such as those in the WILDCARD and

Snort31, D2FAMERGE uses between 35 and 49 times less

space than ORIGINAL.

(2) D2FAMERGE is much faster than ORIGINAL. On av-

erage, D2FAMERGE builds the D2FA 300 times faster than

ORIGINAL. This time difference is maximized when the

deferment chains are shortest. For example, D2FAMERGE

only requires an average of 0.12 msec and 0.19 msec per

state for the WILDCARD and SNORT RE sets, respec-

tively, so D2FAMERGE is, on average, 338 and 399 times

faster than ORIGINAL for these RE sets, respectively. For

the STRING RE sets, the deferment chains are longer, so

D2FAMERGE requires an average of 1.23 msec per state,

and is, on average, 100 times faster than ORIGINAL.

(3) D2FAMERGE produces D2FA with much smaller av-

erage and maximum deferment depths than ORIGINAL. On

average, D2FAMERGE produces D2FA that have average

deferment depths that are 7.3 times smaller than ORIGI-

NAL and maximum deferment depths that are 4.8 times

smaller than ORIGINAL. In particular, the average defer-

ment depth for D2FAMERGE is less than 2 for all but the

two STRING RE sets, where the average deferment depths

are 2.16 and 2.54. Thus, the expected number of deferment

transitions to be traversed when processing a length n string

is less than n. One reason D2FAMERGE works so well is

that it eliminates low weight edges from the SRG so that

the deferment forest has many shallow deferment trees in-

stead of one deep tree. This is particularly effective for the

WILDCARD RE sets and, to a lesser extent, the SNORT

RE sets. For the STRING RE sets, the SRG is fairly dense,

so D2FAMERGE has a smaller advantage relative to ORIG-

INAL.

(4) D2FAMERGE produces D2FA with only slightly

more transitions than ORIGINAL, particularly on the RE

sets that need transition compression the most. On av-

erage, D2FAMERGE produces D2FA with roughly 20%

more transitions than ORIGINAL does. D2FAMERGE

works best when state explosion from wildcard closures

creates DFA composed of many similar repeating substruc-

tures. This is precisely when transition compression is most

needed. For example, for the WILDCARD RE sets that ex-

perience the greatest state explosion, D2FAMERGE only

has 3% more transitions than ORIGINAL. On the other

hand, for the STRING RE sets, D2FAMERGE has, on av-

erage, 44% more transitions. For this group, ORIGINAL

needed to build a very large SRG and thus used much more

space and time to achieve the improved transition compres-

sion. Furthermore, transition compression is typically not

needed for such RE sets as all string matching REs can be

placed into a single group and the resulting DFA can be

built.

In summary, D2FAMERGE achieves its best perfor-

mance relative to ORIGINAL on the WILDCARD RE sets

(except for space used for construction of the D2FA) and its

worst performance relative to ORIGINAL on the STRING

RE sets (except for space used to construct the D2FA). This

is desirable as the space and time efficient D2FAMERGE is

most needed on RE sets like those in the WILDCARD be-

cause those RE sets experience the greatest state explosion.

6.3 D2FAMERGE versus ORIGINAL with
Bounded Maximum Deferment Depth

We now compare D2FAMERGE and ORIGINAL when

they impose a maximum deferment depth bound Ω of 1, 2,

and 4. Because time and space do not change significantly,

we focus only on number of transitions and average defer-



RE

set

ORIGINAL D2FAMERGE

# Trans Avg. def. depth # Trans Avg. def. depth

Ω = 1 Ω = 2 Ω = 4 Ω=1 Ω=2 Ω=4 Ω = 1 Ω = 2 Ω = 4 Ω=1 Ω=2 Ω=4

B217 690999 260076 38898 0.59 1.17 2.21 50281 15633 12345 1.00 1.82 2.16

C613 1197312 473541 85797 0.59 1.14 2.19 155308 50891 35962 1.00 1.90 2.50

C7 2013157 529448 206682 0.69 1.27 2.28 216964 209068 208564 0.97 1.13 1.14

C8 205036 31786 23261 0.75 1.32 2.48 25360 24604 24604 0.98 1.14 1.14

C10 1103830 278839 97074 0.71 1.27 2.34 102826 99130 99124 0.98 1.17 1.17

S24 1361481 514277 79911 0.62 1.18 2.15 72054 47558 44883 1.00 1.47 1.56

S31 2179545 1000435 194294 0.58 1.08 2.21 197043 119087 97039 1.00 1.52 1.95

S34 1351430 530188 70070 0.62 1.15 2.19 59936 47106 45732 1.00 1.34 1.38

Table 3. The D2FA size and D2FA average ψ deferment depth for ORIGINAL and D2FAMERGE on our

eight primary RE sets given maximum deferment depth bounds of 1, 2 and 4.

ment depth. These results are shown in Table 3. Note that

for these data sets, the resulting maximum depth Ψ typi-

cally is identical to the maximum depth bound Ω; the only

exception is for D2FAMERGE and Ω = 4; thus we omit the

maximum deferment depth from Table 3. Table 4 summa-

rizes the results by RE group highlighting how much bet-

ter or worse D2FAMERGE does than ORIGINAL on the

two metrics of number of transitions and average deferment

depth ψ.

Overall, D2FAMERGE performs very well when pre-

sented a bound Ω. In particular, the average increase in

the number of transitions for D2FAMERGE with Ω equal

to 1, 2 and 4, is only 108%, 14% and 0.7% respectively,

compared to D2FAMERGE with unbounded maximum de-

ferment depth. Stated another way, when D2FAMERGE is

required to have a maximum deferment depth of 1, this only

results in slightly more than twice the number of transitions

in the resulting D2FA. The corresponding values for ORIG-

INAL are 3095%, 1099% and 119%.

RE set group
Ω = 1 Ω = 2 Ω = 4

Trans Avg. def. Trans Avg. def. Trans Avg. dptr

decr. depth ratio decr. depth ratio decr. len ratio

All 91.3% 0.7 75.1% 0.9 30.8% 1.5

STRING 90.0% 0.6 91.5% 0.6 63.0% 1.0

WILDCARD 89.3% 0.7 49.3% 1.1 -3.0% 2.1

SNORT 94.0% 0.6 90.0% 0.8 43.0% 1.4

Table 4. Average values of transition de
crease and average deferment depth ratios

for D2FAMERGE compared with ORIGINAL for
our RE set groups given maximum deferment

depth bounds of 1, 2 and 4.

These results can be partially explained by examin-

ing the average deferment depth data. Unlike in the un-

bounded maximum deferment depth scenario, here we see

that D2FAMERGE has a larger average deferment depth ψ

than ORIGINAL except for the WILDCARD when Ω is 1

or 2. What this means is that D2FAMERGE has more states

that defer to at least one other state than ORIGINAL does.

This leads to the lower number of transitions in the final

D2FA. Overall, for Ω = 1, D2FAMERGE produces D2FA

with roughly 90% fewer transitions than ORIGINAL for all

RE set groups. For Ω = 2, D2FAMERGE produces D2FA

with roughly 50% fewer transitions than ORIGINAL for the

WILDCARD RE sets and roughly 90% fewer transitions

than ORIGINAL for the other RE sets.

6.4 D2FAMERGE versus BACKPTR

We now compare D2FAMERGE with BACKPTR which

enforces the back-pointer property described in Section 5.3.

We adapt D2FAMERGE to also enforce this back-pointer

property. The results for all our metrics are shown in Table 5

for our 8 primary RE sets. We consider the two variants of

BACKPTR described in Section 6.1.3, one which constructs

the minimum state DFA corresponding to the given NFA

and one which bypasses the minimum state DFA and goes

directly to the D2FA from the given NFA. We note the sec-

ond variant appears to use less space than D2FAMERGE.

This is partially true since BACKPTR creates a smaller

D2FA than D2FAMERGE. However, we underestimate the

actual space used by this BACKPTR variant by simply as-

suming its required space is the final D2FA size. We ig-

nore, for instance, the space required to store intermediate

complete tables or to perform the NFA to DFA subset con-

struction. Table 6 summarizes these results by RE group

displaying ratios for many of our metrics that highlight how

much better or worse D2FAMERGE does than BACKPTR.

Similar to D2FAMERGE versus ORIGINAL, we find

that D2FAMERGE with the backpointer property performs

well when compared with both variants of BACKPTR.

Specifically, with an average increase in the number of tran-

sitions of roughly 23%, D2FAMERGE runs on average 27

times faster than the fast variant of BACKPTR and 120

times faster than the slow variant of BACKPTR. For space,

D2FAMERGE uses on average almost 31 times less space

than the first variant of BACKPTR and on average roughly

42% more space than the second variant of BACKPTR. Fur-

thermore, D2FAMERGE creates D2FA with average defer-

ment depth 2.9 times smaller than BACKPTR and maxi-

mum deferment depth 1.9 times smaller than BACKPTR.

As was the case with ORIGINAL, D2FAMERGE achieves

its best performance relative to BACKPTR on the WILD-



RE

set

BACKPTR D2FAMERGE with back-pointer

# Trans
Def. depth RAM Time RAM2 Time2

# Trans
Def. depth RAM Time

Avg. Max. (MB) (s) (MB) (s) Avg. Max. (MB) (s)

B217 11247 2.61 6 6.4 238.83 0.05 404.54 13998 2.31 6 0.11 9.68

C613 26222 2.50 5 11.0 118.25 0.13 1087.96 43617 2.13 5 0.32 17.74

C7 217812 5.94 13 24.2 601.2 1.04 2857.76 219684 1.15 4 1.12 6.51

C8 34636 2.44 8 3.0 25.63 0.17 41.43 35476 1.20 4 0.19 1.02

C10 157139 2.13 7 14.5 206.28 0.75 664.34 158232 1.19 4 0.81 14.42

S24 46005 8.74 17 13.6 230.58 0.22 1713.83 58273 1.62 8 0.41 47.77

S31 82809 2.87 8 19.6 269.7 0.39 1472.86 126508 1.66 6 0.90 10.29

S34 46046 7.05 14 13.5 228.44 0.22 1381.64 52057 1.41 5 0.31 8.66

Table 5. The D2FA size, D2FA average ψ and maximum Ψ deferment depths, space estimate and time

required to build the D2FA for both variants of BACKPTR and D2FAMERGE with the backpointer
property on our eight primary RE sets.

CARD RE sets and its worst performance relative to

BACKPTR on the STRING RE sets. This is desirable as

the space and time efficient D2FAMERGE is most needed

on RE sets like those in the WILDCARD because those RE

sets experience the greatest state explosion.

RE set group
Trans Def. depth ratio Space Time Space2 Time2

increase Avg. Max. ratio ratio ratio ratio

All 23.4% 2.9 1.9 30.9 27.6 0.7 120.9

STRING 45.0% 1.2 1.0 46.6 15.7 0.4 51.6

WILDCARD 1.3% 3.0 2.3 18.4 43.9 0.9 175.2

SNORT 31.0% 4.0 2.1 32.8 19.1 0.6 112.9

Table 6. Average values of transition increase,

deferment depth ratios, space ratios, and

time ratios for D2FAMERGE compared with
both variants of BACKPTR for RE set groups.

6.5 Scalability results

Finally, we assess the improved scalability of

D2FAMERGE relative to ORIGINAL using the Scale

RE set assuming that we have a maximum memory size

of 1 GB. For both ORIGINAL and D2FAMERGE, we add

one RE at a time from Scale until the space estimate to

build the D2FA goes over the 1GB limit. For ORIGINAL,

we are able only able to add 12 REs; the final D2FA has

397, 312 states and requires over 71 hours to compute.

As explained earlier, we include the SRG edges in the

RAM size estimate. If we exclude the SRG edges and

only include the DFA size in the RAM size estimate, we

would only be able to add one more RE before we reach

the 1GB limit. For D2FAMERGE, we are able to add 19
REs; the final D2FA has 80, 216, 064 states and requires

only 77 minutes to compute. This data set highlights

the quadratic versus linear running time of ORIGINAL

and D2FAMERGE, respectively. Figure 3 shows how the

space and time requirements grow for ORIGINAL and

D2FAMERGE as RE’s from Scale are added one by one

until 19 have been added.
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Figure 3. Memory and time required to build
D2FA versus number of Scale REs used for

ORIGINAL’s D2FA and D2FAMERGE’s D2FA.

7 Conclusions

In this paper, we propose a novel Minimize then Union

framework for constructing D2FAs using D2FA merging.

Our approach requires a fraction of memory and time com-

pared to current algorithms. This allows us to build much

larger D2FAs than was possible with previous techniques.

Our algorithm naturally supports frequent RE set updates.

We conducted experiments on real-world and synthetic RE

sets that verify our claims. For example, our algorithm re-

quires an average of 1400 times less memory and 300 times

less time than the original D2FA construction algorithm of

Kumar et al.. We believe our Minimize then Union frame-

work can be incorporated with other alternative automata

for RE matching.
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