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Abstract—Physical layer security schemes for wireless commu-
nication systems have been broadly studied from an information
theory point of view. In contrast, there is a dearth of attack
methodologies to analyze the achievable security on the physical
layer. To address this issue, we develop a novel attack model
for physical layer security schemes, which is the equivalent
to known-plaintext attacks in cryptoanalysis. In particular, we
concentrate on analyzing the security of orthogonal blinding
schemes that disturb an eavesdropper’s signal reception using
artificial noise transmission. We discuss the theory underlying
our attack methodology and develop an adaptive filter trained
by known-plaintext symbols to degrade the secrecy of orthogonal
blinding. By means of simulation and measurements on real
wireless channels using software-defined radios with OFDM
transceivers, we obtain the operating area of our attack and
evaluate the achievable secrecy degradation. We are able to
reduce the secrecy of orthogonal blinding schemes to Symbol
Error Rates (SERs) below 10 % at an eavesdropper, with a
knowledge of only a 3 % of the symbols transmitted in typical
WLAN frames.

I. INTRODUCTION

Security solutions for wireless systems based on cryptog-
raphy are inevitably bound to an expiration date, since today’s
state-of-the-art cryptographic protocols may be broken in the
future. Well known examples include the DECT Standard
Cipher (DSC)—broken using cryptanalysis [16], the A5/1
encryption standard used in GSM—vulnerable to a ciphertext-
only attack made possible due to error-correction codes being
used before the encryption [4], the Wired Equivalent Privacy
(WEP) as used in the early 802.11 standard—broken due
to inappropriate use of the RC4 stream cipher [8], and the
Advanced Encryption Standard (AES)—vulnerable to side
channel attacks in some implementations [18]. While the attack
model underlying each of these vulnerabilities is different,
they all share a common threat, i.e., a message eavesdropped
and stored today may be decrypted as soon as the security
scheme in use is broken. Moreover, such broken schemes
cannot always be avoided, as support for legacy systems might
be needed [13].

A highly promising approach to overcome this limitation
is to implement physical layer security, which prevents eaves-
dropping in the first place. Intuitively, senders manipulate
data either before transmission or “on-air” such that only the
intended receiver can decode it successfully, while eavesdrop-
pers only receive a degraded signal [25]. To achieve this, a
number of techniques exist, including friendly jamming [11].
In this case, well-behaved nodes selectively jam signals to
prevent their reception by malicious nodes. Conversely, they
also may jam signals sent by the malicious nodes themselves
to prevent message injection [24]. However, such approaches
exhibit weaknesses, since a conveniently placed attacker with
multiple antennas may cancel out the jamming signal and
recover the transmitted data [23]. While physical layer security
is powerful, this attack showcases that such techniques neces-
sitate a thorough analysis to fully understand their limitations
in practical settings.

To provide confidentiality, more sophisticated techniques
than jamming based on orthogonal blinding exist. A transmitter
can protect data by sending artificial noise into a channel
orthogonal to the receiver’s channel. In other words, all nearby
nodes receive a superposition of noise and signal, while the
intended receiver gets only the signal. The achievable secrecy
rate [25] using such a scheme has been thoroughly investigated
in theory [10], [15], [26]. Additionally, there exists also
practical work showing the feasibility of orthogonal blinding in
a software-defined radio testbed [3]. This technique requires a
MIMO configuration, since the transmitter needs at least two
antennas in order to send noise into an orthogonal channel.
However, the intended receiver only needs one antenna. In
particular, the transmitter uses the Channel State Information
(CSI) to the intended receiver to prefilter data and artificial
noise. As a result, there is only data in the dimension visible
to the intended receiver, while potential eavesdroppers always
receive a mixture of noise and signal. Even if eavesdroppers
have more than one antenna, artificial noise is not fully
orthogonal to any of them with high probability. Additional
antennas at the transmitter can be used to send noise on
multiple orthogonal channels. This reduces even further the
probability that an eavesdropper has a link to the transmitter
which suppresses the artificial noise.

In this paper, we investigate the limitations of orthogonal
blinding. Existing work is partly based on assumptions which
might not hold in a realistic setting. Specifically, (a) data is
typically assumed to be fully unknown to the eavesdropper
and (b) the attacker is assumed to have less antennas than the
transmitter [3]. Regarding (a), the use of well-known protocols
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and addresses may allow the attacker to guess parts of the
transmitted data. This information can be used to mount an
attack analog to a known-plaintext attack in the cryptography
domain, where the attacker has samples of both the plaintext
and the ciphertext. Concretely, the attacker can compare the
known plaintext with the ciphertext and derive the key, which
can then be used to decrypt the rest of the data. Similarly, an
eavesdropper who can guess parts of the data transmitted by
a sender using orthogonal blinding can use this information to
suppress the artificial noise reception by training an adaptive
filter based on the known plaintext. In other words, the
eavesdropper iteratively filters the data, starting with a given
default filter, and compares the output to the known plaintext.
Based on the observed difference, the filter is adapted in each
iteration until converging, i.e., until the difference between the
filter output and the expected plaintext is minimized. Since the
attacker needs at least as many antennas as the transmitter to
be able to discern all signal dimensions used by the transmitter,
assumption (b) would prevent this weakness, but this relegates
the security of the scheme to the capabilities of the attacker,
who might be very powerful.

More precisely, the analogy of our attack model to the
case of a known-plaintext attack is as follows. The data sent
by the transmitter corresponds to the plaintext, the mixture of
transmitted data and artificial noise is the ciphertext, and the
CSI of the link from the transmitter to the intended receiver
is the key.

Note that our attack model is not limited to the case of
orthogonal blinding. Known-plaintext attacks based on adap-
tive filtering could also be used to compromise other physical
layer security schemes which prefilter data at the transmitter.
In summary, our contributions are as follows:

• We propose an attack model which applies the con-
cept of known-plaintext attacks from the cryptography
domain to physical layer security.

• We design a practical attack scheme which instantiates
our model for the case of physical layer security based
on orthogonal blinding.

• We discuss the theory underlying our attack and
obtain the operating area of our scheme by means of
extensive simulation.

• We implement and evaluate our scheme on software-
defined radios to show its practicability.

The remainder of this work is structured as follows. In
Sections II and III we introduce our system and communication
model. After that, we first briefly explain how orthogonal
blinding works in Section IV and then delve into the details
of our known-plaintext attack in Section V. In Section VI we
present our simulation outcome and our practical evaluation
on the Wireless Open-Access Research Platform (WARP) [2]
software-defined radio. We discuss our results in Section VII.
Finally, we give an overview of related work in Section VIII
and conclude our work in Section IX.

II. SYSTEM AND ATTACK MODEL

Our system model is illustrated in Figure 1. It contains a
transmitter Alice, who confidentially sends data to the intended

receiver Bob over a wireless channel HA!B. We additionally
consider a passive eavesdropper Eve, who intends to extract
the confidential data DA!B. To prevent the latter, Alice
applies a physical layer secrecy scheme. In our example, this
is orthogonal blinding [3]. In this scheme, Alice transmits
artificial noise in addition to the data signal so that Bob is
not disturbed by the noise, but any eavesdropper—having a
different channel from that of HA!B—receives both data
signal and noise. As long as Eve does not know the transmit
filter FA,TX used to mix data and noise, she is unable to extract
the data from her received signal E . According to [25], this
ensures the secrecy of the system. As Alice’s transmit filter
FA,TX is based on the knowledge of the channel from Alice
to Bob (HA!B), which is not available to Eve, Eve cannot
generate an optimal receive filter FE,RX.

To still degrade the secrecy of the orthogonal blinding
scheme, we assume that Eve knows parts of the transmitted
data: the known plaintext. In the cryptography domain, a
sound cryptographic algorithm should withstand a known-
plaintext attack, amongst other basic attacks, to be considered
secure. We apply this consideration also to physical layer
security schemes and develop a novel attack model, which
is the equivalent to known-plaintext attacks in cryptoanalysis.
As a practical example we choose orthogonal blinding to
demonstrate the efficacy of our attack methodology.

In our attack model, Eve trains an adaptive filter FE,RX with
known plaintext symbols. The trained filter can then be used to
extract the unknown data. For filter training, the error between
the filter output and the known plaintext is minimized. Once
trained, the filter is independent of the transmitted artificial
noise.

The following section focuses on our attack model steps,
and how they apply to orthogonal blinding.

A. Communication Phases

Our attack model comprises three phases that we describe
hereunder together with examples regarding orthogonal blind-
ing:

1) Channel estimation between Alice and Bob:

• Alice transmits pilot symbols, which Bob uses to
estimate the channel HA!B from Alice to him (Sec-
tion III-A).

• Bob uses an out-of-band channel to send HA!B to
Alice. Here, we give orthogonal blinding an advan-
tage; alternatively our system could rely on implicit
feedback, as used in IEEE 802.11n [19].

2) Securing transmission:

• Alice uses HA!B to generate her transmit filter FA,TX
(Section IV-B).

• Alice applies FA,TX to mix data and artificial noise,
and transmits the result.

• Bob extracts the data after compensating channel
effects in his receive filter FB,RX (Section IV-B).
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Fig. 1. Our system model illustrating the transmitter Alice, the intended receiver Bob and the passive eavesdropper Eve.

3) Extraction of data by Eve:

• Eve uses her plaintext knowledge and her received
signal to train an adaptive receive filter FE,RX (Sec-
tion V).

• Eve applies the trained filter to extract the unknown
data (Section V).

After performing these steps, we calculate the SERs at Bob
and Eve to evaluate our attack’s secrecy degradation. Only if
Eve’s SER does not decrease when carrying out the attack,
the secrecy scheme can be considered resistant against known-
plaintext attacks.

Before continuing with a mathematical description of the
communication system in Section III, we present our adversary
model in the following section.

B. Adversary model

Both receivers Bob and Eve, are limited by their receive
hardware’s sensitivity to detect incoming signals that are
further disturbed by Additive White Gaussian Noise (AWGN).
Eve might significantly improve her reception compared to
that of Bob—in the sense of Signal to Noise Ratio (SNR)—if
she shifted her position in a given environment or if she used
directional antennas. Thus, we assume that Eve’s antennas can
be freely positioned. In case this reduced the feasibility of
representing Eve as a single node, we suppose that multiple
eavesdroppers cooperate and exchange their received signals
so that all received signals are available at one point (see
[10], [21]). Multiple antennas help to additionally increase the
SNR on Eve’s channel HA!E , as the AWGN is independent
of the transmitted signal and can be reduced by destructive
interference.

To optionally increase Eve’s attack performance with a
limited number of antennas (see Section VI-E), we assume
that Eve can estimate the channel HA!E from Alice to Eve
using the publicly available pilot symbols that Alice transmits
to estimate her channel to Bob. Blinding the pilot symbols
does not prevent the attack, as pilot symbols themselves
can be regarded as known plaintext used for filter training.
Furthermore, we require that Eve has partial knowledge of
the transmitted data—that could be (but is not limited to)
protocol headers and addresses. The amount of data needed to
compromise secure information’s confidentiality is evaluated
in Section VI. The channel information HA!B from Alice
to Bob is, however, not disclosed to Eve, and Eve’s channel
HA!E is revealed neither to Alice nor to Bob.

III. COMMUNICATION SYSTEM

We now present our communication system, which draws
primarily on a state-of-the-art Multiple Input Multiple Output
(MIMO) transceiver using Orthogonal Frequency Division
Multiplexing (OFDM) [6], which is employed to abstract from
fading channels and to cope with Inter Symbol Interference
(ISI). Similar technology is used in the current 802.11ac Wi-
Fi standard [19]. This allows to port both the physical layer
security scheme as well as our known-plaintext attack against
it onto widely available hardware. For the sake of simplicity,
we use Software-Defined Radios (SDRs) to implement and
assess our system in Section VI.

In what follows, we present the general MIMO channel
model (Section III-A) and show how to apply it to our scenario
(Section III-C). We conclude with transmit and receive filtering
(Section III-D).

A. Channel model

The wireless channel between each pair of antennas is
described as a complex number Hr,t (the channel coefficient)
representing a phase and an amplitude change of the trans-
mitted signal during a transmission. Each of the R receive
antennas gets a superposition of all T transmitted signals
traversing different channels:

RXr =

TX

⌧=1

Hr,⌧ · TX⌧ (1)

In matrix form:
0

BB@

RX1

RX2
...

RXR

1

CCA

| {z }
RX

=

0

BB@

H1,1 H1,2 . . . H1,T

H2,1 H2,2 . . . H2,T
...

...
. . .

...
HR,1 HR,2 . . . HR,T

1

CCA

| {z }
H

0

BB@

TX1

TX2
...

TXT

1

CCA

| {z }
TX

(2)

This channel abstraction is only valid if the channel co-
efficients are equal over the whole transmission bandwidth.
Indoor channels with reflections, however, experience fre-
quency selective fading, where the channel coefficients are
frequency-dependent. To split wide-band channels into narrow
subchannels, where the channel coefficients are considered
constant, we apply OFDM, which also avoids ISI.

Instead of transmitting symbols consecutively in the time
domain over a band of frequencies, symbols are transmitted in
parallel over K frequency subbands—called subchannels. In
the time domain, the effect of the wireless channel is modeled
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as a convolution of a signal tx[n] and the channel’s impulse
response hr,t[n]; whereas in the frequency domain (calculated
by applying the Discrete Fourier Transform (DFT) of size K),
the channel is modeled as a simple multiplication of a symbol
TX[k] by a channel coefficient Hr,t[k] on every subchannel k:

DFTK(tx[n] ⇤ hr,t[n])[k] = TX[k] ·Hr,t[k] (3)

To estimate the channel coefficient Hr,t[k] for transmitter
t = ⌧ , pilot symbols TX⌧ ,pilot are transmitted on every
subchannel k, while the other transmitters remain silent:

Hr,⌧ [k] =
RXr,pilot[k]

TX⌧ ,pilot[k]

����
TXt 6=⌧ [k]=0

(4)

Estimating all Hr,t[k], we obtain MIMO channel matrices
H[k] for each subchannel k. Therefore, Equation 2 can be
generalized to the case of multiple subchannels:

RX[k] = H[k] · TX[k] (5)

B. Modelling channel noise

So far our channel model has not taken into account
any disturbances due to noise on the wireless channel, noise
in the hardware components, or quantization noise. For our
purposes, we apply the common approach to represent the
aforementioned effects by complex AWGN ⌘, which is added
to the time-domain signal at the receiver:

rx[n] = tx[n] ⇤ hr,t[n] + ⌘[n] (6)

During the filter design phase, noise effects are disregarded;
however, they are considered in our simulations and measure-
ments.

C. Applying the channel model

We have two separate MIMO channels on each subchannel
k: HA!B[k] from Alice to Bob and HA!E [k] from Alice to
Eve. Each transmitted set of MIMO symbols is denoted by
the column vector A[k] which has length TA. Bob’s and Eve’s
receive vectors have lengths RB and RE , and are designated
by B[k] and E [k], respectively:

B[k] = HA!B[k] · A[k] (7)
E [k] = HA!E [k] · A[k] (8)

For channel estimation, Alice transmits pilot symbols
At,pilot[k] 2 {�1, 1} that are known to all nodes. Bob and
Eve receive these symbols at all of their RB, respectively
RE , antennas and apply Equation 4 to estimate the channels
HA!B[k] and HA!E [k].

D. Filtering

Channel estimates are mainly used to generate transmit and
receive filters. We derive the following transmit filter equation,
using the general channel model from Equation 2:

0

BB@

TX1

TX2
...

TXT

1

CCA

| {z }
TX

=

0

BB@

F1,1 F1,2 . . . F1,L

F2,1 F2,2 . . . F2,L
...

...
. . .

...
FT ,1 FT ,2 . . . FT ,L

1

CCA

| {z }
FTX

0

BB@

D1

D2
...

DL

1

CCA

| {z }
D

(9)

If the channel H to the receivers is available, the transmitter
can design a zero-forcing filter that cancels the effect of the
channel so that each filter input dimension is directly linked
to one receive dimension, assuming that H is invertible:

RX = H · (

TXz }| {
H�1
|{z}
FTX

·D) = D (10)

To have less constraints when inverting the channel matrix, the
so-called right pseudoinverse might be used. It is given by:

H�1
right = HH

(H ·HH
)

�1 (11)

where (.)

H is the conjugate transpose. Alternatively, filtering
can be performed in the receiver to extract the transmitted data
D from the received signal RX, by applying zero-forcing at
the receiver instead of the transmitter:

FRX · RX = H�1
|{z}
FRX

·(H ·
TXz}|{
D| {z }

RX

) = D (12)

Again, the inverse of the channel can be replaced with the left
pseudoinverse, which is given by:

H�1
left = (HH ·H)

�1HH (13)

In certain scenarios it is also possible to apply transmit as
well as receive filters. This is further discussed in Sections IV
and V.

IV. PHYSICAL LAYER SECURITY SCHEME

To wirelessly transmit data, bits are mapped to symbols
that are represented by complex numbers defining amplitude
and phase of analog sine and cosine waves. The modulation
scheme employed in this work to map bits to symbols with
different amplitude and phase is called Quadrature Amplitude
Modulation (QAM). During transmission, these symbols get
disturbed by AWGN so that a receiver has to estimate which
symbols were transmitted. The higher the noise power is, the
higher the SER gets.

The class of physical layer security schemes we analyze
uses this property to increase the secrecy of a transmission. To
this end, Alice can transmit both artificial noise and data in a
way that Bob successfully receives the plain data, while Eve’s
reception is disturbed by noise, which prevents a successful
demodulation.

In the literature, we find two approaches to achieve the
targeted goal. (i) Alice knows both channels to Bob HA!B
and to Eve HA!E ([5], [14], [17], [20]). This assumption is
unlikely to be fulfilled, as a passive eavesdropper does not
share its channel information. However, approach (i) allows
to define an upper bound for the achievable secrecy rate. (ii)
Alice only knows her channel to Bob and needs a way to still
disturb Eve [3], [7], [26]. This is a more practical approach.
In the following, we briefly introduce the first approach and
describe the second in more detail.

4



A. Zero-Forcing

The first approach assumes Alice has full channel knowl-
edge and at least as many antennas as Bob and Eve together.
Then Alice can combine Bob’s and Eve’s channels into a single
channel matrix HA!B,E , which she inverts to cancel out the
effect of the complete channel. To meet the transmit power
constraints, Alice introduces a normalization factor 1/↵norm
into her transmit filter FA,TX:

✓
B
E

◆
=

✓
HA!B
HA!E

◆

| {z }
HA!B,E

·

FA,TXz }| {
1

↵norm

✓
HA!B
HA!E

◆�1 ✓
DA!B
DA!E

◆

| {z }
A

(14)

Bob receives B = DA!B/↵norm and denormalizes it multiply-
ing by ↵norm. The data symbols DA!E are intended for Eve,
and Alice can choose them to be zero, artificial noise, or any
other signal. As long as Eve’s channels are independent from
those of Bob, each node receives only the signals intended for
it.

B. Orthogonal Blinding

As mentioned before, the zero-forcing approach requires
Alice to have Eve’s channel information. In practical scenar-
ios a passive eavesdropper does not share this information.
Nevertheless, Alice knows the channel to Bob so that she can
optimally transmit data to him using as many spatial dimen-
sions as Bob receive dimensions has. Alice uses additional
dimensions to transmit artificial noise to the null-space of
Bob’s channel. Since the null-space is orthogonal to Bob’s
channel, he does not receive the noise. However, any other
node in Alice’s vicinity, receives a superposition of noise and
data. As long as the received noise is powerful enough, Eve
is not able to demodulate the QAM symbols she receives.

Following [3], we use the so-called Gram-Schmidt algo-
rithm [9] to compute channels orthonormal to those of Bob.
Once we have Bob’s normalized channels as well as the
orthonormal channels, we combine them into a single channel
matrix. Then, we build a zero-forcing filter to transmit into
both Bob’s spatial dimensions and the orthogonal ones.

First, we normalize each row HA!B,r from HA!B:

�r = ||HA!B,r|| =
q

hHA!B,r,HA!B,ri (15)

H 0
A!B,r =

HA!B,r

�r
(16)

Then, we create a (TA �RB)⇥ TA matrix Hrnd of uniformly
distributed random complex numbers, where TA and RB are
the amounts of Alice’s and Bob’s antennas. We again take
each row Hrnd,r from Hrnd and subtract the projection onto
previously normalized channels:

ˆHrnd,r = Hrnd,r �
r�1X

j=1

⌦
H 0

rnd,j ,Hrnd,r
↵
H 0

rnd,j

�
RBX

j=1

⌦
H 0

A!B,j ,Hrnd,r
↵
H 0

A!B,j

(17)

Then, normalizing again:

H 0
rnd,r =

ˆHrnd,r

|| ˆHrnd,r||
=

ˆHrnd,rrD
ˆHrnd,r, ˆHrnd,r

E (18)

We combine the resulting normalized row vectors H 0
A!B,r and

H 0
rnd,r into matrices H 0

A!B and H 0
rnd, where each row in H 0

rnd
is orthogonal to any other row in H 0

rnd and to every row in
H 0

A!B,r. By combining H 0
A!B and H 0

rnd into a single matrix,
we can thus calculate Alice’s zero-forcing transmit filter FA,TX,
including the normalization due to transmit power limitations:

FA,TX =

1

↵norm

✓
H 0

A!B
H 0

rnd

◆�1

(19)

Using this transmit filter, Bob receives only the signal intended
for him, DA!B, including normalizations, and Eve receives a
superposition of data signal and artificial noise AN:

✓
B
E

◆
=

✓
HA!B
HA!E

◆
· FA,TX ·

✓
DA!B

AN

◆
(20)

B = ↵�1
norm · ��1 ·DA!B (21)

E = �1DA!B + �2AN (22)

where � is a diagonal matrix, whose elements are the nor-
malization factors �1, . . . ,�RB from Equation 15. To extract
DA!B, Bob needs the following filter:

ˆFB,RX = ↵norm · � (23)

Between the channel estimation phase leading to HA!B
and the data transmission phase, Bob’s channel can change
to ˆHA!B [26]. To compensate for this change, Bob’s receive
filter contains a correction matrix based on those two channel
measurements:

FB,RX =

ˆFB,RX ·HA!B · ˆH�1
A!B (24)

In the following section we describe the design of Eve’s
receive filter used to attack the system.

V. KNOWN-PLAINTEXT ATTACK

Eve’s goal is to extract as much transmitted data as possible
from her signal reception. Therefore, she deploys a filter
used to separate the transmitted data from the artificial noise.
Assuming that Eve had full system knowledge, the ideal
receive filter would be FE,RX:

F�1
A,TX ·H�1

A!E| {z }
FE,RX

·HA!E · FA,TX ·

DAz }| {✓
DA!B

AN

◆

| {z }
E

(25)

In a practical scenario, we can assume that Eve knows the
channel from Alice to Eve. Hence, Eve can calculate H�1

A!E .
Alice’s transmit filter FA,TX is, however, based on her channel
HA!B to Bob that is kept secret and thus not available to Eve.

To still extract the data signal DA!B, Eve can estimate
FE,RX. Consequently, she trains an adaptive filter using her
partial knowledge of DA!B. Moreover, we do not need to
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estimate all rows in FE,RX, as DA!B is the output signal of
only the first RB rows of FE,RX. Hence, our filter estimate
ˆFE,RX is an RB ⇥RE matrix; its output ˆDA!B is an estimate
of DA!B:

ˆDA!B =

ˆFE,RX · E (26)

Having knowledge of the symbols at indices l in a trans-
mitted OFDM frame allows Eve to calculate the error between
the filter output and the target symbols.

e(l) = DA!B(l)� ˆDA!B(l)

= DA!B(l)� ˆFE,RX · E(l)
(27)

To improve the filter estimate ˆFE,RX, Eve aims at minimiz-
ing the mean square error E|er|2 for each row r 2 [1,RB]:

min

F̂E,RX

E|er|2 = min

F̂E,RX

E
���DA!B,r � ˆFE,RX,r · E

���
2

(28)

Iterative training algorithms that fulfill this requirement al-
ready exist. We apply the Least Mean Squares (LMS) and
Normalized Least Mean Squares (NLMS) algorithms to our
filter-training problem. The rationale behind this procedure can
be found in [22]. The complexity of both algorithms linearly
depends on the number of Eve’s receive antennas (according
to [22]).

A. Least Mean Squares

The LMS algorithm is defined as follows:
ˆFE,RX(i+ 1) =

ˆFE,RX(i) + µLMS · e(li) · EH
(li) (29)

where

• ˆFE,RX(i) is the filter estimate in the i-th iteration

• µLMS is the step-size

• EH
(li) is the complex conjugate transpose of E(li)

• e(li) is the error when applying ˆFE,RX(i)

• li is the index of the i-th known-plaintext symbol

• i 2 [0, length of l]

• ˆFE,RX(0) is the initial guess, e.g., zero vector

B. Normalized Least Mean Squares

The Normalized Least Mean Squares (NLMS) algorithm is
similar to the LMS algorithm, but the step-size is normalized
according to the currently received training symbol to make
the filter less dependent on the energy of the latter:

ˆFE,RX(i+ 1) =

ˆFE,RX(i) + µ(i) · e(li) · EH
(li) (30)

µ(i) =
µNLMS

✏+ ||E(li)||2
(31)

where

• µ(i) is the step-size at the i-th iteration

• µNLMS is the iteration independent part of the step-size

• ||E(li)||2 is the quadratic norm of E to stabilize the
algorithm for strongly varying input data

• ✏ is a small value to avoid divisions by zero

Both algorithms are used to train the adaptive filter in our
attack scenario. Their evaluation through simulation and real-
world measurements are described in the next section. Even
though we use the unfiltered receive signal E in our derivations,
E can be replaced by the prefiltered:

E 0
= H�1

A!E · E (32)

leading to an RB ⇥ TA filter matrix ˆF 0
E,RX.

VI. EXPERIMENTAL EVALUATION

We now describe the experimental evaluation of our
known-plaintext attack model for physical layer security
schemes by means of simulation and testbed experimentation.

First, we give an overview of the technical parameters in
Section VI-A, then we investigate the key trade-offs involved
in our attack. Using simulation, we cover a wide parameter
range and establish the operating area for working attacks.
In Section VI-B, we analyze the effect of an increase in
artificial noise power by Alice on Bob. In Sections VI-C
and VI-D we investigate how Eve can optimize her attack
performance. We analyze the filter tuning parameters (step-size
µ, see Section VI-C) and the applied filter adaptation (LMS
vs. NLMS, see Section VI-D) for a wide range of channel
conditions. In Section VI-E a prefiltering approach increases
the efficacy of the attack if Eve has channel knowledge. The
influence of Eve’s antenna count is discussed in Section VI-F.
The ability of Eve to improve her efficacy over Bob is
discussed in Section VI-G in case the channel from Alice to
Eve, HA!E , is better than the channel from Alice to Bob,
HA!B.

Second, by means of experimentation using the WARP
software-defined radio platform, we validate the simulation
results in practice for selected realistic parameter sets. In
Section VI-H, we study the effects of real world channels
on our attack methodology and identify subchannel conditions
that constrain both the secrecy scheme as well as our known-
plaintext analysis. In Section VI-I, we analyze the carrier-
dependent attack performance. In Section VI-J, we study the
convergence behavior of the employed filtering techniques in
practice. Finally, in Section VI-K, we show the reduction in
practical secrecy rate of the communication between Alice and
Bob.

We summarize our experimental findings in Tables I and II
for the simulations and the practical experiments. An extensive
discussion follows in Section VII.

A. Technical parameters and test setup

As thoroughly described in Sections II and III, our three
nodes Alice, Eve and Bob are multi-antenna nodes using
OFDM transmitters to abstract from the physical channel.
Without loss of generality, we focus our evaluation on a setup
where Alice and Eve have two antennas, and Bob has one.
Therefore, Alice has one spatial dimension to transmit to Bob’s
receive dimension and an additional dimension for artificial
noise transmission. Eve has as many antennas as Alice and
thus the minimum number of antennas required to perform our
attack. To adjust Eve’s disturbance by artificial noise AN, Alice
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varies the ratio of transmitted AN to transmitted data signal—
Noise to Data Ratio (NDR). As Alice’s transmit power is
limited, a higher NDR reduces the available power to transmit
the data signal:

DA =

1

NDR + 1

✓
DA!B

NDR · AN

◆
(33)

During our simulations, we vary the amount of AWGN
⌘ added by the wireless channel. The SNR at Bob varies
according to the amount of received signal power, as well
as the AWGN: SNR = 20 log10(B) � 20 log10(⌘). Due to
Alice’s transmit power limitation, increasing the NDR reduces
the power of the signal transmitted to Bob. To measure
the effect of different NDRs at constant AWGNs levels,
we reference the SNRTX at the transmitted power: SNR =

20 log10(A)�20 log10(⌘). This leads to results comparable to
our simulations.

Our OFDM transceivers work on 40 MHz wide channels
in the 2.4 GHz band. The cut-off frequency of the receiver’s
baseband filters is 18 MHz (36 MHz bandwidth due to IQ-
demodulation). The OFDM has K = 64 subchannels with a
subchannel spacing of 625 kHz, which is sufficient for the
coherence bandwidth of the channels in our indoor scenario
illustrated in Figure 2. Channel measurements showed that
most of the transmitted energy is concentrated on three to five
taps in the channel impulse response of the received signal.
Therefore, we simulate similar channels during our simula-
tions. Each transmitted wireless frame consists of an 802.11a
short preamble to detect the start of the frame, followed by
ten pilot symbols for channel estimation. Payload including
packets additionally contain 150 payload symbols (Alice’s
filter output). The cyclic prefix length to avoid ISI equals 12
samples. Carrier Frequency Offset (CFO) correction at Bob
and Eve is avoided by synchronizing the Radio Frequency (RF)
clock generators by cable. Note that practical CFO correction
algorithms are available [6]; however, they would have added
unnecessary complexity to our experiments. To prevent gain
fluctuations and to increase the reproducibility of our results,
we opted for manual instead of automatic gain control.

The transmitted data symbols DA!B are normalized 4-
QAM symbols. We choose the SER to compare the perfor-
mance of our adaptive filter to Bob’s receive performance,
since it is a practical measure of the amount of data that can
be correctly extracted at both Bob and Eve. In simulation,
we run 100 Monte Carlo experiments with different channels,
calculate the SERs and average over 100 experiments, 64
subchannels and 150 OFDM symbols.

B. Effect of Alice’s artificial noise on Bob

The higher the NDR is, the lower is the signal energy
received at Bob (Equation 33). Additionally, the AWGN de-
grades Bob’s reception performance. Figure 3 illustrates Bob’s
SER over Alice’s NDR for different SNRTX, which represents
the amount of AWGN. We clearly observe that the SNRTX has
a major influence on Bob’s SER. If the NDR increases, the
SER approaches 75 %, which is equal to guessing uniformly
distributed 4-QAM symbols.
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Fig. 2. Antenna setup for practical measurements.
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4.

7



C. Convergence behavior of Eve’s filter

When using adaptive filters, the step-size µ influences how
fast a filter converges to its targeted ideal filter. Small step-
sizes lead to slower convergence but also to smaller deviations
from the ideal filter, whereas high step-sizes lead to faster
convergence with higher errors and potentially no convergence.
To measure the filter’s training performance, we choose to
compare SERs ranging from 0 % (for no errors) to 75 %
(for randomly guessing 4-QAM symbols). A non converging
filter just maximizes the SER. Furthermore, this metric can be
compared to Bob’s receive performance.

In Figure 4, we illustrate how the SER reduces when the
number of available training symbols increases. We regard a
filter as convergent, when the SER differs less than 5 % from
the average SER, and there are 130 to 150 available training
symbols. This averaged SER is the achievable SER of an
adaptive filter with a given step-size. The points of convergence
are marked as crosses in Figure 4. We use these convergence
points in the following to compare the performance of different
adaptive filter settings. In Figure 5 we illustrate how the chosen
NLMS step-size influences the convergence characteristics for
different channel SNRTX. Small step-sizes drastically increase
the convergence time but also allow a minimum SER. A µNLMS
of 0.3 is a good compromise for our scenario.

D. Choosing Eve’s adaptive filter technique

In Section V, we introduced the two training algorithms
LMS and NLMS. Figure 4 illustrates their convergence char-
acteristics. Regarding comparable SERs at convergence, we
observe that the NLMS algorithm converges faster (with re-
spect to required training symbols) than the LMS algorithm.
The normalization of the filter update allows the application
of higher step-sizes in the NLMS filter, which reduce the
convergence time. Figure 6 illustrates the training performance
for different NDRs. We observe that the LMS algorithm
requires more training symbols than the NLMS algorithm to
achieve a similar SER at a certain NDR. Due to the advantages
of the NLMS algorithm, we use it in what remains of this
paper.

E. Prefiltering at Eve

As described at the end of Section V-B, Eve can use her
channel estimate HA!E to enhance the filtering performance.
Prefiltering is applied for all of our presented results. In
Figure 7, we illustrate the advantage of prefiltering at Eve.
Even though similar SERs can be achieved, the convergence
time without prefiltering is significantly higher than with
prefiltering. Prefiltering maps Eve’s spatial receive dimensions
to Alice’s transmit dimensions, which reduces the complexity
of the filter training. For higher NDR the prefiltering advantage
decreases.

F. Effect of multiple receive antennas

Figure 8 shows our simulation results for many-antenna
eavesdroppers on high and low SNRTX channels. The SER
decreases if the number of antennas increases. Hence, many
antennas are useful if Eve has a noisy channel. Prefiltering
generally leads to a faster filter convergence.
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TABLE I. SUMMARY OF THE MAJOR CONTRIBUTIONS OF THIS PAPER VALIDATED IN SIMULATION.

Experiment Section Conclusion
Effect of artificial noise Sec. VI-B Since Alice is power-limited, increasing her artificial noise implies decreasing the power of the data signal. Hence, the SER

at both Eve and Bob increases, but is worse at Eve for similar SNRs.
Convergence behavior Sec. VI-C The smaller the step-size µ, the better the SER, but the more known plaintext is needed. For example, µ = 0.9 slashes

convergence time to less than half of µ = 0.3, but doubles the SER.
Adaptive filter technique Sec. VI-D The LMS algorithm converges slower and requires more training symbols than NLMS, e.g., for NDR = 4, NLMS requires

only about half the amount of training symbols of LMS.
Prefiltering at Eve Sec. VI-E If Eve knows the channel to Alice, she can reduce the convergence time. For a 25 dB channel, µ = 0.9, NDR = 2, prefiltering

divides convergence time by more than three at comparable SER.
Multiple receive antennas Sec. VI-F Especially, on low SNRTX channels multiple eavesdropper antennas reduce Eve’s SER.
Eve’s attack performance Sec. VI-G Eve can severely compromise secrecy if she has a good channel to Alice. If the SNRTX to Bob is 15 dB and to Eve 25 dB,

the secrecy rate is negative, i.e., Eve can extract more data than Bob.

G. Assessing Eve’s attack performance

When theoretically analyzing physical layer security
schemes, the secrecy rate [25] is used to measure how much
more data Bob receives compared to how much Eve can
extract. This secrecy rate definition is not directly applicable
to system simulations and measurements. Therefore, we define
the practical secrecy rate Sprac to compare Eve’s advantage
over Bob based on their SERs and a maximum 4-QAM SER
of 75 %:

Sprac =
SERE � SERB
75%� SERB

(34)

Depending on Bob’s and Eve’s channel quality, the practi-
cal secrecy rate can be negative if Eve’s channel has a higher
SNRTX than that of Bob’s channel. That is possible as Eve can
freely position her antennas. An exemplary result is illustrated
in Figure 9.

H. Influence of radio hardware

To analyze the applicability of the security scheme and
our attack in realistic environments, we implemented Alice,
Bob and Eve on separate WARP nodes using WARPLab. The
exemplary setup in our lab is illustrated in Figure 2. We
additionally performed experiments with antennas in multiple
office rooms (roughly 10 m apart), but we did not experience
significant changes in the filter training performance, apart
from a drop in SNR and a need for increased receive gains.
Therefore, our evaluation concentrates on the lab scenario. We
first compare Bob’s SER measurements to the simulations.
According to Figure 10, the channel quality lies somewhere
between 20 and 25 dB, at least for NDR > 4. For NDR < 4,
the simulatively determined SERs are not achieved. In the
following, we explain the deviation of Bob’s SERs.

I. Effect of real-world channels

First, we illustrate Bob’s SER over subchannels in Fig-
ure 11. The error rate depends on the subchannels; here,
especially subchannels 25 to 37 exhibit high SERs. To explain
this effect, we analyze a set of 100 channel measurements
in Figure 12. The channel coefficients are stable in most
experiments; only the subchannels 25 to 37 constantly change.
These subchannels lie outside of the cut-off regions of our
baseband receive filter. Additionally, the high error rate at
subchannel 7 can be explained by a deep fade. Removing
subchannels with extraordinary high SERs, reduces Bob’s SER
and allows it to converge against the simulated 25 dB channel,
as illustrated in Figure 13.
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After omitting the aforementioned subchannels, the mea-
surements still deviate from the simulations—especially in the
low NDR regions. Figure 12 hints at an explanation. For
most experiments the channel coefficients are very similar.
Nevertheless, certain experiments show severe outliers that
deviate from most channel measurements. These outliers are
either due to interfering transmissions, or due to wrong estima-
tions of the frame preamble, which leads to erroneous OFDM
demodulations that affect both Bob and Eve.

In Figure 14 we illustrate symbol errors at selected sub-
channels. The rows correspond to the 100 experiments, the
columns to the 150 symbols per frame. Subchannel 53 has
mostly randomly distributed symbol errors. Some experiments,
however, show clustered errors, that can be explained by
the aforementioned problems. On subchannel 7 we observe
that error clustering especially occurs at certain experiments
and the deep fade at this subchannel seems to emphasize
the probability of error clusters. To further approximate the
simulated results, we decide to ignore certain experiments that
introduce symbol error clusters, as this effect is not considered
in the simulations.

Figure 15 illustrates Bob’s SER over various replications
of the experiment. The SER is constantly low for experiments
where the errors are not clustered but randomly distributed. Er-
ror clusters, however, lead to outliers. Removing experiments
with outliers, allows to further reduce Bob’s SERs, so that
the measured results are more similar to the simulated results,
which is illustrated in Figure 16.

J. Convergence behavior in practice

We illustrate Eve’s practical convergence behavior in Fig-
ure 17 (compare Figure 4 for simulation results). We observe,
that Eve’s filter takes longer to converge and that Eve’s SER
is higher in the measurement compared to the simulation. The
reasons are twofold. On the one hand, the plots in Figure 4
are based on channels with an SNRTX of 30 dB, which is
higher than the SNRTX we approached when analyzing Bob’s
channel in Section VI-H. On the other hand, we considered
all measurements in this evaluation, as error clusters and high
error rate subchannels are part of our practical setup, i.e.,
outliers are not removed.

K. Eve’s attack performance in practice

Figure 18 summarizes the attack performance of Eve in
terms of convergence time and SER. For larger step-sizes the
convergence time is smaller, but the SER becomes larger, as
predicted by our simulations in Section VI-C. Figure 18 also
shows Bob’s results in terms of SER. For larger values of NDR
the SER worsens for both Eve and Bob. Bob’s convergence
time is constantly zero, as he does not need to train any filter
to suppress noise. In this experiment, Bob and Eve were placed
close to each other, leading to similar channel SNRs. Hence,
Bob’s SER is better than Eve’s.

This is directly reflected in Figure 19, which shows the
practical secrecy rate between Alice and Bob. Since Bob
performs better than Eve, the rate is always positive, as
opposed to our experiment in Section VI-G. The practical
secrecy rate improves with increasing NDR, as the additional
noise makes it more difficult for Eve to decode symbols
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TABLE II. SUMMARY OF THE MAJOR CONTRIBUTIONS OF THIS PAPER VALIDATED IN PRACTICAL EXPERIMENTATION.

Experiment Section Conclusion
SDR hardware limitations Sec. VI-H Bob’s SER is worse compared to simulation due to errors at the receive filter’s cut-off regions. After removing these outliers,

simulation and real-world results come closer, but still differ.
Real-world channels Sec. VI-I Due to interference, deep fades and wrong preamble detections, some experiments contain clustered errors, increasing Bob’s

SER. After removing them, simulation and practice match nearly perfect.
Convergence behavior Sec. VI-J Simulation and practice also match regarding filter convergence. Eve can trade off between fast convergence (small µ) yet

higher SER or slow(er) convergence (large µ) yet low SER.
Attack performance Sec. VI-K Our attack drastically reduces the practical secrecy rate between Alice and Bob. Increasing the NDR does not lead to a linear

increase in secrecy rate, which significantly limits the practical strength of existing implementations of orthogonal blinding.

correctly. A similar effect is caused when increasing the step-
size, since the error when training the filter becomes larger.
Finally, Figure 19 shows that the practical and simulation
results for µ = 0.3 match nearly perfect, which again validates
our experiments. We conclude that our attack on orthogonal
blinding is successful and exhibits a good performance.

VII. DISCUSSION

Our performance evaluation in simulation and practice
shows that the known-plaintext attack model can be suc-
cessfully translated from cryptoanalysis to the analysis of
physical layer security schemes. We now discuss its benefits
and limitations, with a special focus on its application to
current state-of-the-art systems.

In our evaluation, we use the SER as our main metric
to quantize the performance of our attack. We also study a
number of additional metrics, such as the convergence time.
However, we consider the SER to be most representative, as
it fully captures the main goal of our attack, i.e., correctly
decoding the symbols sent by Alice at Eve. Moreover, it
is agnostic to our filtering approach. Thus, it allows us to
compare our results to other attacks based on other techniques.

While the SER captures the efficacy of our attack, speed is
also a critical factor, since filter training should converge fast
in order to require as less known plaintext as possible. A key
aspect with respect to speed is the chosen type of filter and
its parameters. Our experiments show that the normalization
of the NLMS filter can halve the convergence time of the
LMS, which makes it the technique of choice for our attack.
Moreover, it is well suited for scenarios where the filter input
originates from an antenna array.

The speed of our attack also determines its applicability
to real-world systems. Hence, we present a brief example
on how our attack would work in an 802.11ac [19] system
that applies orthogonal blinding on the OFDM symbols in
the Physical-layer Service Data Unit (PSDU). We assume
a bandwidth of 20 MHz divided into 64 subchannels (48
usable for data transmission). Additionally, we consider Binary
Phase Shift Keying (BPSK) with 1/2 Forward Error Correction
(FEC). If Eve can guess the 30 byte Wi-Fi Media Access
Control (MAC) header as well as the 40 byte IPv6 header,
she knows the plaintext of the first 23 to 24 OFDM symbols
on each subchannel. Hence, an NLMS filter with step-size
0.9 leads to a SER below 10 %, according to Figure 4 (a)
with SNRTX = 30 dB and NDR = 4. Both headers sum up to
70 byte, which is 3 % of the 2304 byte MAC Service Data
Unit (MSDU) [1] plus 30 byte MAC header.

While our attack would be successful in the aforementioned
example, Alice has a number of options to make the attack
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harder for Eve. First, she could use a higher order modulation
scheme, which translates into smaller headers in terms of
symbols and thus less known plaintext. However, Eve can
maximize the knowledge she gets from the amount of sym-
bols she can guess by exploiting the coherence bandwidth of
the channel. Specifically, neighboring subcarriers can typically
be considered to be similar. Therefore, the resulting filters
are also highly similar for both, which means that the known
symbols on both subcarriers can be combined to train the filter.

Second, Alice could increase the NDR. Still, as shown in
our evaluation, this does not only lead to a worse SER at Eve
but also at Bob. To keep a certain SER, Alice would have to
increase the FEC, which in turn implies more known symbols.
Eve could use these additional known symbols to train her filter
with a smaller step-size and thus reduce her SER. Furthermore,
she could exploit slowly changing channels in order to train
her filter over consecutive frames, which reduces the amount
of known symbols required per frame. Also, if Eve can force
Alice to send a specific well-known frame, Eve could train
her filter on that frame only and apply the same filter on all
consecutive frames, as long as the channels are constant. This
would be analog to a chosen plaintext attack.

Third, Alice could avoid the blinding of any data usable
by Eve as known plaintext. However, Alice’s physical layer
generally does not know which upper layer data Eve knows.
Alice could also apply encryption in addition to orthogonal
blinding, but if Eve could get access to the ciphertext, she
could use it for filter training.

VIII. RELATED WORK

In information theory, multiple publications base on
Wyner’s work on the wiretap channel [25]. Wyner introduces
the secrecy rate that describes how much more information
the intended receiver can extract compared to an eavesdropper
when communicating over wireless channels. The secrecy ca-
pacity refers to the maximum theoretically achievable secrecy
rate of a channel.

This basic scheme has been extended for multiantenna
scenarios, where both transmitters as well as receivers use
multiple spatial dimensions [17]. Other extensions focus on
the secrecy rate in multi-hop or relay scenarios [5], [14]. Our
attack can be extended to such scenarios, but is not directly
related to them. The authors of [5] focus on zero-forcing beam-
forming, where knowledge of the CSI to the eavesdroppers is
required. However, this is not a realistic assumption in practical
systems, since the eavesdropper typically does not disclose
its CSI to well-behaved nodes. Another shortcoming of many
theoretical analyses is the limitation of the transmitted data
signals to Gaussian distributed waveforms. The authors of [15]
relax this shortcoming by considering QAM quantized data
symbols, as also used in this work. Additionally, our physical
layer is based on an OFDM transmitter; its secrecy rate is
analyzed in [20].

The aforementioned papers focus on finding upper bounds
for the achievable secrecy rates. Thus, the CSI to the eaves-
dropper is assumed to be known. To overcome this limitation
while still achieving positive secrecy rates, orthogonal blinding
is used. The authors of [3] analyze the performance of or-
thogonal blinding in comparison to zero-forcing beamforming
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NDR. For comparison, a simulation with SNRTX = 25 dB is also shown.

and the use of directional antennas. They validate their results
in practice using software-defined radios [2], similar to our
evaluation. However, they assume each eavesdropper to be
equipped with only one antenna, thus reducing her spatial
capabilities. The authors of [10] consider cooperation, i.e.,
eavesdroppers that combine their spatial dimensions to become
a more powerful attacker. Colluding eavesdroppers come with
the cost of communication overhead, as analyzed in [21]. Other
extensions to orthogonal blinding consider delayed feedback
from CSI measurements, which is key for transmit filter
generation [26], and the use of a separate node to transmit
the artificial noise [7].

The concept of jamming an eavesdropper is also considered
in the related area of friendly jamming. The authors of [11]
use jamming to protect the confidentiality of unencrypted
communication of medical devices. This scheme was broken
in [23] by smart placement of multiple antennas. Additionally,
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jamming can also be used to perform secret key exchanges
[12] or to protect a network against intruders [24].

Our work stands apart from the related work discussed
in this section since—to the best of our knowledge—our
approach is the first practical attack on orthogonal blinding
and the first approach to apply known-plaintext attacks against
physical layer security schemes.

IX. CONCLUSION

We present a physical layer attack model which is inspired
by the concept of known-plaintext attacks from the cryptogra-
phy domain. Specifically, we instantiate our model to design
an attack on orthogonal blinding, which is a physical layer
security scheme based on artificial noise. In a setup with
transmitter Alice, receiver Bob and eavesdropper Eve, Alice
sends artificial noise into a channel orthogonal to the channel
of Bob. Hence, while Bob does not receive any noise, Eve
cannot decode the signal since she gets a superposition of
signal and noise. Our attack assumes that Eve may guess part
of the data sent by Alice, such as protocol headers. We use
this known plaintext to train an adaptive filter at Eve. Once
the filter is trained, Eve can use it to decode the unknown
data. We implement our attack on software-defined radios and
additionally perform an extensive simulation to determine the
operating area of our technique.

Our experiments show that our attack can successfully
compromise orthogonal blinding. By carefully selecting the
filter step-size µ, Eve can reduce the convergence time of the
adaptive filter by a factor of two. If Eve knows her channel
to Alice, the convergence of the attack can be sped up by
more than a factor of four over our basic, not optimized
attack. Furthermore, we demonstrate that a negative secrecy
rate (Eve extracts more data than Bob) can be achieved if
Eve has a better channel to Alice than Bob. Future work
includes extending our attack with techniques such as training
filters over multiple frames, and investigating how further
attack models from the cryptography domain can be applied
to physical layer security.
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