
Practical Issues with
TLS Client Certificate Authentication

Arnis Parsovs

February 26, 2014

1 / 10



Motivation

Problems with password authentication:

• Weak passwords

• Password reuse

• Insecure storage on server side

• Phishing attacks

• MITM attacks

Solution to these problems – public key authentication
in a form of TLS Client Certificate Authentication (CCA)

Supported by all major browsers!

2 / 10



Motivation

Problems with password authentication:

• Weak passwords

• Password reuse

• Insecure storage on server side

• Phishing attacks

• MITM attacks

Solution to these problems – public key authentication
in a form of TLS Client Certificate Authentication (CCA)

Supported by all major browsers!

2 / 10



Motivation

Problems with password authentication:

• Weak passwords

• Password reuse

• Insecure storage on server side

• Phishing attacks

• MITM attacks

Solution to these problems – public key authentication
in a form of TLS Client Certificate Authentication (CCA)

Supported by all major browsers!

2 / 10



Motivation

Problems with password authentication:

• Weak passwords

• Password reuse

• Insecure storage on server side

• Phishing attacks

• MITM attacks

Solution to these problems – public key authentication
in a form of TLS Client Certificate Authentication (CCA)

Supported by all major browsers!

2 / 10



Motivation

Problems with password authentication:

• Weak passwords

• Password reuse

• Insecure storage on server side

• Phishing attacks

• MITM attacks

Solution to these problems – public key authentication
in a form of TLS Client Certificate Authentication (CCA)

Supported by all major browsers!

2 / 10



Motivation

Problems with password authentication:

• Weak passwords

• Password reuse

• Insecure storage on server side

• Phishing attacks

• MITM attacks

Solution to these problems – public key authentication
in a form of TLS Client Certificate Authentication (CCA)

Supported by all major browsers!

2 / 10



Motivation

Problems with password authentication:

• Weak passwords

• Password reuse

• Insecure storage on server side

• Phishing attacks

• MITM attacks

Solution to these problems – public key authentication
in a form of TLS Client Certificate Authentication (CCA)

Supported by all major browsers!

2 / 10



Motivation

Problems with password authentication:

• Weak passwords

• Password reuse

• Insecure storage on server side

• Phishing attacks

• MITM attacks

Solution to these problems – public key authentication

in a form of TLS Client Certificate Authentication (CCA)

Supported by all major browsers!

2 / 10



Motivation

Problems with password authentication:

• Weak passwords

• Password reuse

• Insecure storage on server side

• Phishing attacks

• MITM attacks

Solution to these problems – public key authentication
in a form of TLS Client Certificate Authentication (CCA)

Supported by all major browsers!

2 / 10



Motivation

Problems with password authentication:

• Weak passwords

• Password reuse

• Insecure storage on server side

• Phishing attacks

• MITM attacks

Solution to these problems – public key authentication
in a form of TLS Client Certificate Authentication (CCA)

Supported by all major browsers!

2 / 10



TLS Client Certificate Authentication

3 / 10



TLS Client Certificate Authentication

Client Server

ClientHello

ServerHello, Certificate, CertificateRequest, ServerHelloDone

Certificate, ClientKeyExchange, CertificateVerify

[ChangeCipherSpec], Finished

[ChangeCipherSpec], Finished

Application Data

• Private key has much better entropy than passwords

• The same certificate can be reused for different services

• No risk if server-side public key database leaks

• Private key cannot be phished by traditional phishing attacks

• MITM attacker (e.g., rogue CA) cannot impersonate the user

• No trusted third party required (!)

4 / 10



TLS Client Certificate Authentication

Client Server

ClientHello

ServerHello, Certificate, CertificateRequest, ServerHelloDone

Certificate, ClientKeyExchange, CertificateVerify

[ChangeCipherSpec], Finished

[ChangeCipherSpec], Finished

Application Data

• Private key has much better entropy than passwords

• The same certificate can be reused for different services

• No risk if server-side public key database leaks

• Private key cannot be phished by traditional phishing attacks

• MITM attacker (e.g., rogue CA) cannot impersonate the user

• No trusted third party required (!)

4 / 10



TLS Client Certificate Authentication

Client Server

ClientHello

ServerHello, Certificate, CertificateRequest, ServerHelloDone

Certificate, ClientKeyExchange, CertificateVerify

[ChangeCipherSpec], Finished

[ChangeCipherSpec], Finished

Application Data

• Private key has much better entropy than passwords

• The same certificate can be reused for different services

• No risk if server-side public key database leaks

• Private key cannot be phished by traditional phishing attacks

• MITM attacker (e.g., rogue CA) cannot impersonate the user

• No trusted third party required (!)

4 / 10



TLS Client Certificate Authentication

Client Server

ClientHello

ServerHello, Certificate, CertificateRequest, ServerHelloDone

Certificate, ClientKeyExchange, CertificateVerify

[ChangeCipherSpec], Finished

[ChangeCipherSpec], Finished

Application Data

• Private key has much better entropy than passwords

• The same certificate can be reused for different services

• No risk if server-side public key database leaks

• Private key cannot be phished by traditional phishing attacks

• MITM attacker (e.g., rogue CA) cannot impersonate the user

• No trusted third party required (!)

4 / 10



TLS Client Certificate Authentication

Client Server

ClientHello

ServerHello, Certificate, CertificateRequest, ServerHelloDone

Certificate, ClientKeyExchange, CertificateVerify

[ChangeCipherSpec], Finished

[ChangeCipherSpec], Finished

Application Data

• Private key has much better entropy than passwords

• The same certificate can be reused for different services

• No risk if server-side public key database leaks

• Private key cannot be phished by traditional phishing attacks

• MITM attacker (e.g., rogue CA) cannot impersonate the user

• No trusted third party required (!)

4 / 10



TLS Client Certificate Authentication

Client Server

ClientHello

ServerHello, Certificate, CertificateRequest, ServerHelloDone

Certificate, ClientKeyExchange, CertificateVerify

[ChangeCipherSpec], Finished

[ChangeCipherSpec], Finished

Application Data

• Private key has much better entropy than passwords

• The same certificate can be reused for different services

• No risk if server-side public key database leaks

• Private key cannot be phished by traditional phishing attacks

• MITM attacker (e.g., rogue CA) cannot impersonate the user

• No trusted third party required (!)

4 / 10



TLS Client Certificate Authentication

Client Server

ClientHello

ServerHello, Certificate, CertificateRequest, ServerHelloDone

Certificate, ClientKeyExchange, CertificateVerify

[ChangeCipherSpec], Finished

[ChangeCipherSpec], Finished

Application Data

• Private key has much better entropy than passwords

• The same certificate can be reused for different services

• No risk if server-side public key database leaks

• Private key cannot be phished by traditional phishing attacks

• MITM attacker (e.g., rogue CA) cannot impersonate the user

• No trusted third party required (!)

4 / 10



TLS Client Certificate Authentication

Client Server

ClientHello

ServerHello, Certificate, CertificateRequest, ServerHelloDone

Certificate, ClientKeyExchange, CertificateVerify

[ChangeCipherSpec], Finished

[ChangeCipherSpec], Finished

Application Data

• Private key has much better entropy than passwords

• The same certificate can be reused for different services

• No risk if server-side public key database leaks

• Private key cannot be phished by traditional phishing attacks

• MITM attacker (e.g., rogue CA) cannot impersonate the user

• No trusted third party required (!)
4 / 10



Estonia and TLS CCA

• Mandatory ID cards since 2002

• Two RSA key pairs:

• For Qualified Digital Signatures

• For TLS Client Certificate Authentication

• TLS CCA supported by all major e-service providers

• Authentication to e-health services only by TLS CCA

• Required to authorize online banking transactions >200 EUR

5 / 10



Estonia and TLS CCA

• Mandatory ID cards since 2002

• Two RSA key pairs:

• For Qualified Digital Signatures

• For TLS Client Certificate Authentication

• TLS CCA supported by all major e-service providers

• Authentication to e-health services only by TLS CCA

• Required to authorize online banking transactions >200 EUR

5 / 10



Estonia and TLS CCA

• Mandatory ID cards since 2002

• Two RSA key pairs:

• For Qualified Digital Signatures

• For TLS Client Certificate Authentication

• TLS CCA supported by all major e-service providers

• Authentication to e-health services only by TLS CCA

• Required to authorize online banking transactions >200 EUR

5 / 10



Estonia and TLS CCA

• Mandatory ID cards since 2002

• Two RSA key pairs:

• For Qualified Digital Signatures

• For TLS Client Certificate Authentication

• TLS CCA supported by all major e-service providers

• Authentication to e-health services only by TLS CCA

• Required to authorize online banking transactions >200 EUR

5 / 10



Estonia and TLS CCA

• Mandatory ID cards since 2002

• Two RSA key pairs:

• For Qualified Digital Signatures

• For TLS Client Certificate Authentication

• TLS CCA supported by all major e-service providers

• Authentication to e-health services only by TLS CCA

• Required to authorize online banking transactions >200 EUR

5 / 10



Estonia and TLS CCA

• Mandatory ID cards since 2002

• Two RSA key pairs:

• For Qualified Digital Signatures

• For TLS Client Certificate Authentication

• TLS CCA supported by all major e-service providers

• Authentication to e-health services only by TLS CCA

• Required to authorize online banking transactions >200 EUR

5 / 10



Estonia and TLS CCA

• Mandatory ID cards since 2002

• Two RSA key pairs:

• For Qualified Digital Signatures

• For TLS Client Certificate Authentication

• TLS CCA supported by all major e-service providers

• Authentication to e-health services only by TLS CCA

• Required to authorize online banking transactions >200 EUR

5 / 10



Research Objectives

What are the practical issues concerning TLS CCA deployment?
What should be improved on client and server side?

On server side:

• Apache mod ssl (branch 2.2)

On client side:

• Mozilla Firefox (version 19.0)

• Google Chrome (version 25.0)

• Microsoft Internet Explorer (version 9.0)

Perform study on Estonian TLS CCA deployments.

6 / 10



Research Objectives

What are the practical issues concerning TLS CCA deployment?

What should be improved on client and server side?

On server side:

• Apache mod ssl (branch 2.2)

On client side:

• Mozilla Firefox (version 19.0)

• Google Chrome (version 25.0)

• Microsoft Internet Explorer (version 9.0)

Perform study on Estonian TLS CCA deployments.

6 / 10



Research Objectives

What are the practical issues concerning TLS CCA deployment?
What should be improved on client and server side?

On server side:

• Apache mod ssl (branch 2.2)

On client side:

• Mozilla Firefox (version 19.0)

• Google Chrome (version 25.0)

• Microsoft Internet Explorer (version 9.0)

Perform study on Estonian TLS CCA deployments.

6 / 10



Research Objectives

What are the practical issues concerning TLS CCA deployment?
What should be improved on client and server side?

On server side:

• Apache mod ssl (branch 2.2)

On client side:

• Mozilla Firefox (version 19.0)

• Google Chrome (version 25.0)

• Microsoft Internet Explorer (version 9.0)

Perform study on Estonian TLS CCA deployments.

6 / 10



Research Objectives

What are the practical issues concerning TLS CCA deployment?
What should be improved on client and server side?

On server side:

• Apache mod ssl (branch 2.2)

On client side:

• Mozilla Firefox (version 19.0)

• Google Chrome (version 25.0)

• Microsoft Internet Explorer (version 9.0)

Perform study on Estonian TLS CCA deployments.

6 / 10



Research Objectives

What are the practical issues concerning TLS CCA deployment?
What should be improved on client and server side?

On server side:

• Apache mod ssl (branch 2.2)

On client side:

• Mozilla Firefox (version 19.0)

• Google Chrome (version 25.0)

• Microsoft Internet Explorer (version 9.0)

Perform study on Estonian TLS CCA deployments.

6 / 10



Measurement Study of Estonian TLS CCA Deployments

• Analyzed 87 public service providers:

Software Hosts Percent
Apache mod ssl 65 74.7%
MS IIS 10 11.5%
BigIP 4 4.6%
Oracle AS 3 3.4%
Tomcat 1 1.1%
Nginx 1 1.1%
Jetty 1 1.1%
unknown 2 2.3%

• 33% request certificate unencrypted

• 93% do not bind session to certificate

• 47% have superfluous CAs in trust store

• 45% have larger chain verification depth than needed

• 18% do not perform revocation checks

7 / 10



Measurement Study of Estonian TLS CCA Deployments

• Analyzed 87 public service providers:

Software Hosts Percent
Apache mod ssl 65 74.7%
MS IIS 10 11.5%
BigIP 4 4.6%
Oracle AS 3 3.4%
Tomcat 1 1.1%
Nginx 1 1.1%
Jetty 1 1.1%
unknown 2 2.3%

• 33% request certificate unencrypted

• 93% do not bind session to certificate

• 47% have superfluous CAs in trust store

• 45% have larger chain verification depth than needed

• 18% do not perform revocation checks

7 / 10



Measurement Study of Estonian TLS CCA Deployments

• Analyzed 87 public service providers:

Software Hosts Percent
Apache mod ssl 65 74.7%
MS IIS 10 11.5%
BigIP 4 4.6%
Oracle AS 3 3.4%
Tomcat 1 1.1%
Nginx 1 1.1%
Jetty 1 1.1%
unknown 2 2.3%

• 33% request certificate unencrypted

• 93% do not bind session to certificate

• 47% have superfluous CAs in trust store

• 45% have larger chain verification depth than needed

• 18% do not perform revocation checks

7 / 10



Measurement Study of Estonian TLS CCA Deployments

• Analyzed 87 public service providers:

Software Hosts Percent
Apache mod ssl 65 74.7%
MS IIS 10 11.5%
BigIP 4 4.6%
Oracle AS 3 3.4%
Tomcat 1 1.1%
Nginx 1 1.1%
Jetty 1 1.1%
unknown 2 2.3%

• 33% request certificate unencrypted

• 93% do not bind session to certificate

• 47% have superfluous CAs in trust store

• 45% have larger chain verification depth than needed

• 18% do not perform revocation checks

7 / 10



Measurement Study of Estonian TLS CCA Deployments

• Analyzed 87 public service providers:

Software Hosts Percent
Apache mod ssl 65 74.7%
MS IIS 10 11.5%
BigIP 4 4.6%
Oracle AS 3 3.4%
Tomcat 1 1.1%
Nginx 1 1.1%
Jetty 1 1.1%
unknown 2 2.3%

• 33% request certificate unencrypted

• 93% do not bind session to certificate

• 47% have superfluous CAs in trust store

• 45% have larger chain verification depth than needed

• 18% do not perform revocation checks

7 / 10



Measurement Study of Estonian TLS CCA Deployments

• Analyzed 87 public service providers:

Software Hosts Percent
Apache mod ssl 65 74.7%
MS IIS 10 11.5%
BigIP 4 4.6%
Oracle AS 3 3.4%
Tomcat 1 1.1%
Nginx 1 1.1%
Jetty 1 1.1%
unknown 2 2.3%

• 33% request certificate unencrypted

• 93% do not bind session to certificate

• 47% have superfluous CAs in trust store

• 45% have larger chain verification depth than needed

• 18% do not perform revocation checks

7 / 10



Measurement Study of Estonian TLS CCA Deployments

• Analyzed 87 public service providers:

Software Hosts Percent
Apache mod ssl 65 74.7%
MS IIS 10 11.5%
BigIP 4 4.6%
Oracle AS 3 3.4%
Tomcat 1 1.1%
Nginx 1 1.1%
Jetty 1 1.1%
unknown 2 2.3%

• 33% request certificate unencrypted

• 93% do not bind session to certificate

• 47% have superfluous CAs in trust store

• 45% have larger chain verification depth than needed

• 18% do not perform revocation checks

7 / 10



Measurement Study of Estonian TLS CCA Deployments

• Analyzed 87 public service providers:

Software Hosts Percent
Apache mod ssl 65 74.7%
MS IIS 10 11.5%
BigIP 4 4.6%
Oracle AS 3 3.4%
Tomcat 1 1.1%
Nginx 1 1.1%
Jetty 1 1.1%
unknown 2 2.3%

• 33% request certificate unencrypted

• 93% do not bind session to certificate

• 47% have superfluous CAs in trust store

• 45% have larger chain verification depth than needed

• 18% do not perform revocation checks

7 / 10



Things to Improve on Client Side (Browsers)

• Opt-in for strong locked same-origin policy

• To isolate content served by MITM and legitimate connection

• JavaScript API in order to:

• clear TLS session cache (reauthenticate)

• clear client certificate selection (logout)

• Prevent deadlock in case CCA fails (Firefox, IE)

• Show warning if CCA requested on initial negotiation

• Client certificate selection window improvement:

• Remember last client certificate choice

8 / 10



Things to Improve on Client Side (Browsers)

• Opt-in for strong locked same-origin policy

• To isolate content served by MITM and legitimate connection

• JavaScript API in order to:

• clear TLS session cache (reauthenticate)

• clear client certificate selection (logout)

• Prevent deadlock in case CCA fails (Firefox, IE)

• Show warning if CCA requested on initial negotiation

• Client certificate selection window improvement:

• Remember last client certificate choice

8 / 10



Things to Improve on Client Side (Browsers)

• Opt-in for strong locked same-origin policy

• To isolate content served by MITM and legitimate connection

• JavaScript API in order to:

• clear TLS session cache (reauthenticate)

• clear client certificate selection (logout)

• Prevent deadlock in case CCA fails (Firefox, IE)

• Show warning if CCA requested on initial negotiation

• Client certificate selection window improvement:

• Remember last client certificate choice

8 / 10



Things to Improve on Client Side (Browsers)

• Opt-in for strong locked same-origin policy

• To isolate content served by MITM and legitimate connection

• JavaScript API in order to:

• clear TLS session cache (reauthenticate)

• clear client certificate selection (logout)

• Prevent deadlock in case CCA fails (Firefox, IE)

• Show warning if CCA requested on initial negotiation

• Client certificate selection window improvement:

• Remember last client certificate choice

8 / 10



Things to Improve on Client Side (Browsers)

• Opt-in for strong locked same-origin policy

• To isolate content served by MITM and legitimate connection

• JavaScript API in order to:

• clear TLS session cache (reauthenticate)

• clear client certificate selection (logout)

• Prevent deadlock in case CCA fails (Firefox, IE)

• Show warning if CCA requested on initial negotiation

• Client certificate selection window improvement:

• Remember last client certificate choice

8 / 10



Things to Improve on Client Side (Browsers)

• Opt-in for strong locked same-origin policy

• To isolate content served by MITM and legitimate connection

• JavaScript API in order to:

• clear TLS session cache (reauthenticate)

• clear client certificate selection (logout)

• Prevent deadlock in case CCA fails (Firefox, IE)

• Show warning if CCA requested on initial negotiation

• Client certificate selection window improvement:

• Remember last client certificate choice

8 / 10



Things to Improve on Client Side (Browsers)

• Opt-in for strong locked same-origin policy

• To isolate content served by MITM and legitimate connection

• JavaScript API in order to:

• clear TLS session cache (reauthenticate)

• clear client certificate selection (logout)

• Prevent deadlock in case CCA fails (Firefox, IE)

• Show warning if CCA requested on initial negotiation

• Client certificate selection window improvement:

• Remember last client certificate choice

8 / 10



Things to Improve on Client Side (Browsers)

• Opt-in for strong locked same-origin policy

• To isolate content served by MITM and legitimate connection

• JavaScript API in order to:

• clear TLS session cache (reauthenticate)

• clear client certificate selection (logout)

• Prevent deadlock in case CCA fails (Firefox, IE)

• Show warning if CCA requested on initial negotiation

• Client certificate selection window improvement:

• Remember last client certificate choice

8 / 10



Things to Improve on Client Side (Browsers)

• Opt-in for strong locked same-origin policy

• To isolate content served by MITM and legitimate connection

• JavaScript API in order to:

• clear TLS session cache (reauthenticate)

• clear client certificate selection (logout)

• Prevent deadlock in case CCA fails (Firefox, IE)

• Show warning if CCA requested on initial negotiation

• Client certificate selection window improvement:

• Remember last client certificate choice

8 / 10



Things to Improve on Client Side (Browsers)

• Opt-in for strong locked same-origin policy

• To isolate content served by MITM and legitimate connection

• JavaScript API in order to:

• clear TLS session cache (reauthenticate)

• clear client certificate selection (logout)

• Prevent deadlock in case CCA fails (Firefox, IE)

• Show warning if CCA requested on initial negotiation

• Client certificate selection window improvement:

• Remember last client certificate choice

8 / 10



Things to Improve on Server Side (Apache mod ssl)

• Provide session resumption support for CCA sessions

• Important when CCA is performed by a smart card

• Implement flexible “SSLVerifyClient require any”

• To perform certificate verification at the application level

• To provide personalized error messages in case of CCA failure

• Provide to environment variable the timestamp of CCA

• To enforce the freshness of the proof of possession

• Provide better CCA audit trail

9 / 10



Things to Improve on Server Side (Apache mod ssl)

• Provide session resumption support for CCA sessions

• Important when CCA is performed by a smart card

• Implement flexible “SSLVerifyClient require any”

• To perform certificate verification at the application level

• To provide personalized error messages in case of CCA failure

• Provide to environment variable the timestamp of CCA

• To enforce the freshness of the proof of possession

• Provide better CCA audit trail

9 / 10



Things to Improve on Server Side (Apache mod ssl)

• Provide session resumption support for CCA sessions

• Important when CCA is performed by a smart card

• Implement flexible “SSLVerifyClient require any”

• To perform certificate verification at the application level

• To provide personalized error messages in case of CCA failure

• Provide to environment variable the timestamp of CCA

• To enforce the freshness of the proof of possession

• Provide better CCA audit trail

9 / 10



Things to Improve on Server Side (Apache mod ssl)

• Provide session resumption support for CCA sessions

• Important when CCA is performed by a smart card

• Implement flexible “SSLVerifyClient require any”

• To perform certificate verification at the application level

• To provide personalized error messages in case of CCA failure

• Provide to environment variable the timestamp of CCA

• To enforce the freshness of the proof of possession

• Provide better CCA audit trail

9 / 10



Things to Improve on Server Side (Apache mod ssl)

• Provide session resumption support for CCA sessions

• Important when CCA is performed by a smart card

• Implement flexible “SSLVerifyClient require any”

• To perform certificate verification at the application level

• To provide personalized error messages in case of CCA failure

• Provide to environment variable the timestamp of CCA

• To enforce the freshness of the proof of possession

• Provide better CCA audit trail

9 / 10



Things to Improve on Server Side (Apache mod ssl)

• Provide session resumption support for CCA sessions

• Important when CCA is performed by a smart card

• Implement flexible “SSLVerifyClient require any”

• To perform certificate verification at the application level

• To provide personalized error messages in case of CCA failure

• Provide to environment variable the timestamp of CCA

• To enforce the freshness of the proof of possession

• Provide better CCA audit trail

9 / 10



Things to Improve on Server Side (Apache mod ssl)

• Provide session resumption support for CCA sessions

• Important when CCA is performed by a smart card

• Implement flexible “SSLVerifyClient require any”

• To perform certificate verification at the application level

• To provide personalized error messages in case of CCA failure

• Provide to environment variable the timestamp of CCA

• To enforce the freshness of the proof of possession

• Provide better CCA audit trail

9 / 10



Things to Improve on Server Side (Apache mod ssl)

• Provide session resumption support for CCA sessions

• Important when CCA is performed by a smart card

• Implement flexible “SSLVerifyClient require any”

• To perform certificate verification at the application level

• To provide personalized error messages in case of CCA failure

• Provide to environment variable the timestamp of CCA

• To enforce the freshness of the proof of possession

• Provide better CCA audit trail

9 / 10



Things to Improve on Server Side (Apache mod ssl)

• Provide session resumption support for CCA sessions

• Important when CCA is performed by a smart card

• Implement flexible “SSLVerifyClient require any”

• To perform certificate verification at the application level

• To provide personalized error messages in case of CCA failure

• Provide to environment variable the timestamp of CCA

• To enforce the freshness of the proof of possession

• Provide better CCA audit trail

9 / 10



Conclusion

• Solution for secure user identity is already here

• Estonian example shows that it works in practice

• There are things to improve on client and server side

• Improvements do not require changes to the protocol

Thank you!

10 / 10



Conclusion

• Solution for secure user identity is already here

• Estonian example shows that it works in practice

• There are things to improve on client and server side

• Improvements do not require changes to the protocol

Thank you!

10 / 10



Conclusion

• Solution for secure user identity is already here

• Estonian example shows that it works in practice

• There are things to improve on client and server side

• Improvements do not require changes to the protocol

Thank you!

10 / 10



Conclusion

• Solution for secure user identity is already here

• Estonian example shows that it works in practice

• There are things to improve on client and server side

• Improvements do not require changes to the protocol

Thank you!

10 / 10



Conclusion

• Solution for secure user identity is already here

• Estonian example shows that it works in practice

• There are things to improve on client and server side

• Improvements do not require changes to the protocol

Thank you!

10 / 10



Conclusion

• Solution for secure user identity is already here

• Estonian example shows that it works in practice

• There are things to improve on client and server side

• Improvements do not require changes to the protocol

Thank you!

10 / 10


