
Enforcing	Kernel	Security	
Invariants	with

Data	Flow	Integrity
Chengyu	Song,	ByoungyoungLee,	Kangjie Lu,

William	Harris,	Taesoo	Kim,	Wenke	Lee

Institute	for	Information	Security	&	Privacy
Georgia	Tech

Kernel	Memory	Corruption	Vulnerability

• Kernel is important
• The de-facto trusted computing base (TCB)

• Foundation of upper level security mechanisms
(e.g., app sandbox)

• Kernel vulnerabilities are not rare
• Written in C

• Emphasize on performance

2 /	24

Privilege	escalation	attacks

• One of the most powerful attacks

• Most popular attack against kernel

• Hard to prevent
• Chrome sandbox bypass

• iOS jailbreak

• Android rooting

3 /	24

Challenge	1:	many	ways	to	exploit

Control-flow hijacking
Bypass the check

Data-oriented attacks
Manipulate the check

1 static int acl_permission_check
2 (struct inode *inode, int mask)
3 {
4 unsigned int mode = inode->i_mode;
5
6 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
7 mode >>= 6;

8 else if (in_group_p(inode->i_gid))
9 mode >>= 3;

10
11 if ((mask & ~mode &
12 (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)

13 return 0;
14 return -EACCES;
15 }

Example 1: The decision making function of the Linux
DAC subsystem.

3.2 Proposal
To solve the problem, I plan to leverage the power of
program analysis. Specifically, for each access control
mechanism, I want to

1. Build an abstract model based on data and control
dependencies;

2. Manually annotate some seed data;

3. Use program analysis to map concrete program
data structures to the abstractions in the model.

Example 1 shows the decision making process of the
DAC subsystem. In this example, the fsuid and fsgid
are subject IDs; the i_uid and i_gid are object IDs;
and the i_mode is the policy. So one possible abstrac-
tion is: (1) object id has data depend (bind by compare
operation) on subject id; (2) policy has control depend
on subject ID and object ID; and (3) return value has
control depend on mode.

Since the subject ID is relatively easy to annotate, we
can first manually assign fsuid and fsgid as subject IDs.
Then the system to be built will automatically identify
inode->i_uid and inode->i_gid as object IDs; and
inode->i_mode as the policy data.

4 Timeline
1. Infrastructure build. Implement a context-

sensitive field-sensitive inter-procedure data flow
and control flow analysis infrastructure for analyz-
ing the Linux kernel. Mid April.

2. Abstraction design. Design the data flow and con-
trol flow abstraction for detecting sensitive data.
End of April.

3. Evaluation. Evaluate on the Linux kernel. Early
May.

References
[1] Overview of linux kernel security features. http:

//www.linux.com/learn/docs/727873-overview-

of-linux-kernel-security-features/, 2013.
[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-

Flow Integrity. In ACM Conference on Computer and Commu-
nications Security, 2005.

[3] T. Bletsch, X. Jiang, and V. Freeh. Mitigating Code-reuse
Attacks with Control-flow Locking. In Annual Computer
Security Applications Conference (ACSAC), 2011.

[4] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-
control-data attacks are realistic threats. In Usenix Security
Symposium (Security), 2005.

[5] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, and H. Hinton. Stackguard: Au-
tomatic adaptive detection and prevention of buffer-overflow
attacks. In Usenix Security Symposium (Security), 1998.

[6] J. Criswell, N. Dautenhahn, and V. Adve. KCoFI: Complete
Control-Flow Integrity for Commodity Operating System Ker-
nels. In IEEE Symposium on Security and Privacy (Oakland),
2014.

[7] M. Kerrisk. Lce: The failure of operating systems and how we
can fix it. http://lwn.net/Articles/524952/, 2012.

[8] M. Kerrisk. Namespaces in operation, part 1: namespaces
overview. http://lwn.net/Articles/531114/, 2013.

[9] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song. Code-pointer integrity. In Symposium on Operating
Systems Design and Implementation (OSDI), 2014.

[10] Microsoft Visual Studio 2005. Image has safe exception han-
dlers. http://msdn.microsoft.com/en-us/library/

9a89h429%28v=vs.80%29.aspx.
[11] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.

SoftBound: Highly Compatible and Complete Spatial Memory
Safety for C. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2009.

[12] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
CETS: Compiler Enforced Temporal Safety for C. In Interna-
tional Symposium on Memory Management (ISMM), 2010.

[13] J. Newsome and D. Song. Dynamic Taint Analysis for Auto-
matic Detection, Analysis, and Signature Generation of Ex-
ploits on Commodity Software. In Annual Network and Dis-
tributed System Security Symposium, 2005.

[14] B. Niu and G. Tan. Monitor Integrity Protection with Space
Efficiency and Separate Compilation. In ACM Conference on
Computer and Communications Security, 2013.

[15] B. Niu and G. Tan. Modular Control-flow Integrity. In ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2014.

[16] P. Philippaerts, Y. Younan, S. Muylle, F. Piessens, S. Lach-
mund, and T. Walter. Code pointer masking: Hardening ap-
plications against code injection attacks. In Conference on
Detection of Intrusions and Malware and Vulnerability Assess-
ment (DIMVA), 2011.

3

Code Injection Attack
Disable the check

4 /	24

Challenge	2:	performance

• Protecting all data is not practical
• Secure Virtual Architecture (SVA) [SOSP’07]

• Enforces kernel-wide memory safety

• Performance overhead: 5.34x ~ 13.10x (LMBench)

5 /	24

Our	approach

• Only protects a subset of data that is large enough to
enforce access control invariants [NTIS	AD-758	206]
• Complete mediation

• Control-data à Code Pointer Integrity [OSDI’14]

• Tamper proof

• Non-control-data used in security checks à this work

• Correctness

6 /	24

Step	1:	discover	all	related	data	

• Observation: OS kernels have well defined error code
for security checks (when they fail)
• POSIX: EPERM, EACCESS, etc.
• Windows: ERROR_ACCESS_DENIED, etc.

• Solution: leverage this implicit semantic to
automatically infer security checks

• Benefits
• Soundness: capable of detecting all security related data (as

long as there is no semantic errors)

• Automated: no manual annotation required

7 /	24

A	simple	example

Step	1:	collect	return	values

1 static int acl_permission_check
2 (struct inode *inode, int mask)
3 {
4 unsigned int mode = inode->i_mode;
5
6 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
7 mode >>= 6;

8 else if (in_group_p(inode->i_gid))
9 mode >>= 3;

10
11 if ((mask & ~mode &
12 (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)

13 return 0;
14 return -EACCES;
15 }

Example 1: The decision making function of the Linux
DAC subsystem.

3.2 Proposal
To solve the problem, I plan to leverage the power of
program analysis. Specifically, for each access control
mechanism, I want to

1. Build an abstract model based on data and control
dependencies;

2. Manually annotate some seed data;

3. Use program analysis to map concrete program
data structures to the abstractions in the model.

Example 1 shows the decision making process of the
DAC subsystem. In this example, the fsuid and fsgid
are subject IDs; the i_uid and i_gid are object IDs;
and the i_mode is the policy. So one possible abstrac-
tion is: (1) object id has data depend (bind by compare
operation) on subject id; (2) policy has control depend
on subject ID and object ID; and (3) return value has
control depend on mode.

Since the subject ID is relatively easy to annotate, we
can first manually assign fsuid and fsgid as subject IDs.
Then the system to be built will automatically identify
inode->i_uid and inode->i_gid as object IDs; and
inode->i_mode as the policy data.

4 Timeline
1. Infrastructure build. Implement a context-

sensitive field-sensitive inter-procedure data flow
and control flow analysis infrastructure for analyz-
ing the Linux kernel. Mid April.

2. Abstraction design. Design the data flow and con-
trol flow abstraction for detecting sensitive data.
End of April.

3. Evaluation. Evaluate on the Linux kernel. Early
May.

References
[1] Overview of linux kernel security features. http:

//www.linux.com/learn/docs/727873-overview-

of-linux-kernel-security-features/, 2013.
[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-

Flow Integrity. In ACM Conference on Computer and Commu-
nications Security, 2005.

[3] T. Bletsch, X. Jiang, and V. Freeh. Mitigating Code-reuse
Attacks with Control-flow Locking. In Annual Computer
Security Applications Conference (ACSAC), 2011.

[4] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-
control-data attacks are realistic threats. In Usenix Security
Symposium (Security), 2005.

[5] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, and H. Hinton. Stackguard: Au-
tomatic adaptive detection and prevention of buffer-overflow
attacks. In Usenix Security Symposium (Security), 1998.

[6] J. Criswell, N. Dautenhahn, and V. Adve. KCoFI: Complete
Control-Flow Integrity for Commodity Operating System Ker-
nels. In IEEE Symposium on Security and Privacy (Oakland),
2014.

[7] M. Kerrisk. Lce: The failure of operating systems and how we
can fix it. http://lwn.net/Articles/524952/, 2012.

[8] M. Kerrisk. Namespaces in operation, part 1: namespaces
overview. http://lwn.net/Articles/531114/, 2013.

[9] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song. Code-pointer integrity. In Symposium on Operating
Systems Design and Implementation (OSDI), 2014.

[10] Microsoft Visual Studio 2005. Image has safe exception han-
dlers. http://msdn.microsoft.com/en-us/library/

9a89h429%28v=vs.80%29.aspx.
[11] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.

SoftBound: Highly Compatible and Complete Spatial Memory
Safety for C. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2009.

[12] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
CETS: Compiler Enforced Temporal Safety for C. In Interna-
tional Symposium on Memory Management (ISMM), 2010.

[13] J. Newsome and D. Song. Dynamic Taint Analysis for Auto-
matic Detection, Analysis, and Signature Generation of Ex-
ploits on Commodity Software. In Annual Network and Dis-
tributed System Security Symposium, 2005.

[14] B. Niu and G. Tan. Monitor Integrity Protection with Space
Efficiency and Separate Compilation. In ACM Conference on
Computer and Communications Security, 2013.

[15] B. Niu and G. Tan. Modular Control-flow Integrity. In ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2014.

[16] P. Philippaerts, Y. Younan, S. Muylle, F. Piessens, S. Lach-
mund, and T. Walter. Code pointer masking: Hardening ap-
plications against code injection attacks. In Conference on
Detection of Intrusions and Malware and Vulnerability Assess-
ment (DIMVA), 2011.

3

8 /	24

A	simple	example

Step	2:	collect	conditional	branches

1 static int acl_permission_check
2 (struct inode *inode, int mask)
3 {
4 unsigned int mode = inode->i_mode;
5
6 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
7 mode >>= 6;

8 else if (in_group_p(inode->i_gid))
9 mode >>= 3;

10
11 if ((mask & ~mode &
12 (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)

13 return 0;
14 return -EACCES;
15 }

Example 1: The decision making function of the Linux
DAC subsystem.

3.2 Proposal
To solve the problem, I plan to leverage the power of
program analysis. Specifically, for each access control
mechanism, I want to

1. Build an abstract model based on data and control
dependencies;

2. Manually annotate some seed data;

3. Use program analysis to map concrete program
data structures to the abstractions in the model.

Example 1 shows the decision making process of the
DAC subsystem. In this example, the fsuid and fsgid
are subject IDs; the i_uid and i_gid are object IDs;
and the i_mode is the policy. So one possible abstrac-
tion is: (1) object id has data depend (bind by compare
operation) on subject id; (2) policy has control depend
on subject ID and object ID; and (3) return value has
control depend on mode.

Since the subject ID is relatively easy to annotate, we
can first manually assign fsuid and fsgid as subject IDs.
Then the system to be built will automatically identify
inode->i_uid and inode->i_gid as object IDs; and
inode->i_mode as the policy data.

4 Timeline
1. Infrastructure build. Implement a context-

sensitive field-sensitive inter-procedure data flow
and control flow analysis infrastructure for analyz-
ing the Linux kernel. Mid April.

2. Abstraction design. Design the data flow and con-
trol flow abstraction for detecting sensitive data.
End of April.

3. Evaluation. Evaluate on the Linux kernel. Early
May.

References
[1] Overview of linux kernel security features. http:

//www.linux.com/learn/docs/727873-overview-

of-linux-kernel-security-features/, 2013.
[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-

Flow Integrity. In ACM Conference on Computer and Commu-
nications Security, 2005.

[3] T. Bletsch, X. Jiang, and V. Freeh. Mitigating Code-reuse
Attacks with Control-flow Locking. In Annual Computer
Security Applications Conference (ACSAC), 2011.

[4] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-
control-data attacks are realistic threats. In Usenix Security
Symposium (Security), 2005.

[5] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, and H. Hinton. Stackguard: Au-
tomatic adaptive detection and prevention of buffer-overflow
attacks. In Usenix Security Symposium (Security), 1998.

[6] J. Criswell, N. Dautenhahn, and V. Adve. KCoFI: Complete
Control-Flow Integrity for Commodity Operating System Ker-
nels. In IEEE Symposium on Security and Privacy (Oakland),
2014.

[7] M. Kerrisk. Lce: The failure of operating systems and how we
can fix it. http://lwn.net/Articles/524952/, 2012.

[8] M. Kerrisk. Namespaces in operation, part 1: namespaces
overview. http://lwn.net/Articles/531114/, 2013.

[9] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song. Code-pointer integrity. In Symposium on Operating
Systems Design and Implementation (OSDI), 2014.

[10] Microsoft Visual Studio 2005. Image has safe exception han-
dlers. http://msdn.microsoft.com/en-us/library/

9a89h429%28v=vs.80%29.aspx.
[11] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.

SoftBound: Highly Compatible and Complete Spatial Memory
Safety for C. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2009.

[12] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
CETS: Compiler Enforced Temporal Safety for C. In Interna-
tional Symposium on Memory Management (ISMM), 2010.

[13] J. Newsome and D. Song. Dynamic Taint Analysis for Auto-
matic Detection, Analysis, and Signature Generation of Ex-
ploits on Commodity Software. In Annual Network and Dis-
tributed System Security Symposium, 2005.

[14] B. Niu and G. Tan. Monitor Integrity Protection with Space
Efficiency and Separate Compilation. In ACM Conference on
Computer and Communications Security, 2013.

[15] B. Niu and G. Tan. Modular Control-flow Integrity. In ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2014.

[16] P. Philippaerts, Y. Younan, S. Muylle, F. Piessens, S. Lach-
mund, and T. Walter. Code pointer masking: Hardening ap-
plications against code injection attacks. In Conference on
Detection of Intrusions and Malware and Vulnerability Assess-
ment (DIMVA), 2011.

3

9 /	24

A	simple	example

Collect	Dominators

Step	2:	collect	conditional	branches

if (condition1 || condition2)
return 0;

else
return -EACCESS;

10 /	24

A	simple	example

Avoid	Explosion

Step	2:	collect	conditional	branches

if (condition)
return -EINVAL;

if (uid_eq)
mode >> 6;

else
mode >> 3;

11 /	24

A	simple	example

Step	3:	collect	dependencies

1 static int acl_permission_check
2 (struct inode *inode, int mask)
3 {
4 unsigned int mode = inode->i_mode;
5
6 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
7 mode >>= 6;

8 else if (in_group_p(inode->i_gid))
9 mode >>= 3;

10
11 if ((mask & ~mode &
12 (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)

13 return 0;
14 return -EACCES;
15 }

Example 1: The decision making function of the Linux
DAC subsystem.

3.2 Proposal
To solve the problem, I plan to leverage the power of
program analysis. Specifically, for each access control
mechanism, I want to

1. Build an abstract model based on data and control
dependencies;

2. Manually annotate some seed data;

3. Use program analysis to map concrete program
data structures to the abstractions in the model.

Example 1 shows the decision making process of the
DAC subsystem. In this example, the fsuid and fsgid
are subject IDs; the i_uid and i_gid are object IDs;
and the i_mode is the policy. So one possible abstrac-
tion is: (1) object id has data depend (bind by compare
operation) on subject id; (2) policy has control depend
on subject ID and object ID; and (3) return value has
control depend on mode.

Since the subject ID is relatively easy to annotate, we
can first manually assign fsuid and fsgid as subject IDs.
Then the system to be built will automatically identify
inode->i_uid and inode->i_gid as object IDs; and
inode->i_mode as the policy data.

4 Timeline
1. Infrastructure build. Implement a context-

sensitive field-sensitive inter-procedure data flow
and control flow analysis infrastructure for analyz-
ing the Linux kernel. Mid April.

2. Abstraction design. Design the data flow and con-
trol flow abstraction for detecting sensitive data.
End of April.

3. Evaluation. Evaluate on the Linux kernel. Early
May.

References
[1] Overview of linux kernel security features. http:

//www.linux.com/learn/docs/727873-overview-

of-linux-kernel-security-features/, 2013.
[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-

Flow Integrity. In ACM Conference on Computer and Commu-
nications Security, 2005.

[3] T. Bletsch, X. Jiang, and V. Freeh. Mitigating Code-reuse
Attacks with Control-flow Locking. In Annual Computer
Security Applications Conference (ACSAC), 2011.

[4] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-
control-data attacks are realistic threats. In Usenix Security
Symposium (Security), 2005.

[5] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, and H. Hinton. Stackguard: Au-
tomatic adaptive detection and prevention of buffer-overflow
attacks. In Usenix Security Symposium (Security), 1998.

[6] J. Criswell, N. Dautenhahn, and V. Adve. KCoFI: Complete
Control-Flow Integrity for Commodity Operating System Ker-
nels. In IEEE Symposium on Security and Privacy (Oakland),
2014.

[7] M. Kerrisk. Lce: The failure of operating systems and how we
can fix it. http://lwn.net/Articles/524952/, 2012.

[8] M. Kerrisk. Namespaces in operation, part 1: namespaces
overview. http://lwn.net/Articles/531114/, 2013.

[9] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song. Code-pointer integrity. In Symposium on Operating
Systems Design and Implementation (OSDI), 2014.

[10] Microsoft Visual Studio 2005. Image has safe exception han-
dlers. http://msdn.microsoft.com/en-us/library/

9a89h429%28v=vs.80%29.aspx.
[11] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.

SoftBound: Highly Compatible and Complete Spatial Memory
Safety for C. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2009.

[12] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
CETS: Compiler Enforced Temporal Safety for C. In Interna-
tional Symposium on Memory Management (ISMM), 2010.

[13] J. Newsome and D. Song. Dynamic Taint Analysis for Auto-
matic Detection, Analysis, and Signature Generation of Ex-
ploits on Commodity Software. In Annual Network and Dis-
tributed System Security Symposium, 2005.

[14] B. Niu and G. Tan. Monitor Integrity Protection with Space
Efficiency and Separate Compilation. In ACM Conference on
Computer and Communications Security, 2013.

[15] B. Niu and G. Tan. Modular Control-flow Integrity. In ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2014.

[16] P. Philippaerts, Y. Younan, S. Muylle, F. Piessens, S. Lach-
mund, and T. Walter. Code pointer masking: Hardening ap-
plications against code injection attacks. In Conference on
Detection of Intrusions and Malware and Vulnerability Assess-
ment (DIMVA), 2011.

3

12 /	24

Be	complete

• Collects data- and control-dependencies transitively

• Collects sensitive pointers recursively

13 /	24

Step	2:	protect	the	integrity	of	data

• Data-flow integrity [OSDI’06]
• Runtime data-flow should not deviate from static data-flow

graph (similar to control-flow integrity)

• For example, string should not flow to return address or uid

• How

• Check the last writer at every memory read

• Challenge

• Performance! (104%)

14 /	24

How	to	reduce	performance	overhead

• Observation 1: reads are more frequent than writes
• Check write instead of read

• Observation 2: most writes are not relevant
• Use isolation instead of inlined checks

• Observation 3: most relevant write are safe
• Use static analysis to verify

Write	
Integrity	
Test	
[S&P’08]

15 /	24

Two-layered	protection

• Layer one: data-flow isolation
• Prevents unrelated writes from tampering sensitive data

• Mechanisms: segment (x86-32), WP flag (x86-64), access
domain (ARM32), virtual address space, virtualization,
TrustZone, etc.

• Layer two: WIT
• Prevents related but unrestricted writes from tampering

sensitive data

16 /	24

Additional	building	blocks

• Shadow objects
• Lacks fine-grained isolation mechanisms

• Sensitive data is mixed with non-sensitive data

• Safe stack
• Certain critical data is no visible at language level, e.g., return

address, register spills

• Access pattern of stack is different

• Safety is easier to verify

17 /	24

Prototype

• ARM64 Android
• For its practical importance and long updating cycle
• Enough entropy for stack randomization

• Data-flow isolation
• Heap: virtual address space based, uses ASID to reduce

overhead
• Stack: randomization based

• Shadow objects
• Modified the SLUB allocator

18 /	24

Implementation

• Kernel
• Nexus 9 lollipop-release + LLVMLinux patches

• Our modifications: 1900 LoC

• Static Analysis
• Framework: KINT [OSDI’12]

• Point-to analysis: J. Chen’s field-sens [GitHub]

• Context sensitive from KOP [CCS’09]

• Safe stack: CPI [OSDI’14]

• Our analysis + modifications: 4400 LoC

• Instrumentation: 500 LoC

19 /	24

How	many	sensitive	data	structures

• Control data: 3699 fields (783 structs), 1490 global objects

• Non-control data: 1731 fields (855 structs), 279 global objects
• False positives: 491 fields (221 structs) / 61 fields (25 structs)

163

115

93

50
40 37 40

119

60

42 37
30 31 36

0

20

40

60

80

100

120

140

160

180

net fs drivers kernel security include other

Fields
Structs

20 /	24

How	secure	is	our	approach

• Inference
• Sound à no false negatives
• Catch: no semantic errors

• Data-flow (point-to) analysis
• Sound but not complete à over permissive
• Improve the accuracy with context and field sensitivity

• Against existing attacks
• All prevented

21 /	24

Performance	impact

• Write operations
• 26645 (4.30%) allowed, 2 checked

• Context switch
• 1700 cycles

• Benchmarks
• LMBench (syscalls): 1.42x ~ 3.13x (0% for null syscall)
• Android benchmarks: 7% ~ 15%

22 /	24

Conclusion

• Data-oriented attacks are very practical, especially in
kernel

• Leveraging implicit semantics to avoid annotation

• Combining program analysis with system design is a
great way to build principled and practical security
solution

23 /	24

Thank	you!

24 /	24

Q & A

