
Gatling: Automatic Attack Discovery in Large-Scale Distributed Systems

Hyojeong Lee, Jeff Seibert, Charles Killian and Cristina Nita-Rotaru

Department of Computer Science

Purdue University

{hyojlee, jcseiber, ckillian, crisn}@purdue.edu

Abstract

In this paper, we propose Gatling, a framework that au-

tomatically finds performance attacks caused by insider at-

tackers in large-scale message-passing distributed systems.

In performance attacks, malicious nodes deviate from the

protocol when sending or creating messages, with the goal

of degrading system performance. We identify a represen-

tative set of basic malicious message delivery and lying ac-

tions and design a greedy search algorithm that finds effec-

tive attacks consisting of a subset of these actions. While

lying malicious actions are protocol dependent, requiring

the format and meaning of messages, Gatling captures them

without needing to modify the target system, by using a type-

aware compiler. We have implemented and used Gatling on

six systems, a virtual coordinate system, a distributed hash

table lookup service and application, two multicast systems

and one file sharing application, and found a total of 41

attacks, ranging from a few minutes to a few hours to find

each attack.

1 Introduction

Building robust, high-performance, large scale dis-

tributed systems is a challenging task given the complex-

ity of designing, testing, and debugging such systems.

Programming environments [27, 33, 35, 36, 38], execution

logging and replay tools [20, 39], test case generation

tools [13], and a variety of testbeds [4, 7, 44], emula-

tions [1, 2, 52], and simulation platforms [3, 5, 6] were cre-

ated to ease code development and testing.

Given the difficulty of finding bugs manually, several

techniques have been applied to find them automatically.

Model checking using static analysis [25,34] has been used

to verify that the design of a system is correct. Given the

model of the system, this approach proves that some invari-

ants hold for every reachable state in the system. Model

checking has limited applicability for complex designs due

to the intractable number of states that must be checked.

Checking the design is not a guarantee that the actual code

is free from bugs because models do not capture all the in-

tricacies of real implementations and additional bugs can be

introduced during implementation.

Finding bugs in distributed systems implementation has

been done with the use of symbolic execution, fault injec-

tion, and model checking. Symbolic execution [13] has

been used to generate test cases that are capable of cover-

ing many control flow branches. This technique also suffers

from a state-space explosion when applied to more com-

plex implementations. Fault injection [24] has been used

to discover unknown bugs by testing fault handling code

that would not normally be tested. Fault injection is often

limited in scope because it is difficult to apply to an imple-

mentation in a systematic manner. Finally, model checking

using a systematic state-space exploration [25,26,41,56,57]

has been used on system implementations to find bugs

that violate specified invariants. To mitigate the effect of

state-space explosion, the state exploration uses an itera-

tive search, bounding some aspect of the execution. These

heuristics do not prove bug absence, but rather help pinpoint

where bugs do exist.

More recently, debugging techniques have been applied

to automatically find attacks. Many works have been fo-

cused on finding or preventing vulnerabilities that either

cause the victim to crash or allow the attacker to gain es-

calated privileges [16, 22, 37, 43, 54]. Dynamic taint anal-

ysis [37, 43, 54] has been used to protect implementations

from well-defined attacks, such as buffer overflow attacks.

Taint analysis is limited in that it is a detection mechanism,

not a search mechanism. Fault injection with an iterative

parameter space search [11] has also been used to find vul-

nerabilities in distributed systems. However, this approach

requires a costly parameter optimization limiting the size of

the system it can be used to analyze.

Most distributed systems are designed to meet

application-prescribed metrics that ensure availability

and high-performance. However, attacks can significantly

degrade performance, limiting the practical utility of these

systems in adversarial environments. In particular, com-

promised participants can manipulate protocol semantics

through attacks that target the messages exchanged with

honest nodes. To date, finding attacks against performance

has been primarily a manual task due to both the difficulty

of expressing performance as an invariant in the system and

the state-space explosion that occurs as attackers are more

realistically modeled. The only works we are aware of

that focused on automatically finding performance attacks

are the works in [50] which considers lying in headers of

packets in two-party protocols, and [32] which assumes the

user supplies a suspect line of code, indicating that it should

not be executed many times. The method in [50] explores

all states and does not scale for a distributed system. The

method used in [32] has better scalability by combining

static with runtime testing, but focuses only on attacks that

exploit control flow and where attackers know the state of

the benign nodes.

In this work we focus on how to automatically detect

performance attacks on implementations of large-scale mes-

sage passing distributed systems. We consider insider at-

tacks that have a global impact on system performance and

which are conducted through message manipulation. We

focus on these attacks given they have received limited at-

tention, they can cause significant disruption on the system,

and they are applicable to many distributed systems. Our

goal is to provide a list of effective attacks to the user in

a timely manner, requiring the user to provide only one or

several metrics measuring system progress. Our contribu-

tions are:

• We propose Gatling, a framework that combines a

model checker and simulator environment with a fault

injector to find performance attacks in event-based

message passing distributed systems. We identify ba-

sic malicious message delivery and message lying ac-

tions that insider attackers can use to create attacks.

We design an attack discovery algorithm that uses a

greedy search approach based on an impact score that

measures attack effectiveness. Gatling works for a

large class of distributed systems and does not require

the user to write a malicious implementation. While

Gatling does not fix attacks nor prove their absence, it

provides the user with protocol-level semantic mean-

ing about the discovered attacks.

• We provide a concrete implementation of Gatling for

the Mace [27] toolkit. Mace provides a compiler and

runtime environment for building high performance,

modular distributed systems. Our changes include:

(1) adding an interposition layer between Mace ser-

vices and the networking services to implement ma-

licious message delivery actions, (2) modifying the

Mace compiler to include a message serialization code

injector to implement message lying actions, and (3)

modifying the simulator to implement our attack dis-

covery algorithm. The user provides an implementa-

tion of the distributed system in Mace and specifies an

impact score in a simulation driver that allows the sys-

tem to run in the simulator.

• We demonstrate with a case study how to use Gatling

to find attacks on a real system implementation, the

BulletPrime peer-to-peer file distribution system. Our

goal is not to criticize BulletPrime’s design, but to ex-

plore its behavior in an adversarial environment. While

some of the attacks found on BulletPrime were ex-

pected, such as delaying or dropping data messages,

others were more surprising. Specifically, Bullet-

Prime’s reliance on services that provide improved

download times led to a number of vulnerabilities.

• We further validate Gatling by applying it to five addi-

tional systems having different application goals and

designs: the Vivaldi [19] virtual coordinate system,

the Chord lookup service and distributed hash table

(DHT) [51], and two multicast systems: ESM [17] and

Scribe [49]. Gatling found a total of 41 performance

attacks across the systems tested, 17 attacks based on

message lying actions and 24 attacks based on mes-

sage delivery actions. Finding each attack took a few

minutes to a few hours.

Roadmap. Sections 2 and 3 describe the design and

implementation of Gatling. Section 4 provides an exam-

ple of how to use Gatling to find attacks in a well-known

distributed file sharing system, BulletPrime [28]. Section 5

presents results on using our tool on five representative dis-

tributed systems: Vivaldi [19], Chord, DHT [51], ESM [17],

and Scribe [49]. Section 6 presents related work and Sec-

tion 7 concludes our paper.

2 Gatling Design

The design goal of Gatling is to automatically find in-

sider attacks in distributed systems. We focus on attacks

against system performance where compromised partici-

pants running malicious implementations try to degrade the

overall performance of the system through their actions.

Such attacks require that the system has a performance met-

ric, that when evaluated gives an indication of the progress

it has in completing its goals. For example, for an overlay

multicast system throughput is an indication of the perfor-

mance of the system. Specifically, we define:

Performance attack A set of actions that deviate from the

protocol, taken by a group of malicious nodes, that re-

sults in performance that is worse than in benign sce-

narios by some ∆.

Next, we describe the system model we consider, iden-

tify malicious actions which represent building blocks for

an attack, and describe our algorithm that searches and dis-

covers attacks consisting of multiple malicious actions.

2.1 Design Overview

Model checking event-driven state machines. Many

distributed systems [27, 29–31, 36, 40, 46–48, 55] are de-

signed following event-based state machines that commu-

nicate through messages. Also several other systems use

RPCs [35, 51], continuations [33], or data flow [38], which

are compatible with this approach. Thus, we focus on

distributed systems implementations that are conceptually

message passing event-driven state machines, and we will

refer to this as the message-event model.

A well-known approach to find bugs in distributed sys-

tems is to use model checking which allows a user to ex-

plore the set of all possible behaviors. This approach, when

applied to systems implementations, results in a systematic

state-space exploration through carefully controlled execu-

tion to determine all reachable system states. The state of

a distributed system is conceptually the combination of the

state maintained at each node, in conjunction with the state

of the network connecting distributed nodes.

The message-event model provides opportunities for re-

ducing the state space. First, it avoids the complexity of

simulating networking and routing layers by abstracting the

network to be a basic service which either provides FIFO

reliable message passing (such as TCP), or best-effort mes-

sage passing (such as UDP). As a result, the network state is

given by the set of messages in-flight, and the corresponding

service guarantees for each message. Second, it limits the

complexity model of concurrency by maintaining the event

queue, and systematically executing each possible event se-

quence. Events may be network events (e.g. delivery of a

message), scheduled events (e.g. expiration of a timer), or

application events (e.g. user request for an action).

Several prior model checker designs [21,26,41,42] have

explored the capabilities of event-driven state machines to

find bugs in systems implementations. Each of these de-

signs provide mechanisms to explore complex interactions

between nodes which would normally be infeasible for a

user to exhaustively explore. However, due to the expo-

nential state space explosion as the search depth increases,

these systems settle for heuristically exploring the state

space and locating correctness bugs only in an execution

with benign participants.

Our approach. Finding performance problems is very

challenging in an exhaustive approach because often these

bugs are the result of specific timings, for which finding

would require searching on the space of possible timings

of events, a far less practical approach. On the other hand,

simulating performance of a system is straightforward - as

the simulator keeps an ordered list of outstanding events, in-

cluding the time at which they are scheduled to occur. Each

time an event executes, the clock of that node advances, al-

lowing the system to conduct a time-based event driven sim-

ulation. However, it does not systematically explore all the

possible executions.

Our design, Gatling, overcomes these limitations by us-

ing a hybrid approach. Specifically, Gatling uses a time-

based simulation model to provide support for detecting

performance attacks, and integrates a search algorithm into

the time-based simulation model to find in a practical way

such attacks. The resulting architecture is illustrated in

Fig. 1. Gatling constructs a set of nodes, with a fraction

of them flagged as being malicious. Gatling maintains an

event queue sorted by event start time, and simulates the

event queue normally. However, when an event is exe-

cuting on a node selected to be malicious, Gatling uses a

model-checking exploration approach to test the set of dif-

ferent possibilities for what new events are scheduled by

the malicious node; in particular, the set of messages sent

by the malicious node. Note, Gatling does not require the

developer to provide a malicious implementation. Instead,

Gatling requires type-awareness of the messaging protocol,

and applies the basic actions described in the next section

to the outputs of a non-malicious node implementation. To

measure the impact of the malicious action, Gatling exe-

cutes an impact score function, considering only the nodes

not flagged as malicious.

2.2 Malicious Actions

An insider attacker can globally influence the perfor-

mance of the system by misleading other honest participants

through exchanged messages. We classify all malicious ac-

tions on messages into two categories, message delivery ac-

tions and message lying actions. Message delivery actions

refer to how a message is sent, while message lying actions

refer to what a message contains. The list we present is not

an exhaustive list and can be easily extended by adding ad-

ditional delivery or lying strategies. Below we describe the

specific malicious actions we consider.

Message delivery actions. Performing message deliv-

ery actions does not require knowledge of the messaging

protocol, because the actions are being applied to where

and when the message is delivered, rather than modifying

the message contents. We define the following types of ma-

licious message delivery actions.

• Dropping: A malicious node drops a message instead

of sending it to its intended destination.

• Delaying: A malicious node does not immediately

send a message and injects a delay.

Simulator

Simulator invokes

event handlers

Messages generated and

result of impact score E
v
en
t
Q
u
eu
e

n1 n
2 n3 n4

Figure 1. Gatling simulator model

• Diverting: A malicious node does not send the mes-

sage to its destination as intended by the protocol, and

instead enqueues the message for delivery to a node

other than the original destination. The destination is

randomly chosen from the set of nodes in the system.

• Duplicating: A malicious node sends a message twice

instead of sending only one copy, applying delay to

the second copy. We consider two versions of message

duplication. One is to send the duplicated message to

the original destination again, and the other is to divert

the duplicated message to another random destination

in the system.

Message lying actions. We define message lying ac-

tions as actions where malicious participants modify the

content of the message they are sending to another partici-

pant. An effective lying action involves intelligently modi-

fying fields of messages to contain contents likely to cause

different behaviors, which is more sophisticated than ran-

dom bit-flipping. Gatling makes data-type-specific changes

to message contents by being dependent on the messaging

protocol. As the number of possible values that the mes-

sage field could contain may be extremely large, we define

a few general strategies for field types that stress the system

in different ways based on general experience on the kind

of error cases or hand-crafted attacks observed in practice

previously. We provide the following strategies for numeric

types.

• Min or Max: A malicious node can change the value

to be the minimum or maximum value for the type.

• Zero: For signed types, a malicious node can addition-

ally change the value of the field to be the number 0.

• Scaling: A malicious node could increase or decrease

the numeric value by a percentage.

• Spanning: A malicious node can select specific val-

ues from a set which spans the range of the data

type. Spanning values are important because protocols

sometimes use only a subset of legal values, apply san-

ity checks to inputs, or fail to apply sanity checks when

necessary to avoid e.g. overflow/underflow. Spanning

values can be chosen assisted by static analysis or de-

veloper insight; we find that a range of values orders of

magnitude apart are sufficient to find attacks in many

systems.

• Random: A malicious node can select a random value

from the range of the type.

In addition to the above choices, boolean values have an

additional option: toggling the value between true and false.

The list can be easily extended, for example using a “com-

plement” strategy for integral values (a generalization of the

boolean flipping).

Node identifiers, such as an IPv4 address or a hash key,

are integral aspects of distributed systems. Thus, we treat

them as a native type and allow lying on them as well. Ma-

licious nodes can lie about node identifiers, where lying val-

ues are selected randomly from the identifiers of all nodes,

malicious nodes, or benign nodes.

We also have special handling for non-numeric types.

For simplicity, collections (e.g. list, set, map, etc.) are

treated as applying one of the above strategies to all of the

elements within the collection. Users can further extend

Gatling as needed to provide lying strategies for additional

types, as we have done for node identifiers.

2.3 Discovering Attacks

A naive approach to discovering attacks is executing all

possible sequences of actions (malicious and benign) in the

system and then finding the sequences that cause perfor-

mance to degrade below the benign case scenario. However,

this approach becomes intractable because of the size of the

search space considering the number of possible sequences

of actions. Specifically, at every time step, any benign event

could execute based on timings, but additionally, any mali-

cious node could generate any message defined by the sys-

tem, performing any combination of malicious actions on

it and send it to any node. Considering all possible attack

values for a message containing a single 32-bit integer en-

tails an exploration branching at the impractical rate of at

least 232. Benign state-space exploration is shielded from

this problem by the fact that while the message field could

theoretically contain any of the 232 values, at any point in

time only a small subset of those values would be sent by a

non-malicious node.

Attack properties. As a first step toward practical au-

tomated search of attacks, we focus on a class of perfor-

mance attacks that have several properties that reduce the

state space exploration needed to discover them:

1) Single-behavior: We define a single-behavior attack

as a list which describes, for each type of message, what

malicious or benign action all malicious nodes will take

whenever sending a message of that type. Intuitively, this

attack definition is based on the principle that in some cases,

past success is an indication of future success. Thus, ev-

ery time a malicious node must decide how to behave when

sending a message, it can choose the same action that suc-

ceeded before, and expect success again. This allows us to

reduce the search space of malicious actions substantially,

because once we have discovered a successful malicious ac-

tion for a message type, we no longer explore other possi-

bilities for the same type of message sent by any malicious

node.

2) Easily reproducible: We assume attacks that are not

largely dependent on the specific state of the distributed

system and thus can be easily reproduced. Intuitively, the

attacks we discover are those to which the system is gener-

ally vulnerable, rather than having only a small vulnerabil-

ity window. Easily reproducible attacks allow us to safely

ignore the particular sequence of benign actions that occur

alongside the malicious actions and focus our search solely

on malicious actions.

3) Near-immediate measurable effects: We consider at-

tacks that do not have a large time-lag between when they

occur and when the performance of the system is actually

affected. Intuitively, focusing on near-immediate effective

attacks will be ideal for finding direct attacks on system per-

formance, but it will not allow Gatling to discover stealth

attacks, where the goal is to obtain control without affect-

ing the performance of the system under attack. The near-

immediate impact on the system performance of the attacks

creates the opportunity to find attacks by only executing a

smaller sequence of actions for a relatively short window of

time. We decide if a malicious action is a possible attack

by using an impact score Is function that is based on a per-

formance metric of the system and is provided by the user.

We require two properties of the impact score. One, that

it can be evaluated at any time during the execution. Two,

that when comparing scores, a larger score implies that the

performance is worse.

4) Most effective minimal combination: While Gatling

will discover single-behavior attacks that contain basic be-

haviors for many message types, some behaviors will have

only a nominal impact on the performance of the system,

and other behaviors may be quite effective as stand-alone at-

tacks. To allow the developer to discern these cases, Gatling

automatically determines the relative contribution of each

attack action to the overall performance degradation, allow-

ing the developer to further reduce the attack to their mini-

mal portions that have the most significant impact.

Gatling builds up an attack by finding several instances

where applying a malicious action on a message results in

an increase in the impact score, then building up the maxi-

mally effective single-behavior attack across message types.

Once it has found the maximally effective single-behavior

attack, it determines the contribution of each malicious ac-

tion of the attack, and then can be repeated to find additional

attacks.

Greedy action selection procedure. To find an instance

where a single malicious action results in an increase in the

impact score, we use the procedure depicted in Fig. 2. The

main idea is to execute the program normally until a ma-

licious node attempts to send a message. At this point we

branch the execution and run on each branch the malicious

version of the sending of the message (try all malicious ac-

tions described in Section 2.2) and then continue running

the branch for a window of time tw. By measuring the im-

pact score at the end of each window of execution, we can

determine whether any of the malicious actions degraded

the performance relative to the baseline without a malicious

action. Since we measure the impact of only a single mali-

cious action instance, we consider any increase in the im-

pact score to suggest that the particular malicious action

could be a part of a successful attack. We greedily select

the strongest such malicious action and update a tally for

that message type and malicious action.

Building up the single-behavior attack. The greedy ac-

tion selection procedure finds the most effective malicious

action for a single instance of sending a message. We report

a malicious action as part of an attack once it has been se-

lected in na different instances for the same message type.

The na threshold allows us to avoid cases in which the im-

pact was a random variation, and provides a balance be-

tween attacks which are more frequently successful but with

a lower impact, and attacks which are less frequently suc-

cessful but with a higher impact.

If we only wished to find attacks incorporating a single

message type at a time, we could at this point simply iterate

through the set of message types, and perform the greedy

procedure each time that message type is sent. While suc-

(1) Previous

execution path

(2) A malicious node sends a

message of type m1

(3) B = m(Ø),

execute protocol for

tw seconds

(6) Si = evaluate (Is, Bi)

and update the tally for

malicious action ai

(5) For every malicious

action ai
Bi = m(ai), execute

protocol for tw seconds,

(4) Find the benign

baseline

S = evaluate(Is, B)

…

Figure 2. Greedy action selection procedure for

one instance of sending message type m1

Malicious action a
2
 is

chosen n
a
 times for

message type m
1

Malicious action a
3
 is

chosen n
a
 times for

message type m
2

Figure 3. Greedy procedure applied for several

instances of message types m1 and m2

cessful in finding single-behavior, single-message attacks,

this approach would not find dependent attacks, where the

success of an attack is conditional on a prior malicious ac-

tion choice. Consider for example the case of a malicious

node which lies to increase the number of children it has in

a tree overlay. If the malicious node does not also perform

an action on application data, then this kind of attack would

not be discovered using single-message attacks.

To discover dependent attacks, Gatling simultaneously

searches across all message types, allowing it to find com-

bination attacks, where individual malicious actions work

together to build stronger overall attacks. By applying

the greedy action selection procedure to the instances as

they are encountered, rather than iterating through message

types, our algorithm can locate amplifying stealth attacks

without prior knowledge of the order in which malicious

actions must occur. Specifically, the system is simulated

normally until a malicious node attempts to send a message

of a type for which an attack has not been identified. The

greedy selection procedure is used to determine the best ac-

tion to take for this instance, and a tally is kept of the times

each malicious action was chosen. The number of times

no malicious action is selected in a row is also tallied, as a

means to halt the search. We show in Fig. 3 the greedy pro-

cedure being applied to several instances for two different

types of messages.

Once the search halts, the contribution of each of the ac-

tions is computed, and if the attack impact is greater than

some ∆, the user is notified, and the algorithm repeats but

does not search on previously used malicious actions. Com-

puting the action contribution involves running the system

again for an extended period both with and without the de-

termined attack. This allows Gatling to verify that the at-

tack satisfies the requirement that its impact is greater than

∆. Gatling then determines the relative contribution of each

component by running additional tests, subtracting out the

least effective contributor until it is no longer an attack.

This computation and sorting procedure is important for

variables:

vector Attack : Learned behaviors for most effective

attack for each message type

map AttackAndContribution : Attack listing relative

contribution of actions

matrix AttackTally : Count, for each message type, the

times the attack is determined most effective

IneffectiveTally : The number of times no malicious

action is chosen consecutively

while IneffectiveTally < HaltingThreshold do
Continue simulating system until malicious node sends

a message m;

msgType ← typeof (m);

MostEffectiveAction ← Attack [msgType];
if MostEffectiveAction = ø then

Find behavior

MostEffectiveAction ∈ {ø, A(msgType)}
according to selection procedure (Fig. 2)

if MostEffectiveAction 6= ø then
AttackTally [msgType][MostEffectiveAction]++;

IneffectiveTally ← 0;

if

AttackTally [msgType][MostEffectiveAction] =
na then

Attack [msgType]←
MostEffectiveAction ;

end

else

IneffectiveTally++;

end

end

execute behavior m(MostEffectiveAction);

end

AttackAndContribution , δ =

computeActionContribution(Attack);

if δ > ∆ then

output AttackAndContribution ;

Repeat, ignoring prior Attack actions

end

Algorithm 1: Attack discovery algorithm

three reasons. First, as a greedy approach, it is possible that

Gatling finds a local maximum, but that the order in which

malicious actions were selected diminished the overall im-

pact (e.g. an attack may later be found which by itself is

more potent than when combined with the earlier attack).

Second, some malicious actions may depend on other ma-

licious actions for success, this search will order them ac-

cordingly. Third, some malicious actions may have only a

minor impact, or a strong enough impact to be used in iso-

lation, this post processing can provide this information. In

fact, we often find multiple attacks from a single run of the

Gatling search algorithm. We present our algorithm in de-

tails in Algorithm 1.

Impact score and parameter selection. The user must

specify an impact score. As stated, the impact score must

be able to be executed at any time, rather than only at the

completion of an execution, and must let greater values in-

dicate a greater impact. Consider, for example, an impact

score for a file download system. Using total download time

as an impact score would satisfy the requirement that big-

ger numbers indicate more impact (slower download times),

but fails the requirement that it can be evaluated at any time

(it can only be evaluated once the file is downloaded). The

current average goodput of the file download satisfies the

requirement that it can be evaluated at any time, but in the

case of goodput, bigger numbers actually mean less impact.

An alternative might include an inversion of the goodput, or

instead it could simply be a measure of how much of the file

is left to download.

Gatling requires the setup of two parameters, tw and na.

Larger values of tw increase the search time while smaller

values may not capture the effects of the malicious action

on performance. In the case of na, its setup should take into

account the normal variability of performance in the system

that is evaluated.

3 Implementation

We created a concrete implementation of Gatling for

the Mace [27] toolkit. Mace is publicly available and was

designed for building large-scale, high-performance dis-

tributed systems implementations based on C++. It consists

of a source-to-source compiler, a set of runtime libraries,

as well as a model checker and time-based simulator. The

release also includes several distributed systems implemen-

tations. The Mace compiler enforces the message-event

model and generates implementations of message serial-

ization, both useful for Gatling. Specifically, the message

event-model allows us to influence message delivery, while

message serialization allows us to implement message ly-

ing without modifying the target system code, but just by

defining specific lying actions for different types.

To implement Gatling we made the following changes to

Mace. We added an interposition layer between Mace ser-

vices and the networking services, we modified the Mace

compiler to include a message serialization code injector,

we added supporting serialization code in the Mace runtime

library, and we modified the simulator to implement our at-

tack discovery algorithm. The user provides an implemen-

tation of the distributed system in Mace and specifies an

impact score in a simulation driver that allows the system to

run in the simulator. The Mace compiler will generate the

message serialization injected code in the user code.

This modular design allows code reuse and allows

Gatling to focus attacks on modules independently. The

interposition layer implements malicious message delivery

actions. When a node requests sending a message, before

providing the message to the network messaging services,

Gatling consults the attack discovery algorithm to decide

whether to take any message delivery action. Message drop-

ping, delaying, diverting, and duplicating are provided by

either not making the call to the messaging services, queue-

ing the message for sending 0.5 to 2 seconds later, calling

into the messaging services multiple times, or passing a dif-

ferent destination to the messaging services. To support di-

verting messages, the simulator provides lists of malicious

and benign node identifiers.

The injected serialization code component implements

malicious message lying actions. The injected code simi-

larly consults the attack discovery algorithm to determine

if a lying action should be taken. As we are searching for

single-behavior attacks, the simulator directs only a single

field in a message to be lied about during one branch of the

greedy selection procedure. If any lying does occur, when

serializing the appropriate field of the message a simula-

tor chosen value is used instead of the one provided. The

user-written code is not modified, nor are any user-visible

variables. Simulator-provided lists are similarly used to lie

about node identifiers.

Fig. 4 shows the Mace+Gatling architectural design

when testing a layered DHT application. The parts noted

with G represent the Gatling additions and modifications.

The user provides each DHT component layer in the Mace

language (shown at left): a simulation driver (SimDriver),

containing the impact score function; the storage layer

(DHT); a recursive overlay routing layer (ROR); and the

Chord lookup service layer. The Mace compiler then trans-

lates each layer into C++ code, injecting message lying ac-

tions into each layer tailored to the messages that layer de-

fines. Standard C++ tools then compile and link the gen-

erated code with the Gatling interposition layer, Mace run-

time library, simulated TCP and UDP messaging services,

and the Mace simulator application. SimDriver allows the

application to run in the simulator; to deploy the DHT ap-

plication, the C++ code need only be re-linked with the real

TCP and UDP messaging services, and a C++ user applica-

SimDriver

M
ac
e
R
u
n
ti
m
e

L
ib
ra
ry

SimUDP SimTCP

Chord

DHT

ROR

G

Mace Toolkit

G Gatling Interposition Layer

User Supplied Code

Gatling Serialization Code Injector
G

G

S
im
u
la
to
r

G
G Gatling Attack Discovery Algorithm

G

SimDriver

Chord

DHT

ROR

Mace

Source-

to-Source

Compiler

I I

G

G Gatling Injected Serialization Code

G

I User Supplied Impact Score

G
G

Gatling Serialization Library Modification

Figure 4. Gatling implementation for one node: DHT example

tion in lieu of SimDriver.

4 Case Study: BulletPrime

In this section we demonstrate how to use Gatling to find

attacks on a real system implementation. For our case study

we apply Gatling to an implementation of the BulletPrime

peer-to-peer file distribution protocol [28, 31] that we re-

ceived from the authors of the system. We selected Bul-

letPrime as a case study because it uses a more complex

design involving several services. While we illustrate how

a developer might use Gatling to find attacks arising from

a malicious or simply misconfigured node, our intention is

not to criticize BulletPrime’s design. Instead we explore its

behavior in an adversarial environment that many practical

uses might require.

BulletPrime is a file distribution system similar to Bit-

Torrent [18]. However, where BitTorrent focuses on lo-

cal optimizations that greedily benefit each node individu-

ally, BulletPrime uses a more collaborative set of algorithms

that are geared towards global optimization. For example,

while both BitTorrent and BulletPrime implement mesh-

based strategies for peering, and use rarity as a mechanism

for increasing block diversity, BulletPrime learns about new

peers by using a gossip protocol that guarantees each node

receives a uniformly random distribution of peers and their

current download status. BulletPrime also searches inde-

pendently for peers that can provide maximal download or

upload bandwidth, as opposed to BitTorrent’s symmetric

block exchange algorithm.

The BulletPrime component design is illustrated in

Fig. 5. The BulletPrime service manages the state of the

file download, implements sending Diff messages to con-

nected peers with information of newly available blocks of

the file; and tracks the performance of the peers. It utilizes

the Distributor service to manage the queued Data messages

to each peer, keeping the network buffers full without send-

ing excess data. BulletPrime uses the Mesh service to learn

of new peers and maintain active connection to upload and

download peers. The Mesh service sends Join and JoinRe-

ply messages, and uses the RanSub [30] service to discover

potential peers. RanSub, meanwhile, uses an overlay tree

to perform a specialized type of aggregation, proceeding in

periodic phases that Collect candidate sets of information to

the root, and then Distribute uniformly randomized candi-

date sets to all peers.

To run Gatling on BulletPrime, we first had to prepare

it to run in the simulator and implement an impact score.

We wrote an 85 line simulated application driver that pro-

vides the basic functionality of having the source node dis-

tribute data to others and having the client nodes download

and participate in the file-sharing protocol. We chose for

the impact score a performance metric which captures the

progress of node downloads; namely the number of blocks

of the file downloaded. To satisfy the requirement that a

higher score indicates more attack impact, we instead use

the total number of blocks remaining before completion.

We had to modify BulletPrime slightly, adding the 8-line

impact score function, because it did not expose enough

information to the simulated driver to compute the score.

We simulated BulletPrime with 100 nodes disseminating a

50MB file. We use a small 5 sec tw as nodes download

blocks quickly, starting nearly at the beginning of the simu-

lation. Due to some variable system performance, we set na

to 5, allowing Gatling to explore a few instances per mes-

sage type. We set ∆ to be zero for all our experiments to

find as many attacks as possible.

Assertions and segmentation faults: As we began to use

Gatling on the BulletPrime implementation, we encoun-

tered nodes crashing due to the fact that BulletPrime as-

sumes peers to act correctly. For example, we found nodes

crashing due to assertions and segmentation faults when re-

ceiving a malicious FileInfo message. This message defines

the file and block size and is created by the source. In-

termediate nodes that forward the message can lie about its

contents when passing it along. We found another crash sce-

nario when a malicious node requests a non-existing block,

causing the recipient to crash by assertion attempting to re-

trieve the block. We implemented checks in the code to

prevent crashing and we disabled any attack on FileInfo for

Mesh

BulletPrime

Distributor

RanSub

OverlayTree

TCP

Figure 5. BulletPrime design

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250

#
 o

f
B

lo
ck

s
R

em
ai

n
in

g

Simulation Time (s)

No Attack
Lie Data

Delay Data
Drop Data
Delay Diff

Dup Join

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250

#
 o

f
B

lo
ck

s
R

em
ai

n
in

g

Simulation Time (s)

No Attack
Delay JoinAccept
Divert JoinReject

Dup Collect
Drop Dist

Drop Dist + Dup Collect

Figure 6. Remaining blocks for the attacks found on BulletPrime

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120

#
 o

f
B

lo
ck

s
R

em
ai

n
in

g

Time (s)

No Attack
Lie Data

Delay Data
Drop Data
Delay Diff

Dup Join

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120

#
 o

f
B

lo
ck

s
R

em
ai

n
in

g

Time (s)

No Attack
Delay JoinAccept
Divert JoinReject

Drop Dist
Dup Collect

Drop Dist + Dup Collect

Figure 7. Remaining blocks for the attacks found on BulletPrime on PlanetLab

further Gatling simulations.

Fig. 6 shows the performance of the system under the

attacks we discover. To give a baseline comparison, we also

show the benign scenario when there is no attack. We have

found attacks against four of the five services.

Distributor service: We found several attacks on Data

messages. Lying on the id field of a Data message degrades

the performance significantly. We also found dropping or

delaying Data causes performance degradation.

BulletPrime service: Furthermore, Gatling found a de-

laying attack on the Diff message which causes a perfor-

mance penalty, since peers cannot request the block until

receiving the Diff message.

Mesh service: Gatling also reported an attack vector that

is a combination of 1) duplicate Join message and divert

the second copy to a random destination, 2) delay JoinAc-

cepted message for 0.5s, and 3) divert JoinRejected mes-

sage to a random destination. Gatling computed the most

effective minimal combination found that all actions are ef-

fective even when they are used alone, however the com-

bination of the three was the most effective. We show the

individual attacks in Fig. 6.

RanSub service: Gatling found an attack which was a

combination of dropping Distribute messages that are dis-

seminated from the root toward the leaves over the control

tree and also duplicating Collect messages that are collected

from leaves towards the root. Gatling found that both ac-

tions alone degrade performance and furthermore dropping

Distribute messages causes nodes to never be able to down-

load a number of blocks.

While some of the attacks found on BulletPrime were ex-

pected, such as delaying or dropping data messages, less ob-

vious was the impact of the attacks on the Mesh and RanSub

services. Although BulletPrime gains nice mathematical

properties by using RanSub, it seems that a BulletPrime im-

plementation robust to insider attacks may be better served

by a gossip service re-design. As an extra benefit, Gatling

also identified several cases where insiders can crash system

nodes due to a lack of input validity checking.

To validate that the attacks are not a result of lack of

fidelity in the simulator we ran real-world experiments with

the discovered attacks on the PlanetLab testbed, with the

same number of nodes and file size. We confirmed that all

attacks have a similar effect as in the simulator and we show

graphs in Fig. 7.

5 Results

We further validate the Gatling design by applying it to

five systems with different application goals and designs.

Specifically, we evaluate the Vivaldi [19] virtual coordinate

system, the Chord lookup service and distributed hash ta-

ble (DHT) [51], and two multicast systems: ESM [17] and

Scribe [49]. Chord, DHT, and Scribe were previously im-

plemented for Mace; we implemented Vivaldi and ESM ac-

cording to published papers. We set the number of mali-

cious nodes to be 20% and we select malicious nodes ran-

domly.

Gatling found performance attacks in each system tested,

taking from a few minutes to a few hours to find each attack.

Gatling was run on a 2GHz Intel Xeon CPU with 16GB of

RAM. Gatling processes are CPU bound, so parallelizing

the search could further reduce the search time. We discov-

ered 41 attacks in total, however due to lack of space we

only present in detail a subset of attacks that illustrate the

capabilities of Gatling. In Table 1, we summarize all the

attacks.

5.1 Vivaldi

System description. Vivaldi [19] is a distributed sys-

tem that provides an accurate and efficient service that al-

lows hosts on the Internet to estimate the latency to arbitrary

hosts without actively monitoring all of the nodes in the net-

work. The system maps these latencies to a set of coordi-

nates based on a distance function. Each node measures the

round trip time (RTT) to a set of neighbor nodes, and then

determines the distance between any two nodes. The main

protocol consists of Probe messages sent by a node to mea-

sure their neighbors RTTs and then a Response message

from these neighbors is sent back with their current coordi-

nates and local error value.

Impact score. We use the prediction error [19]

which describes how well the system predicts the ac-

tual RTT between nodes. Prediction error is defined as

median(|RTT
i,j
Est − RTT

i,j
Act|), where RTT

i,j
Est is node i’s

estimated RTT for node j given by the resulting coordinates

and RTT
i,j
Act is the most recently measured RTT.

Experimental setup. We simulated 400 nodes and ran-

domly assign RTT values for each node from the KING

data set [23] which contains pair-wise RTT measurements

of 1740 nodes on the Internet. Malicious nodes start their

attacks from the beginning of the simulation. We set tw to

be 5 sec and na to be 5.

Attacks found using prediction error. We found five

attacks using the prediction error impact score. In Fig. 8 we

show how each attack affects Vivaldi prediction error over

time. The Overflow attack is omitted because the predic-

tion error was NaN (not a number). As a baseline we also

present Vivaldi when there are no attacks, which we find

converges to a stable set of coordinates with 17 ms of error.

Overflow. We first found two variations of an attack

where malicious nodes lie and report DBL MAX for their

coordinate and their local error, respectively. In both cases

the result is that honest nodes compute their coordinates as

NaN. We implemented safeguards to address the overflow.

Inflation, oscillation, deflation. We then found three pre-

viously reported attacks against Vivaldi [58]. First, known

as inflation is a lying attack where malicious nodes lie about

their coordinates, providing larger than normal values from

the spanning set without causing overflow. Second, known

as deflation attack, occurs when where malicious nodes

drop outgoing probes, thereby never updating their own co-

ordinates. The third, known as the oscillation attack, occurs

where attackers set their coordinates to random values. This

is a very effective attack in which nodes cannot converge

and the prediction error remains high, about 250,000 ms.

5.2 Chord

System description. Chord [51] is an overlay routing

protocol that provides an efficient lookup service. Each

node has an identifier that is based on consistent hashing,

and is responsible for a range of keys that make up that

space. Nodes in Chord construct a ring and maintain a set

of pointers to adjacent nodes, called predecessors and suc-

cessors. When a node i wants to join the ring, it will ask

a node already in the ring to identify the correct predeces-

sor and successor for i. i then contacts these nodes and

tells them to update their information. Later, a stabilization

procedure will update global information to make sure i is

known by others in the ring.

Impact score. We use an impact score which measures

the progress of forming a correct ring. Since Chord cor-

rectness depends on being able to reach every node by fol-

lowing the successor reference around the ring, we use as

the impact score the average number of nodes each node

can reach by following each node’s successor. For a benign

case, the impact score should be equal to the total number

of nodes.

Experimental setup. We simulate Chord with 100

nodes. Malicious actions start immediately as the goal of

Chord is to construct a properly functioning ring and thus

we want to find attacks on that construction process. We set

tw to be 2 sec as ring construction takes only 10 sec in the

benign case and set na to 5.

Attacks found using number of reachable nodes. We

found six attacks against the Chord protocol. In Fig. 9 we

show the effects of the attacks and illustrate the resulting

ring for one attack. As a baseline we verify that when there

is no attack all 100 nodes are able to form a ring in less than

10 sec.

Dropping attacks. We found three attacks where ma-

licious nodes drop responses or do not forward replies to

requests for predecessor and successor information. The

attacks prevent a correct ring from forming. We show in

Fig. 9(a) (Drop Find Pred, Drop Get Pred, and Drop Get

Pred Reply) that when malicious nodes drop predecessor

related messages, less than half the nodes are reachable.

Lying attacks. We found three lying attacks that prevent a

System Metric Attack Attack Known

Used Name Description Attack

BulletPrime

Lie Data Lie data message distribution

Delay Data Delay data message distribution

Drop Data Drop data message distribution

Delay Diff Delay diff information

Number of Dup Join Duplicate join message and send copy to another

Blocks Remaining Delay JoinAccept Delay join accepted

Divert JoinReply Send join rejected to another node

Drop Dist Drop information distributed

Dup Collect Dup information collected

Vivaldi Prediction Error

Overflow Lie about coordinates, setting them to maximum value

Inflation Lie about coordinates, setting them to large values [58]

Oscillation Lie about coordinates, setting them to random values [58]

Delay Delay probe reply messages 2s [58]

Deflation Do not initiate request (Drop probes) [58]

Chord

Drop Find Pred Drop query to find predecessor [45]

Drop Get Pred Drop query to get predecessor and successor [45]

Number of Drop Get Pred Reply Drop the answer to find predecssor [14]

Reachable Nodes Lie Find Pred Lie about key that is in query while forwarding queries [14]

Lie Predecessor Lie about predecessor in response while forwarding [14]

Lie Successor Lie about successor candidates in response while for-

warding

[14]

DHT
Lookup Latency

Drop Msg Drop recursive route messages [14]

Delay Msg Delay recursive route messages

Dup Msg Delay recursive route messages and divert second mes-

sage

[14]

Lie Msg Src Lie about the source of recursive route messages [14]

Lie Msg Dest Lie about the destination of recursive route messages [14]

Lie SetKeyRange Lie about what keys are stored

Lie Reply Key Lie about the key in get reply messages [14]

Lie Reply Found Lie about finding the value in get reply messages [14]

Lie Reply Get Lie about the request wanting the value in get reply

messages

[14]

ESM
Throughput

Drop Data Drop data messages [53]

Dup Parent Duplicate parent reply messages, drop data

Lie Latency Lie about measured latency, duplicate probe messages,

drop data

[53]

Lie Bandwidth Lie about received bandwidth, duplicate probe mes-

sages, drop data

[53]

Latency Drop Parent Drop parent reply messages

Scribe Throughput

Drop Data Drop data messages

Drop Join Drop join messages

Dup Join Duplicate join messages

Dup Data Duplicate data messages, sending second message to

random node

Drop HB Drop heartbeat message

Lie GroupId HB Lie about the group identifier in a heartbeat message

Lie GroupId Join Lie about the group identifier in a join message

Table 1. Attacks found using Gatling: 41 attacks in total (17 lie, 12 drop, 6 delay, 5 duplicate, 1 divert)

 5

 15

 25

 0 300 600 900 1200 1500 1800

Simulation Time (s)

10
2

10
4

10
6

10
8

10
10

10
12

10
14

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s) No Attack

Inflation
Oscillation

Delay
Deflation

Figure 8. Prediction error for

the attacks found on Vivaldi

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60

#
 N

o
d

es
 R

ea
ch

ab
le

Simulation Time (s)

No Attack
Drop Find Pred
Drop Get Pred

Drop Get Pred Reply
Lie Find Pred

Lie Predecessor
Lie Successor

(a) No. of reachable nodes for the attacks

found on Chord

(b) Chord ring under Lie Predeces-

sor attack

Figure 9. Attack impact on Chord

correct ring from forming. The join protocol first locates the

predecessor of a given address i by forwarding a FindPred

message through the Chord overlay. If a malicious node

modifies the address i in the message, it effectively redi-

rects the node joining to an incorrect place in the ring, and

can cause inconsistent state in the nodes, which can lead to

a failure to properly join (Lie Find Pred). We found similar

attacks when a malicious node, during stabilization, queried

as to who are its predecessors and successors, lies and gives

incorrect information (Lie Predecessor, Lie Successor). We

show impact scores of these attacks in Fig. 9(a). The ef-

fect of Lie Predecessor on the ring can be seen visually in

Fig. 9(b), where some nodes failed to join, and others are

confused about their relationships to adjacent nodes.

5.3 Distributed Hash Table

System description. A Distributed Hash Table (DHT)

provides a scalable key-value storage service, where nodes

self-organize so that each node is responsible for storage

of a portion of the key-space. DHTs expose at least two

operations to the user, a put operation that stores a value

based on its key in the overlay and a get operation that re-

trieves key-values that are previously stored. The DHT im-

plementation used is a basic one based on the outline in the

Chord paper [51], structured as the example described in

Figure 4. When an application node requests an operation

(get or put), the storage layer routes the operation to the

responsible node using the recursive routing layer. The re-

cursive overlay routing layer forwards any message to the

destination by forwarding it hop-by-hop along the Chord

overlay links. The DHT also responds to changes in the

responsible address space by sending a SetKeyRange mes-

sage to the new owner to notify it of the keys it should now

manage.

Impact score. For an impact score we use lookup la-

tency, which measures the amount of time passed between

a node issuing a get request on a key and when it actually re-

ceives the corresponding value. Formally, the impact score

is the average time spent on lookups that either completed

in the last tw or elapsed time of pending lookups.

Experimental setup. We simulated 100 nodes and each

one randomly generates 100 key-value pairs which it puts

around the DHT, thus we expect that each node stores one

of its values on every node. Each node then tries to retrieve

2 values every second, and tries to retrieve the whole set of

values 10 times. A request is timed-out if no response is re-

ceived before the next retrieval attempt. Most experiments

allow Chord 10 sec to form the overlay before beginning

to put data. It then uses 50 sec to put data, putting only 2

values every second, before beginning to lookup data. The

remaining lookups take 500 sec. We set tw to be 70 sec,

which allows Gatling to find attacks during the Chord setup

and DHT put phase; na was set to 5.

Attacks found using lookup latency. We show lookup

latency over time for each attack in Fig. 10. As a baseline

we show DHT with no attack and find it converges to 215

ms. We found a total of seven attacks (and several variants)

against DHT and rediscovered some attacks against Chord.

Recursive Overlay Routing Attacks. We first run Gatling

on the recursive message routing layer that routes all DHT

messages. We begin malicious actions after 10 sec, after

the Chord ring converges. We found two attacks where de-

laying or dropping messages causes an increase in lookup

latency (Drop Msg, Delay Msg). We also found a third at-

tack where duplicating the message and diverting the sec-

ond copy to a random node causes network flooding and

congestion due to malicious nodes repeatedly replicating

the same messages (Dup Msg). Finally, we found an at-

tack where in forwarding messages, an attacker provides a

false destination key for the message, causing the next hop

of the message to forward it incorrectly (Lie Msg Dest).

Storage Attacks. We found two lying attacks. The first

one, Lie Reply Key occurs when a node responds to a DHT

get request and it lies about the key it is responding about.

The second one, Lie Set Key Range occurs during the setup

phase of the DHT, considering a scenario where nodes start

putting data into the DHT at the beginning of the simula-

tion, before the Chord ring can stabilize. We found that at-

tackers can subvert the process of load-balancing and cause

many key-value pairs to go missing. This occurred when

an attacker notified another node of what key-value pairs it

had. The attacker lied about what keys it was responsible

for, then when another node takes over a part of that key-

range, he will not know the real values that it should store,

thus losing them.

5.4 ESM

System description. ESM [17] is a multicast system that

efficiently disseminates video streaming data broadcast by

a single source. ESM accomplishes this by building up a

tree, rooted at the source, where each child node forwards

on the data to its own children. Each node maintains a set

of neighbors periodically reporting their throughput and la-

tency. With this information, a node can change parents to

maintain desired performance.

Impact score. We use two scores [17]: throughput and

latency. Throughput as described in [17], is the amount of

data received over the last 5 sec, so the impact score is the

streaming rate minus the throughput, to satisfy requirements

that larger means more impact. Latency is the amount of

time it takes for data to reach each node after being initially

sent by the source, and the impact score is the average la-

tency of data in the last tw.

Experimental setup. We simulated ESM with 100

nodes and one source streaming data at 1 Mbps. As the

goal of ESM is both to form an efficient tree and to stream

data to all participants, we use two different settings for the

time (i.e., 0 sec and 10 sec) when attackers start their ma-

licious actions. Thus we can find attacks both against tree

formation and data delivery. We use a tw of 5 sec and na of

5.

Attacks found using throughput. We found four at-

tacks using throughput as an impact score. Fig. 11(a) shows

the results of how each attack affects ESM where we plot

the throughput over time. For a baseline we also have ESM

in the benign case when there is no attack, delivering aver-

age throughput near 900 kbps.

Drop Data. First we delay malicious actions until 10 sec

into the execution, to allow ESM to build a tree first, and test

the steady state. Despite ESM using an adaptation mecha-

nism to switch to parents that give them good performance,

dropping data was an effective attack.

Dup Parent. We then examined attacks that targeted the

tree formation and adaptation process. We increased the

window size tw to 10 sec, and had attackers immediately

start trying malicious actions once the simulation started.

Gatling again added dropping data as an attack action, then

proceeded to amplify that attack with another malicious

action—duplicating messages that tell a node they are ac-

cepted as a child, sending the duplicate message to a random

node. With this amplification, the throughput is usually be-

low 200 kbps.

Attraction attacks. In these attacks malicious nodes am-

plify dropping streaming data by lying about their perfor-

mance metrics, making them look better than what they ac-

tually are. This causes benign nodes to continually ask ma-

licious nodes to be their parents. The first attraction attack

found is where nodes lie about their latency (Lie Latency),

setting it to zero. This causes nodes to think the attacker

is close to the source. The second attraction attack is when

malicious nodes lie about their bandwidth using scaling (Lie

Bandwidth), increasing it to appear they are receiving much

of the streaming data. To further amplify the attack the at-

tackers also duplicate probe messages, diverting the second

message to random nodes, causing the attackers to be more

well-known in the overlay, thus more likely to be asked to

be a parent. These two attacks are very effective, causing all

nodes to have a very low throughput of less than 100 kbps

when lying about latency and 300 kbps when lying about

bandwidth.

Attacks found using latency. We found one attack us-

ing latency as an impact score function. We compare in

Fig. 11(b) the latency when there is no attack with the at-

tack we found.

Drop Parent. We found an attack where malicious nodes

drop replies to parent request messages. This results in in-

creased latency due to malicious nodes gaining spots high

up in the tree over time by simply following the adaptation

protocol, and then never allowing the tree to grow beyond

them. Furthermore, as benign nodes never get a response,

the protocol dictates that they wait 1 sec to send another par-

ent request to a different node, further slowing down their

attempt to find or change parents.

5.5 Scribe

System description. Scribe [49] is an application-level

multicast system that organizes each group into an overlay

tree to efficiently disseminate data. To send data, a node

sends the message toward the root, and each node forwards

it to its parent and children. Scribe is built on top of Pas-

try [48], an overlay routing protocol with similar function-

ality to Chord. Scribe trees are built based on reverse-path

forwarding combined with load balancing: the multicast

tree is the reverse of the routes Join messages take when

routed from tree participants to the Pastry node managing

the group identifier, except that nodes whose out-degree is

too high will push children down in the tree.

 0

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500

L
o
o
k
u
p
 L

at
en

cy
 (

m
s)

Simulation Time (s)

No Attack
Drop Msg

Delay Msg
Dup Msg

Lie Msg Dest
Lie Msg Src

Lie SetKeyRange
Lie Reply Key

Figure 10. Lookup latency for

the attacks found on DHT

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700 800

T
h
ro

u
g
h
p
u
t

(k
b
p
s)

Simulation Time (s)

No Attack
Drop Data

Dup Parent
Lie Latency

Lie Bandwidth

(a) Throughput impact score

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 100 200 300 400 500 600 700 800

L
at

en
cy

 (
m

s)

Simulation Time (s)

No Attack
Drop Parent

(b) Latency impact score

Figure 11. Throughtput and latency for the attacks found on ESM

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 100 200 300 400 500 600

T
h
ro

u
g
h
p
u
t

(k
b
p
s)

Simulation Time (s)

No Attack
Drop Data
Drop Join
Dup Join
Dup Data

Lie GroupId HB
Lie GroupId Join

(a) Throughput for the attacks found on Scribe (b) Scribe tree under Lie GroupId Join attack

Figure 12. Attack impact on Scribe

Impact score. We use throughput, which measures the

average amount of data received over time. As with ESM,

the impact score is the streaming rate minus the average

throughput over the last tw seconds.

Experimental setup. We simulated Scribe with 50

nodes and test it under the scenario where a source node cre-

ates a group, publishes streaming data at a rate of 1 Mbps,

and all other nodes subscribe to that group. We start ma-

licious actions immediately after the experiment starts so

we can attack tree construction, however as we find the tree

takes up to 30 sec to form in our test environment, we set

tw to be 35 sec. We also find malicious actions have a high

probability of being effective the first time tried and thus set

na to be 1.

Attacks found using throughput. We found seven at-

tacks using throughput as an impact score. Fig. 12(a) shows

the effects of the different attacks. As a baseline we run

the system with no attack and find that nodes are able to

consistently receive 1 Mbps of data.

Drop Data and Dup Data. First we found two obvious

attacks where nodes do not forward the data or they du-

plicate data messages and send the second message to a

random node. In the latter case, loops can occur, causing

significant system load as data is increasingly replicated,

resulting in throughput to decrease below 200 kbps.

Dup Join, Lie GroupID Join, Drop Join. We found

that when malicious nodes duplicate Join messages and di-

vert the second message to a random node this causes the

throughput to drop below 200 kbps. This drop is due to

temporary forwarding loops when a tree node is a child of

multiple parent nodes. This temporary error will be cor-

rected by a heartbeat protocol, but only after a period of

time in which forwarding loops can cause damage. Gatling

found two additional attacks that cause the tree to not be

formed properly. If malicious nodes lie about the group

identifier in the Join message, then effectively the malicious

nodes are joining a different group, while believing they are

joining the requested group. Malicious nodes still respond

normally to other nodes’ requests to join the correct group.

This lie led the system to a situation that all malicious nodes

fail to join, and some benign nodes build a tree under ma-

licious nodes as seen in Fig. 12(b). Since the tree is split,

only nodes in the tree that have the source node inside can

receive data and nodes in other tree(s) can not receive any

data. Gatling also finds an attack of dropping Join mes-

sages, causing the same effect, but in the explored simula-

tion, more benign nodes happened to be a part of the tree

with the source, allowing better throughput.

6 Related Work

Automated debugging techniques, such as model check-

ing, have been in use for many years. Most similar to our

work is CrystalBall [56], where Yabandeh et al. utilize state

exploration to predict safety violations and steer the execu-

tion path away from them and into safe states in the de-

ployed system. Nodes predict consequences of their actions

by executing a limited state exploration on a recently taken

snapshot, which they take continuously. Since a violation

is predicted beforehand, it is possible to avoid actions that

will cause the violation. The Mace model checker is uti-

lized for safety properties and state exploration. However,

they do not consider performance metrics and thus can only

find bugs or vulnerabilities that cause safety violations but

not performance degradation.

Many previous works have also used debugging tech-

niques for the purpose of automating the process of dis-

covering or preventing attacks. Proving the absence of

particular attacks have also been explored in the context

of limited models and environments [9, 10, 12]. These

debugging techniques include static and dynamic analy-

sis [16, 22, 32, 37, 43, 54], modelchecking [9, 10, 12], and

fault injection [8, 11, 50]. Below we summarize the works

that are focused on discovering attacks and are most similar

to our own.

Finding vulnerabilities in distributed systems has re-

cently been explored by Banabic et al. [11]. They employ

a fault injection technique on PBFT [15] to find combina-

tions of MAC corruptions that cause nodes to crash. Our

work is more general, as Gatling does not focus on finding

all possible inputs that cause a single kind of vulnerability,

but rather searches on basic malicious actions to find new

attacks.

Stanojevic et al. [50] develop a fault injection tech-

nique for automatically searching for gullibility in proto-

cols. They experiment on the two-party protocol ECN to

find attacks that cause a malicious receiver to speed up and

slow down the sending of data. Their technique uses a brute

force search and considers lying about the fields in the head-

ers of packets and also drops packets. As they also utilize

Mace they are able to conduct protocol dependent attacks.

Our work differs in that we focus on large-scale distributed

systems, incorporate a fault injector that includes more di-

verse message delivery and lying actions, and use a greedy

approach to avoid brute forcing.

Kothari et al. [32] explore how to automatically find

lying attacks that manipulate control flow in implementa-

tions of protocols written in C. Their technique focuses on

searching for a sequence of values that causes a particular

statement in the code to be executed many times, thus po-

tentially causing an attack. Their method first utilizes static

analysis of the code to reduce the search space of possi-

ble attack actions and then uses concrete execution to verify

the attack. However, to utilize the technique the user must

know ahead of time what parts of the code, if executed many

times, would cause an attack, which may not always be ob-

vious. Gatling, on the other hand, utilizes an impact score

to direct its search. Furthermore, some distributed systems,

such as Vivaldi, do not have attacks on them that manipulate

control flow, but only attacks that involve lying about state.

Such attacks would go undiscovered by this technique.

7 Conclusion

Securing distributed systems against performance at-

tacks has previously been a manual process of finding at-

tacks and then patching or redesigning the system. In a first

step towards automating this process, we presented Gatling,

a framework for automatically discovering performance at-

tacks in distributed systems. Gatling uses a model-checking

exploration approach on malicious actions to find behaviors

that result in degraded performance. We provide a concrete

implementation of Gatling for the Mace toolkit. Once the

system is implemented in Mace the user needs to specify an

impact score in a simulation driver that allows the system to

run in the simulator.

To show the generality and effectiveness of Gatling, we

have applied it to six distributed systems that have a diverse

set of system goals. We were able to discover 41 attacks

in total, and for each system we were able to automatically

discover attacks that either stopped the system from achiev-

ing its goals or slowed down progress significantly. While

some of the attacks have been previously found manually

through the cleverness of developers and researchers, we

show that the amount of time Gatling needs to find such

attacks is small. Therefore, we conclude that Gatling can

help speed up the process of developing secure distributed

systems.

References

[1] Cyber-DEfense Technology Experimental Research labora-

tory Testbed. http://www.isi.edu/deter/.
[2] Emulab - Network Emulation. http://www.emulab.net/.
[3] Georgia Tech Network Simulator.

http://www.ece.gatech.edu/research/labs/MANIACS/GTNet

S/.
[4] Global Environment for Network Innovation.

http://www.geni.net.
[5] Network Simulator 3. http://www.nsnam.org/.
[6] p2psim: A simulator for peer-to-peer protocols.

http://pdos.csail.mit.edu/p2psim/.
[7] Resilient Overlay Networks. http://nms.csail.mit.edu/ron/.
[8] J. Antunes, N. Neves, M. Correia, P. Verissimo, and

R. Neves. Vulnerability Discovery with Attack Injection.

IEEE Transactions on Software Engineering, 36:357–370,

2010.

[9] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Com-

pagna, J. Cuellar, P. H. Drielsma, P. Hem, O. Kouchnarenko,

J. Mantovani, S. Mdersheim, D. von Oheimb, M. Rusinow-

itch, J. Santiago, M. Turuani, L. Vigan, and L. Vigneron.

The AVISPA Tool for the Automated Validation of Inter-

net Security Protocols and Applications. In Proceedings of

Computer Aided Verification, 2005.

[10] A. Armando and L. Compagna. SAT-based model-checking

for security protocols analysis. International Journal of In-

formation Security, 7:3–32, January 2008.

[11] R. Banabic, G. Candea, and R. Guerraoui. Automated Vul-

nerability Discovery in Distributed Systems. In Proceedings

of HotDep, 2011.

[12] B. Blanchet. From Secrecy to Authenticity in Security Pro-

tocols. In Proceedings of International Static Analysis Sym-

posium. Springer, 2002.

[13] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted

and automatic generation of high-coverage tests for complex

systems programs. In Proceedings of OSDI, 2008.

[14] M. Castro, P. Drushel, A. Ganesh, A. Rowstron, and D. Wal-

lach. Secure routing for structured peer-to-peer overlay net-

works. In Proceedings of OSDI, 2002.

[15] M. Castro and B. Liskov. Practical Byzantine fault tolerance.

In Proceedings of OSDI, 1999.

[16] C. Y. Cho, D. Babi, P. Poosankam, K. Z. Chen, E. X. Wu,

and D. Song. MACE: Model-inference-assisted concolic ex-

ploration for protocol and vulnerability discovery. In Pro-

ceedings of USENIX Security, 2011.

[17] Y.-H. Chu, A. Ganjam, T. S. E. Ng, S. Rao, K. Sripanid-

kulchai, J. Zhan, and H. Zhang. Early Experience with an

Internet Broadcast System Based on Overlay Multicast. In

Proceedings of USENIX ATC, 2004.

[18] B. Cohen. Incentives build robustness in BitTorrent. In Pro-

ceedings of P2P Economics, 2003.

[19] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: a

decentralized network coordinate system. In Proceedings of

SIGCOMM, 2004.

[20] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica.

Friday: global comprehension for distributed replay. In Pro-

ceedings of NSDI, 2007.

[21] P. Godefroid. Model checking for programming languages

using Verisoft. In Proceedings of POPL, 1997.

[22] P. Godefroid, M. Y. Levin, and D. Molnar. Automated

Whitebox Fuzz Testing. In Proceedings of NDSS, 2008.

[23] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Esti-

mating Latency between Arbitrary Internet End Hosts. In

Proceedings of ACM SIGCOMM-IMW, 2002.

[24] H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M. Hellerstein,

A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, K. Sen, and

D. Borthakur. FATE and DESTINI: a framework for cloud

recovery testing. In Proceedings of NSDI, 2011.

[25] G. J. Holzmann. The Model Checker SPIN. IEEE Transac-

tions on Software Engineering, 23:279–295, May 1997.

[26] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life,

Death, and the Critical Transition: Detecting Liveness Bugs

in Systems Code. In Proceedings of NSDI, 2007.

[27] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. M.

Vahdat. Mace: language support for building distributed

systems. In Proceedings of PLDI, 2007.

[28] D. Kostić, R. Braud, C. Killian, E. Vandekieft, J. W. Ander-

son, A. C. Snoeren, and A. Vahdat. Maintaining high band-

width under dynamic network conditions. In Proceedings of

USENIX ATC, 2005.

[29] D. Kostic, A. Rodriguez, J. Albrecht, , and A. Vahdat. Bul-

let: High Bandwidth Data Dissemination Using an Overlay

Mesh. In Proceedings of SOSP, 2003.

[30] D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and A. Vah-

dat. Using random subsets to build scalable network ser-

vices. In Proceedings of USENIX-USITS, 2003.

[31] D. Kostić, A. C. Snoeren, A. Vahdat, R. Braud, C. Killian,

J. W. Anderson, J. Albrecht, A. Rodriguez, and E. Van-

dekieft. High-bandwidth data dissemination for large-scale

distributed systems. ACM Transactions on Computer Sys-

tems, 26(1):1–61, 2008.

[32] N. Kothari, R. Mahajan, T. Millstein, R. Govindan, and

M. Musuvathi. Finding Protocol Manipulation Attacks. In

Proceedings of SIGCOMM, 2011.

[33] M. Krohn, E. Kohler, and M. F. Kaashoek. Events can make

sense. In Proceedings of USENIX ATC, 2007.

[34] L. Lamport. Specifying Systems: The TLA+ Language

and Tools for Hardware and Software Engineers. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA,

2002.

[35] L. Leonini, E. Rivière, and P. Felber. SPLAY: distributed

systems evaluation made simple (or how to turn ideas into

live systems in a breeze). In Proceedings of NSDI, 2009.

[36] S. Lin, A. Pan, Z. Zhang, R. Guo, and Z. Guo. WiDS: an

Integrated Toolkit for Distributed Systems Deveopment. In

Proceedigs of HotOS, 2005.

[37] Z. Lin, X. Zhang, and D. Xu. Convicting exploitable soft-

ware vulnerabilities: An efficient input provenance based

approach. In Proceedings of DSN, 2008.

[38] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,

T. Roscoe, and I. Stoica. Implementing Declarative Over-

lays. In Proceedings of SOSP, Brighton, United Kingdom,

October 2005.

[39] X. Lui, W. Lin, A. Pan, and Z. Zhang. WiDS Checker:

Combating Bugs In Distributed Systems. In Proceedings

of NSDI, Cambridge, Massachusetts, April 2007.

[40] N. Lynch. Distributed Algorithms. Morgan Kaufmann,

1996.

[41] M. Musuvathi, D. Park, A. Chou, D. Engler, and D. Dill.

CMC: A pragmatic approach to model checking real code.

In Proceedings of OSDI, 2002.

[42] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar,

and I. Neamtiu. Finding and Reproducing Heisenbugs in

Concurrent Programs. In Proceedings of OSDI, 2008.

[43] J. Newsome and D. Song. Dynamic Taint Analysis for Auto-

matic Detection, Analysis, and Signature Generation of Ex-

ploits on Commodity Software. In Proceedings of NDSS,

2005.

[44] PlanetLab. http://www.planetlab.org.

[45] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A scalable content-addressable network. In Pro-

ceedings of SIGCOMM. ACM, 2001.

[46] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling

churn in a DHT. In Proceedings of USENIX ATC, 2004.

[47] A. Rodriguez, D. Kostić, Dejan, and A. Vahdat. Scalability

in Adaptive Multi-Metric Overlays. In Proceedings of IEEE

ICDCS, 2004.

[48] A. Rowstron and P. Druschel. Pastry: Scalable, Decentral-

ized Object Location, and Routing for Large-Scale Peer-to-

Peer Systems. In Proceedings of IFIP/ACM Middleware,

2001.

[49] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel.

SCRIBE: The design of a large-scale event notification in-

frastructure. In Proceedings of NGC, 2001.

[50] M. Stanojevic, R. Mahajan, T. Millstein, and M. Musuvathi.

Can You Fool Me? Towards Automatically Checking Proto-

col Gullibility. In Proceedings of HotNets, 2008.

[51] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-

akrishnan. Chord: A Scalable Peer-to-Peer Lookup Service

for Internet Applications. In Proceedings of SIGCOMM,

2001.

[52] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić,

J. Chase, and D. Becker. Scalability and accuracy in a large-

scale network emulator. In Proceedings of OSDI, 2002.

[53] A. Walters, D. Zage, and C. Nita-Rotaru. A Framework

for Mitigating Attacks Against Measurement-Based Adap-

tation Mechanisms in Unstructured Multicast Overlay Net-

works. IEEE/ACM Transactions on Networking, 16:1434–

1446, 2008.

[54] W. Wang, Y. Lei, D. Liu, D. Kung, C. Csallner, D. Zhang,

R. Kacker, and R. Kuhn. A Combinatorial Approach to De-

tecting Buffer Overflow Vulnerabilities. In Proceedings of

DSN, 2011.

[55] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An Ar-

chitecture For Well-conditioned, Scalable Internet Services.

In Proceedings of SOSP, 2001.

[56] M. Yabandeh, N. Knezevic, D. Kostic, and V. Kuncak. Crys-

talBall: Predicting and Preventing Inconsistencies in De-

ployed Distributed Systems. In Proceedings of NSDI, 2009.

[57] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang,

F. Long, L. Zhang, and L. Zhou. MODIST: transparent

model checking of unmodified distributed systems. In Pro-

ceedings of NSDI, 2009.

[58] D. J. Zage and C. Nita-Rotaru. On the accuracy of decen-

tralized virtual coordinate systems in adversarial networks.

In Proceedings of CCS, 2007.

