INTELLIDROID

A Targeted Input Generator for the Dynamic
Analysis of Android Malware

Michelle Y. Wong and David Lie

University of Toronto
Department of Electrical and Computer Engineering

NDSS Symposium 2016

e - - - BACKGROUND

Static vs. Dynamic Analysis

e Static analysis: analyze source code or byte code
o Imprecise

o No run-time data

 Dynamic analysis: analyze during execution

o Run-time values — precise

e - - - BACKGROUND

Dynamic Code Coverage

e Jo detect malicious activity, first have to execute it

* Example:

message = <receive confirmation SMS>

1f message.number == 1234’ :

<malicious action>

e - - - BACKGROUND

Concolic Testing

* Run all execution paths in application

e Symbolic execution, solve constraints for inputs

constraint 1 constraint 1 I (constraint 1) I (constraint 1)
constraint 2 I (constraint 2) constraint 3 I (constraint 3)

- - BACKGROUND

Specific Malicious Paths

* Malicious activity only executed in certain parts of the code

)

P

IntelliDroid

* Jargets specific parts of the application
o |Input generator for existing dynamic detector

o Hybrid static and dynamic design
* Implemented for Android

* Improve malware analysis and detection

larget Malicious Paths

* Malicious activity present only in certain parts of the code

larget Malicious Paths

* Use static analysis to look for call paths to malicious activity

Target Over-Approximation

e Target over-approximation of malicious behaviors

o suspicious .
suspicious code suspicious
code code

Target Over-Approximation

e Target over-approximation of malicious behaviors

O

susplcmus
susplcmus code susplcmus
code code

INTELLIDROID UNIVERSITY OF TORONTO

largeted Methods

 Use method invocations as over-approximation

o Depends on attached dynamic malware detector

e EXisting dynamic detectors
for Android:

v Method invocations
¢’ System call traces

X Anomaly detection

Dynamic Tool

Goal

Features for Analysis

AASandbox [10]

Andromaly [36]

CopperDroid [39]
Crowdroid [12]
DroidBox [18]

DroidRanger [50]

DroidScope [39]

RiskRanker [39]

TaintDroid [19]

VetDroid [47]

Monitor behavior via track-
ing of system calls

Malware detection via sys-
tem resource usage

Monitor behavior via sys-
tem call tracking

Monitor behavior via track-
ing of system calls
Sandbox to monitor exter-
nal accesses

Detect malware using pre-
specified behavioral foot-
prints and heuristics
Plugins for API track-
ing, instruction tracing, and
taint tracking

Detect
known
signatures

Detect privacy leakage

malware using
vulnerability

Malware detection via per-
mission use behavior

System calls

Low-level device fea-
tures (e.g. battery us-
age, CPU load)

System calls
System calls
Sink API methods

Sequence of API
method invocations
and parameters

API methods;

source/sink API
methods

Sequence of API
method invocations

Source/sink API meth-
ods
Permission requests

(can be mapped to
API methods)

Static Constraint Extraction

* Extract constraints on inputs that can trigger targeted paths

Path Path
Constraints Constraints
Path

Constralnts

susplcmus
code

INTELLIDROID UNIVERSITY OF TORONTO

Targeted Input Injection

* |nject constrained inputs to execute paths at run-time

Static : Dynamic

Path \
Constraints)

\%
Path] /m'
Constraints :

Run-time

J

Challenges

* Finding targeted paths using static analysis

o |Imprecision?

* Executing path to suspicious code

o Dependencies between paths?

* Run-time input injection

o Where to inject?

Ce.-DESGN
Static Imprecision

e Static analysis cannot determine run-time values

* Example:

message = <receive confirmation SMS>
1t message.number == <file A>.text:

<malicious action>

4)

Constraint

Using Run-time Data

e Solve constraints at run-time (with run-time data)

Static Dynamic

Run-time

N\
Path 1 \ _
[Constraints J file A

/ “1234”
constraints ——| CONStraint
solver \

location
path N] / San Diego
Constraints) ,

[<SMS message>.number ==,

Path Dependencies

* Data- and control-flow dependencies between call paths

¢

Path Dependencies

* Data- and control-flow dependencies between call paths

Event Chain

1) <path to write X>

2) <path to malicious code>

585 JT

Run-lime Injection

()

Application
SMS
Handler

_ A)
~ ~
Framework
SMS
Service
_ y
~ ~

Cellular
Radio

k»Hardware/Device

_J

Application Injection

r ™
AP ON info on SMS?
SMS
Handler
_ y,
~ ~
Framework what SMS?
SMS
Service
_ y
~ ~

Cellular
Radio

k»Hardware/Device

_J

Device-Framework Injection

r)
AP ON info on SMS?
SMS
Handler
_ A \ Y,
~ ~
Framework Ki//

SMS
Service
_ _J

l ~)
Cellular

Radio

k»Hardware/Device

_J

Contributions

e Static imprecision

o Dynamic constraint solving with run-time values

 Path dependencies

o Event chains

e Consistent input injection

o Device-framework injection

+ - o - |I[MPLEMENTATION

Static Component

Targeted
Behaviors

App APK Application

v v (7BootReceiver

onReceive(Intent 1i):
if i == BOOT_COMPLETED:

a = 1234
.),

. . a]
IntelliDroid SMSReceiver

onReceive(Intent i):

Static Component if i == SMS_RECEIVED:
handleSMS(...)

handleSMS(addr, msg):
if a == addr:

sendTextMessage(...)
_ .

+ - o - |I[MPLEMENTATION

Static Component

Targeted
[Behaviors} [APP APK J Application
v v [BootReceiver)
(Extract event handlers) , ,
onReceive(Intent i):
! if[i == BOOT COMPLETED:
a = 1234
(Find call paths] - ¢\ /
l (7SMSReceiver A
—>(Extract path constraints]
G) onReceive(Intent i):
4 if|i == SMS_RECEIVED:
(Add to event chain] ha”dlesz'y
i handleSMS(addr, msg):
if|a == addr:
(If dependency: sendTextMessage(...)
k find dependent path - J

+ - o - |I[MPLEMENTATION

Static Component

Targeted
[Behaviors] [APP APK] Application
v v [BootReceiver)
(Extract event handlers) C , ,
1> onReceive(Intent 1i):
if i == BOOT_COMPLETED:
| _
. a = 1234
(Find call paths] -),
l (SMSReceiver A
—»(Extract path constraints]
@) onReceive(Intent i):
. if i == SMS_RECEIVED:
[Add to event chain] handlesMs(..)
(h:.ndJ.aSMSde{r, msg) :
(If dependency: Output: target call _{sage(,_,)
k find dependent path paths and constraints /

INTELLIDROID 25 UNIVERSITY OF TORONTO

+ - o - |I[MPLEMENTATION

Implementation

o Static analysis (Android-specific): WALA 1

 Dynamic component:

o Client program (Python)

Constraint solver: Z3°2

o Custom Android OS

IntelliDroidService: system service to receive input
information and inject events

1 Watson libraries for analysis. http://wala.sourceforge.net. Accessed: September 2014.

2 Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In Tools and Algorithms for the Construction and Analysis of
Systems, pages 337-340. Springer, 2008.

- -+ o EVALUATION

Evaluation

* Can IntelliDroid be integrated with existing dynamic
malware detectors”

* Can it execute targeted behaviours at run-time?

* |s the analysis time reasonable”

- -+ o EVALUATION

Integration with TaintDroid

« Attached to TaintDroid (dynamic taint tracking tool)

* |nput generator to execute taint sources and sinks

IntelliDroid
(Static)

INTELLIDROID

paths >

IntelliDroid
(Dynamic)

TaintDroid
iInputs Dynamic
Detector

{

eakage
paths

| |
taint source J_ taint sink

|

e.g. getDevicelId() sendTextMessage()

- -+ o EVALUATION

IntelliDroid-Driven TaintDrolid

* Jested on 26 privacy leaks in 17 malicious apps '

* IntelliDroid: Triggered and detected all leaks

o Monkey: Missed 21 leaks

 Executed < 5% of application code

1 Yajin Zhou and Xuxian Jiang. Dissecting Android malware: Characterization and evolution. In Proceedings of the 2012 IEEE Symposium
on Security and Privacy, pages 95-109. IEEE, 2012.

2 M. Parkour, “Contagio mobile,” 2015, http://contagiominidump. blogspot.ca/, Last Accessed Aug, 2015.

- -+ o EVALUATION

Targeted Input Injection

e Jarget malicious behaviours
in Android Malware Genome Intellibroid
and Contagio

- AN
* [riggered 70 out of 75
behaviours Q’/ O 6 b\Q

I\/Iethod Invocatlons

e Missed behaviors:

o Encoding ‘ O ‘ =
o File dependencies (currently b 6 O b ‘

not supported)

Known Malicious Activity

- -+ o EVALUATION

Performance

e Scales for large-scale analysis of applications

1

: : o8 ———
e Static analysis: ool
> 138.4s per application To2
° 2(7)'ime(mir30 %
* Dynamic constraint solving: ’
o 4.22ms per targeted call path §°5
° Timgo(ms) 0

1 David Barrera, Jeremy Clark, Daniel McCarney, and Paul C. van Oorschot. Understanding and improving app installation security
mechanisms through empirical analysis of android. In Proceed- ings of the Second ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, SPSM ’12, pages 81-92, New York, NY, USA, 2012. ACM.

Conclusion

e Jargeted input generation for effective dynamic malware
detection

e [ntelliDroid

o Static constraint extraction with run-time data

o Event chains and framework injection
e Integrated with existing dynamic tools (TaintDroid)

* Improve etfectiveness, reduce amount of code to be
executed (< 5%)

