
Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Automatic Forgery of Cryptographically Consistent Messages
to Identify Security Vulnerabilities in Mobile Services

Chaoshun Zuo†, Wubing Wang†, Rui Wang∗, Zhiqiang Lin†

†University of Texas at Dallas
∗AppBugs Inc.

Feb 24th, 2016

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Mobile Apps Often Need to Talk to a Remote server

InternetInternet

Saving resources (e.g., energy, and storage) on mobile
Providing customized data (e.g., only retrieving the
weather where you live)

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Users Have to be Authenticated to Use the Service

InternetInternet

Server needs to know who you are, then push the data of
your interest
Crucial to ensure the authentication process is secure

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Various Ways Used for the Authentication Security

HTTPSHTTPS

Encryption, hashing, signing

App developers have been using
1 Encryption of crucial data (e.g., user name, password)
2 Hashing (e.g., through MD5, SHA1) the user password
3 Signing (e.g., through HMAC) each message

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Are They Enough?

HTTPSHTTPS

Encryption, hashing, signing

Can a malicious client forge a valid message?

Completely control a client app execution
Reverse engineer how a valid message is generated
Forge new valid authentication messages

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Security Implications

HTTPSHTTPS

Encryption, hashing, signing

Testing Various Vulnerabilities at Server Side

Password brute forcing attack
Leaked password probing (password reuse practice)
Access token hijacking, SQL injection

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Solutions in Web Applications

1 Limiting the number of login attempts. One simple
solution app developers can adopt is to keep a login
attempt state at server side and limit the number of login
attempts within a certain time window.

2 Using CAPTCHA. Password brute forcing is not a new
attack, and there are already solutions to mitigate this. One
way that has been widely used on the desktop is the
CAPTCHA [VABHL03].

3 Two-factor authentication. The most effective way to
defeat all these malicious login attacks, we believe, is to
adopt two-factor authentication [Wei88].

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Introducing AUTOFORGE

HTTPSHTTPS

Encryption, hashing, signing

AUTOFORGE

Given a mobile app, and few inputs

A system that can automatically generate legal request messages via protocol
field inference and crypto API replay

Test various security vulnerabilities at mobile app’s server side

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

A Running Example: Mini Online Shopping App

“Mini offers a convenient way for customers around the
world to shop for a wide variety of cool gadgets, electronic
accessories, watches and lifestyle products at affordable
prices, all with FREE SHIPPING!”
Installs: 1,000,000 - 5,000,000 (according to Google Play)

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Observation of a Traced Network Packet

GET
/api/rest/app_server.php?sign_method=md5&client=android&app_key=A4H0P4JN&format=json&cv=3.9.
0&country_code=US&country=USA¤cy=USD×tamp=2015-08-
01%2013%3A00%3A59&v=1.2&pwd=695409430D3127CB969820016CB308F5&email=testappserver%40gmail.com
&method=vela.user.login&app_secret=4ce19ca8fcd150a4w4pj9llah24991ut&language=en&sign=424978B
759DA07CF8C8C41CCB5B8E718&keys=app_key%2Capp_secret%2Cclient%2Ccountry%2Ccountry_code%2Ccurr
ency%2Ccv%2Cemail%2Cformat%2Clanguage%2Cmethod%2Cpwd%2Csign_method%2Ctimestamp%2Cv&sid=1d3a4
0c25a86417c979fd847d7173e33 HTTP/1.1
x-newrelic-id: XAYCV1ZADgsAUFRTBQ==
User agent: LightInTheBox 3 9 0(Android; 16; 4 1 1; 480 752; WIFI; generic; M353; en)User-agent: LightInTheBox 3.9.0(Android; 16; 4.1.1; 480_752; WIFI; generic; M353; en)
Host: api.miniinthebox.com
Connection: Keep-Alive
Accept-Encoding: gzip
Cookie: cookie_test=please_accept_for_session; AKAMAI_FEO_TEST=B; ASRV=A_201505081100

{"result":"fail","code":"1001001","info":[],"error_msg":["Invalid email or password (User)"]}

Many fields in a request message (18).
We are interested in just a few of them, timestamp, pwd,
email, sign

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Challenges

GET
/api/rest/app_server.php?sign_method=md5&client=android&app_key=A4H0P4JN&format=json&cv=3.9.
0&country_code=US&country=USA¤cy=USD×tamp=2015-08-
01%2013%3A00%3A59&v=1.2&pwd=695409430D3127CB969820016CB308F5&email=testappserver%40gmail.com
&method=vela.user.login&app_secret=4ce19ca8fcd150a4w4pj9llah24991ut&language=en&sign=424978B
759DA07CF8C8C41CCB5B8E718&keys=app_key%2Capp_secret%2Cclient%2Ccountry%2Ccountry_code%2Ccurr
ency%2Ccv%2Cemail%2Cformat%2Clanguage%2Cmethod%2Cpwd%2Csign_method%2Ctimestamp%2Cv&sid=1d3a4
0c25a86417c979fd847d7173e33 HTTP/1.1
x-newrelic-id: XAYCV1ZADgsAUFRTBQ==
User agent: LightInTheBox 3 9 0(Android; 16; 4 1 1; 480 752; WIFI; generic; M353; en)User-agent: LightInTheBox 3.9.0(Android; 16; 4.1.1; 480_752; WIFI; generic; M353; en)
Host: api.miniinthebox.com
Connection: Keep-Alive
Accept-Encoding: gzip
Cookie: cookie_test=please_accept_for_session; AKAMAI_FEO_TEST=B; ASRV=A_201505081100

{"result":"fail","code":"1001001","info":[],"error_msg":["Invalid email or password (User)"]}

Recognizing the protocol fields
Identifying the cryptographic functions
Deciding when to terminate
Generating the valid messages

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Key Insights

Inferring the message fields with diffed input
Dynamically hooking well-known cryptographic APIs
Labeling response message with controlled input
Replaying the cryptographic function execution

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Overview of AUTOFORGE

Input0

Request Message GenerationAPI Traces

Request
Message0

Request
Messageg0

Request
Messagei

2 31

2

5

2

6 6

3

Input1

API Hooking

Response Message Labeling
Response
Message

Request
Message1

Request
Message1

2 31 2

4

Message Field Inference 3

4Android App

Android Emulator

Man‐in‐the‐Middle Proxy App Server

Android Emulator

HTTPS
Since we control the client, we installed a root certificate on the
emulator to make sure the proxy can get HTTPS messages.

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Overview of AUTOFORGE

Input0

Request Message GenerationAPI Traces

Request
Message0

Request
Messageg0

Request
Messagei

2 31

2

5

2

6 6

3

Input1

API Hooking

Response Message Labeling
Response
Message

Request
Message1

Request
Message1

2 31 2

4

Message Field Inference 3

4Android App

Android Emulator

Man‐in‐the‐Middle Proxy App Server

Android Emulator

HTTPS
Since we control the client, we installed a root certificate on the
emulator to make sure the proxy can get HTTPS messages.

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

API Hooking

Input0

Request Message GenerationAPI Traces

Request
Message0

Request
Messageg0

Request
Messagei

2 31

2

5

2

6 6

3

Input1

API Hooking

Response Message Labeling
Response
Message

Request
Message1

Request
Message1

2 31 2

4

Message Field Inference 3

4Android App

Android Emulator

Man‐in‐the‐Middle Proxy App Server

Android Emulator

Run the app and type in the inputs
Hooks the well-known cryptographic functions [Sch99]

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Message Field Inference

Input0

Request Message GenerationAPI Traces

Request
Message0

Request
Messageg0

Request
Messagei

2 31

2

5

2

6 6

3

Android App

Input1

API Hooking

Response Message Labeling
Response
Message

Request
Message1

Request
Message1

2 31 2

4

Message Field Inference 3

4

Android Emulator

Man‐in‐the‐Middle Proxy App Server

Android Emulator

Message field identification that splits the messages into
a set of fields
Field semantic inference that infers the meaning of the
identified fields

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Message Field Identification: Diffed Message Alignment

GET /api/rest/app_server.php?sign_method=md5&client=android&app_
key=A4H0P4JN&format=json&cv=3.9.0&country_code=US&country=USA&cu
rrency=USD×tamp=2015-08-05%2003%3A19%3A26&v=1.2&pwd=6954094
30D3127CB158002B92FEC1831&email=testappserveralpha%40gmail.com&m
ethod=vela.user.login&app_secret=4ce19ca8fcd150a4w4pj9llah24991u
t&language=en&sign=94056C9BE079510079D0BF9A372B4E65&keys=app_key
%2Capp_secret%2Cclient%2Ccountry%2Ccountry_code%2Ccurrency%2Ccv%
2C il%2Cf t%2Cl %2C th d%2C d%2C i th d%2Cti

GET /api/rest/app_server.php?sign_method=md5&client=android&app
_key=A4H0P4JN&format=json&cv=3.9.0&country_code=US&country=USA&
currency=USD×tamp=2015-08-05%2003%3A20%3A01&v=1.2&pwd=A967
2D9F5F7414D5B996964A7F07727E&email=testappserverbeta%40gmail.co
m&method=vela.user.login&app_secret=4ce19ca8fcd150a4w4pj9llah24
991ut&language=en&sign=D2A173BEB8F169DD1A81CA8D59AD2C69&keys=ap
p_key%2Capp_secret%2Cclient%2Ccountry%2Ccountry_code%2Ccurrency
%2C %2C il%2Cf t%2Cl %2C th d%2C d%2C i th d%2Cemail%2Cformat%2Clanguage%2Cmethod%2Cpwd%2Csign_method%2Ctimes

tamp%2Cv&sid=ajnrr9b3b2ktg11dcucg66l683 HTTP/1.1
x-newrelic-id: XAYCV1ZADgsAUFRTBQ==
User-agent: LightInTheBox 3.9.0(Android; 16; 4.1.1; 480_752;
WIFI; generic; en)
Host: api.miniinthebox.com
Connection: Keep-Alive
Accept-Encoding: gzip
C ki ki t t l t f i AKAMAI FEO TEST B

%2Ccv%2Cemail%2Cformat%2Clanguage%2Cmethod%2Cpwd%2Csign_method%
2Ctimestamp%2Cv&sid=ajnrr9b3b2ktg11dcucg66l683 HTTP/1.1
x-newrelic-id: XAYCV1ZADgsAUFRTBQ==
User-agent: LightInTheBox 3.9.0(Android; 16; 4.1.1; 480_752;
WIFI; generic; en)
Host: api.miniinthebox.com
Connection: Keep-Alive
Accept-Encoding: gzip
C ki ki t t l t f iCookie: cookie_test=please_accept_for_session; AKAMAI_FEO_TEST=B;

ASRV=A_201505081100

{"result":"fail","code":"1001001","info":[],"error_msg":["Invali
d email or password (User)"]}

Cookie: cookie_test=please_accept_for_session;
AKAMAI_FEO_TEST=B; ASRV=A_201505081100

{"result":"success","code":"1000000","info":{"sessionkey":"6a6a
c7ff985eb08524e89392ec1addcb"},"error msg":[]}

(a) Client Request with a Wrong Password (c) Client Request with a Correct Password

d email or password (User)]} c7ff985eb08524e89392ec1addcb }, error_msg :[]}

(b) Server Response for the Wrong Password (d) Server Response for the Correct Password

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Field Semantic Inference (Optional)

Approaches
Pattern Matching. System data such as timestamp
always has patterns (e.g., 2015-08-05), we can use pattern
Content Matching. Since we control the user input and
some user input would not get changed, then we directly
search the diffed field (e.g., a username we entered)
Degree of Differences. By measuring the degree of the
similarities, we can easily identify the cryptographically
computed fields (such as pwd and sign)

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Response Message Labeling

Input0

Request Message GenerationAPI Traces

Request
Message0

Request
Messageg0

Request
Messagei

2 31

2

5

2

6 6

3

Input1

API Hooking

Response Message Labeling
Response
Message

Request
Message1

Request
Message1

2 31 2

4

Message Field Inference 3

4Android App

Android Emulator

Man‐in‐the‐Middle Proxy App Server

Android Emulator

If the Wrong(correct) password responses are identical, we
will use the entire message as a Wrong password
signature, if the Wrong(correct) password responses are
different, we will align them and keep the common string
as a signature.

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Request Message Generation

Input0

Request Message GenerationAPI Traces

Request
Message0

Request
Messageg0

Request
Messagei

2 31

2

5

2

6 6

3

Input1

API Hooking

Response Message Labeling
Response
Message

Request
Message1

Request
Message1

2 31 2

4

Message Field Inference 3

4Android App

Android Emulator

Man‐in‐the‐Middle Proxy App Server

Android Emulator

Modify inputs
Re-execute API calls
Replace them in message

N different wrong passwords and 1 correct password

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Experiment Setup: How the 76 Apps Were Chosen

1 Crawled over 20,000 apps from Google Play

2 Filtered out apps that have less than one million installs,
and we have 320 apps.

3 Filtered out non-encryption, non-hashing, and non-signing
apps, we have 105 apps.

4 Manually run 105 one-by-one, we found
15 of them do not contain the user login interface
14 of them do not use HTTP/HTTPS protocols

5 Therefore, we have 105 - 15 - 14 = 76 apps

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Experiment Setup: How the 76 Apps Were Chosen

1 Crawled over 20,000 apps from Google Play
2 Filtered out apps that have less than one million installs,

and we have 320 apps.

3 Filtered out non-encryption, non-hashing, and non-signing
apps, we have 105 apps.

4 Manually run 105 one-by-one, we found
15 of them do not contain the user login interface
14 of them do not use HTTP/HTTPS protocols

5 Therefore, we have 105 - 15 - 14 = 76 apps

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Experiment Setup: How the 76 Apps Were Chosen

1 Crawled over 20,000 apps from Google Play
2 Filtered out apps that have less than one million installs,

and we have 320 apps.
3 Filtered out non-encryption, non-hashing, and non-signing

apps, we have 105 apps.

4 Manually run 105 one-by-one, we found
15 of them do not contain the user login interface
14 of them do not use HTTP/HTTPS protocols

5 Therefore, we have 105 - 15 - 14 = 76 apps

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Experiment Setup: How the 76 Apps Were Chosen

1 Crawled over 20,000 apps from Google Play
2 Filtered out apps that have less than one million installs,

and we have 320 apps.
3 Filtered out non-encryption, non-hashing, and non-signing

apps, we have 105 apps.
4 Manually run 105 one-by-one, we found

15 of them do not contain the user login interface
14 of them do not use HTTP/HTTPS protocols

5 Therefore, we have 105 - 15 - 14 = 76 apps

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Experiment Setup: How the 76 Apps Were Chosen

1 Crawled over 20,000 apps from Google Play
2 Filtered out apps that have less than one million installs,

and we have 320 apps.
3 Filtered out non-encryption, non-hashing, and non-signing

apps, we have 105 apps.
4 Manually run 105 one-by-one, we found

15 of them do not contain the user login interface
14 of them do not use HTTP/HTTPS protocols

5 Therefore, we have 105 - 15 - 14 = 76 apps

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

I. Password Brute-force Testing

Total 76 apps

86% of apps’ server side are vulnerable to password
brute-forcing attack

Including CNN, Expedia, iHeartRadio, and Walmart.

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Other Testing

1 II. Leaked Username and Password Probing Testing.
2 III. Facebook Access Token Hijacking Testing.

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

A Serious Security Problem at Server Side

AUTOFORGE has demonstrated that lack of security
checks at server side can lead to several severe attacks

1 Password brute forcing
2 Leaked username and password probing
3 Access token hijacking.

This is a very serious problem considering that a large
volume of popular apps, including CNN, Expedia,
iHeartRadio, and Walmart as demonstrated in our testing,
are vulnerable to these attacks.
HTTPS alone cannot defeat password brute-forcing,
nor can hashing and signing of client request
messages

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Related Work

1 Protocol Reverse Engineering. A large body of research
focusing on protocol reverse engineering [Bed, MLK+06,
CKW07, CS07, WMKK08, LJXZ08, MWKK09, CPKS09]

2 Application Dialogue Replay. AUTOFORGE employs
cryptographic function replay to generate the authenticated
messages, which is similar to the existing application
dialogue replay systems: RolePlayer [CPWK06] and
Replayer [NBFS06].

3 Mobile App Vulnerability Discovery. A considerate
amount of efforts have focused on discovering various
vulnerabilities in mobile apps. TaintDroid [EGC+10],
PiOS [EKKV11], CHEX [LLW+12], SMV-Hunter [SSG+14].
However, few efforts have been focusing on identifying the
vulnerabilities in app’s server side.

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

AUTOFORGE

Input0

Request Message GenerationAPI Traces

Request
Message0

Request
Messageg0

Request
Messagei

2 31

2

5

2

6 6

3

Input1

API Hooking

Response Message Labeling
Response
Message

Request
Message1

Request
Message1

2 31 2

4

Message Field Inference 3

4Android App

Android Emulator

Man‐in‐the‐Middle Proxy App Server

Android Emulator

AUTOFORGE

Given a mobile app, and few inputs

A system that can automatically
generate legal request messages via
protocol field inference and crypto API
replay

Test various security vulnerabilities at
mobile app’s server side

Experimental Result w/ 76 apps

86% of servers (including CNN, and
Walmart) are vulnerable to password
brute-forcing

100% are vulnerable to leaked
password probing

12% are vulnerable to Facebook
access token hijacking

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

Q&A

Input0

Request Message GenerationAPI Traces

Request
Message0

Request
Messageg0

Request
Messagei

2 31

2

5

2

6 6

3

Input1

API Hooking

Response Message Labeling
Response
Message

Request
Message1

Request
Message1

2 31 2

4

Message Field Inference 3

4Android App

Android Emulator

Man‐in‐the‐Middle Proxy App Server

Android Emulator

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

References I

Marshall Beddoe, The protocol informatics project, http://www.4tphi.net/~awalters/PI/PI.html.

Weidong Cui, Jayanthkumar Kannan, and Helen J. Wang, Discoverer: Automatic protocol reverse
engineering from network traces, Proceedings of the 16th USENIX Security Symposium (Security’07)
(Boston, MA), August 2007.

Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn Song, Dispatcher: Enabling active
botnet infiltration using automatic protocol reverse-engineering, Proceedings of the 16th ACM Conference on
Computer and and Communications Security (CCS’09) (Chicago, Illinois, USA), 2009, pp. 621–634.

Weidong Cui, Vern Paxson, Nicholas Weaver, and Randy H. Katz, Protocol-independent adaptive replay of
application dialog, Proceedings of the 13th Annual Network and Distributed System Security Symposium
(NDSS’06) (San Diego, CA), February 2006.

Juan Caballero and Dawn Song, Polyglot: Automatic extraction of protocol format using dynamic binary
analysis, Proceedings of the 14th ACM Conference on Computer and and Communications Security
(CCS’07) (Alexandria, Virginia, USA), 2007, pp. 317–329.

W. Enck, P. Gilbert, B.G. Chun, L.P. Cox, J. Jung, P. McDaniel, and A.N. Sheth,
TaintDroid: an information-flow tracking system for realtime privacy monitoring on smartphones, OSDI, 2010.

M. Egele, C. Kruegel, E. Kirda, and G. Vigna, Pios: Detecting privacy leaks in ios applications, NDSS, 2011.

Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, and Xiangyu Zhang, Automatic protocol format reverse engineering
through context-aware monitored execution, Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS’08) (San Diego, CA), February 2008.

http://www.4tphi.net/~awalters/PI/PI.html

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

References II

Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang, Chex: statically vetting android apps for
component hijacking vulnerabilities, Proceedings of the 2012 ACM conference on Computer and
communications security, ACM, 2012, pp. 229–240.

Justin Ma, Kirill Levchenko, Christian Kreibich, Stefan Savage, and Geoffrey M. Voelker, Unexpected means
of protocol inference, Proceedings of the 6th ACM SIGCOMM on Internet measurement (IMC’06) (Rio de
Janeriro, Brazil), ACM Press, 2006, pp. 313–326.

Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and Engin Kirda,
Prospex: Protocol Specification Extraction, IEEE Symposium on Security & Privacy (Oakland, CA), 2009,
pp. 110–125.

James Newsome, David Brumley, Jason Franklin, and Dawn Song, Replayer: Automatic protocol replay by
binary analysis, Proceedings of the 13th ACM Conference on Computer and and Communications Security
(CCS’06), 2006.

Bruce Schneier, Cryptography: The importance of not being different, Computer 32 (1999), no. 3,
108–109,112.

David Sounthiraraj, Justin Sahs, Garrett Greenwood, Zhiqiang Lin, and Latifur Khan, Smv-hunter: Large
scale, automated detection of ssl/tls man-in-the-middle vulnerabilities in android apps, Proceedings of the
21st Annual Network and Distributed System Security Symposium (NDSS’14) (San Diego, CA), February
2014.

Luis Von Ahn, Manuel Blum, Nicholas J Hopper, and John Langford, Captcha: Using hard ai problems for
security, Advances in Cryptology — EUROCRYPT 2003, Springer, 2003, pp. 294–311.

Introduction Overview Detailed Design Evaluation Discussion Related Work Summary References

References III

Kenneth P Weiss, Method and apparatus for positively identifying an individual, January 19 1988, US Patent
4,720,860.

Gilbert Wondracek, Paolo Milani, Christopher Kruegel, and Engin Kirda, Automatic network protocol
analysis, Proceedings of the 15th Annual Network and Distributed System Security Symposium (NDSS’08)
(San Diego, CA), February 2008.

	Introduction
	Overview
	Detailed Design
	Evaluation
	Discussion
	Related Work
	Summary
	References

