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Formal Notation:
𝐟 = 𝑓1,…,𝑓𝑁 such that

• 𝑓1 ≥ 𝑓2 ≥ ⋯ ≥ 𝑓𝑁 ≥ 0
• 𝑁 =  𝑖=1

𝑁 𝑓𝑖

Histogram Frequency List

1 1 1

password12345 abc123 abc123



Password Frequency List (Application 1)

𝜆𝛽 =  

𝑖=1

𝛽

𝑓𝑖

Estimate #accounts compromised by attacker with 𝛽 guesses per user
• Online Attacker (𝛽 small)
• Offline Attacker (𝛽 large) 



Password Frequency List (Application 2)

Quantify Benefits from Key-Stretching 

Halting Condition (Rational Offline Adversary):
• Marginal Guessing Cost ≥ Marginal Benefit

Password Frequency Lists allow us to estimate
• Marginal Guessing Cost (MGC)
• Marginal Benefit (MB)
• Rational Adversary: MGC = MB

Can estimate when the offline adversary will give up.



Available Password Frequency Lists

Site #User Accounts (N) How Released

RockYou 32.6 Million Data Breach*

LinkedIn 6 Data Breach*

…. … …

Yahoo! [B12] 70 Million With Permission**

** frequency list perturbed slightly to preserve differential privacy. 

https://figshare.com/articles/Yahoo_Password_Frequency_Corpus/2057937

Yahoo! Frequency data is now available online at:

* entire frequency list available due to improper password storage

https://figshare.com/articles/Yahoo_Password_Frequency_Corpus/2057937


How the project started

Would it be possible to access the 
Yahoo! data? I am working on a cool 
new research project and the 
password frequency data would be 
very useful.
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Why not just publish the original frequency lists?

• Heuristic Approaches to Data Privacy often break down when the 
adversary has background knowledge
• Massachusetts Group Insurance Medical Encounter Database [SS98]

• Background Knowledge: Voter Registration Record
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Why not just publish the original frequency lists?

• Heuristic Approaches to Data Privacy often break down when the 
adversary has background knowledge
• Netflix Prize Dataset[NS08]

• Background Knowledge: IMDB

• Massachusetts Group Insurance Medical Encounter Database [SS98]
• Background Knowledge: Voter Registration Record

• Many other attacks [BDK07,…]

• In the absence of provable privacy guarantees Yahoo! was 
understandably reluctant to release these password frequency lists.
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Differential Privacy (Dwork et al)

𝑓 − 𝑓′ 1 ≝  

𝑖

𝑓𝑖 − 𝑓𝑖′

Definition: An (randomized) algorithm A preserves 𝜀, 𝛿 -differential 
privacy if for any subset S⊆ 𝑅𝑎𝑛𝑔𝑒(𝐴) of possible outcomes and any
we have

Pr 𝐴(𝑓) ∈ S ≤ 𝑒𝜀Pr 𝐴(𝑓′) ∈ S + 𝛿

for any pair of adjacent password frequency lists f and f’,

𝑓 − 𝑓′ 1 = 1.
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Differential Privacy (Dwork et al)

Definition: An (randomized) algorithm A preserves 𝜀, 𝛿 -differential 
privacy if for any subset S⊆ 𝑅𝑎𝑛𝑔𝑒(𝐴) of possible outcomes and any
we have

Pr 𝐴(𝑓) ∈ S ≤ 𝑒𝜀Pr 𝐴(𝑓′) ∈ S + 𝛿

for any pair of adjacent password frequency lists f and f’,

𝑓 − 𝑓′ 1 = 1.

Small Constant (e.g., 𝜀 = 0.5) Negligibly Small Value (e.g., 𝛿 = 2−100)

f  – original password frequency list
f’ – remove Alice’s password from dataset



Differential Privacy (Example)
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2 22 2

1

2

minus =

f f’

Subset S of all potentially
harmful outcomes to Alice

𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑠

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjpuPaSiYLLAhUN0mMKHUMpD_sQjRwIBw&url=http://whotv.com/2013/12/06/password-breach-see-if-youre-affected/&psig=AFQjCNGMTnYWwRCpvJLoofzUJtKYvXk-_w&ust=1455910957424523
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Intuition: Alice will not harmed because her password 
was included in the dataset. 
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Main Technical Result

Theorem: There is a computationally efficient algorithm  𝑓 ← 𝐴 𝑓 such 
that A preserves 𝜀, 𝛿 -differential privacy and, except with probability 
𝛿, outputs  𝑓 s.t.

𝑓 −  𝑓
1

𝑁
≤ 𝑂

1

𝜀 𝑁
+

ln  1 𝛿
𝜀𝑁

.



Main Tool: Exponential Mechanism [MT07]

Input: f

Output: Pr ℇ𝜀 𝑓 =  𝑓 ∝ 𝑒−
𝑓− 𝑓 1

2𝜀 Assigns very small probability to 
inaccurate outcomes.
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Analysis: Exponential Mechanism

Input: f

Output: Pr ℇ𝜀 𝑓 =  𝑓 ∝ 𝑒−
𝑓− 𝑓 1

2𝜀

Theorem: 
𝑓−  𝑓

1

𝑁
≤ 𝑂

1

𝜀 𝑁
with high probability.

Assigns very small probability to 
inaccurate outcomes.

Theorem [MT07]: The exponential mechanism preserves 𝜀, 0 -
differential privacy.



The Challenge --- Efficiency

Strong Evidence: Sampling from the exponential mechanism is 
computationally intractable in general (e.g., [U13]).

Naïve Implementation: Exponential time (distribution assigns weights 
to infinitely many integer partitions)



Good News

Theorem: There is an efficient algorithm A to sample from a 
distribution that is 𝛿–close to the exponential mechanism ℇ over 
integer partitions. The algorithm uses time and space
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Good News

Theorem: There is an efficient algorithm A to sample from a 
distribution that is 𝛿–close to the exponential mechanism ℇ over 
integer partitions. The algorithm uses time and space

𝑂
𝑁 𝑁 + N ln

1
𝛿

𝜀

Key Idea 1: Novel dynamic programming algorithm to compute weights Wi,k such that

𝐏𝐫  𝑓𝑖 = 𝑘   𝑓𝑖−1 =
Wi,𝑘

 
t=0

 𝑓𝑖−1 Wi,t

.



Good News

Theorem: There is an efficient algorithm A to sample from a 
distribution that is 𝛿–close to the exponential mechanism ℇ over 
integer partitions. The algorithm uses time and space

𝑂
𝑁 𝑁 + N ln

1
𝛿

𝜀

Key Idea 2: Allow A to ignore a partition  𝑓 if 𝑓 −  𝑓
1

very large. 

Key Idea 1: Novel dynamic programming algorithm to compute weights Wi,t



RockYou Experiments



Yahoo! Results
Original Data Sanitized Data

N 𝐥𝐨𝐠𝟐

𝑵

𝝀𝟏

𝐥𝐨𝐠𝟐

𝑵

𝝀𝟏𝟎𝟎
𝐥𝐨𝐠𝟐 𝑮𝟎.𝟓

 𝑵 𝐥𝐨𝐠𝟐

 𝑵

 𝝀𝟏

𝐥𝐨𝐠𝟐

 𝑵

 𝝀𝟏𝟎𝟎

𝐥𝐨𝐠𝟐 𝑮𝟎.𝟓

All 69,301,337 6.5 11.4 21.6 69,299,074 6.5 11.4 21.6

gender (self-reported)

Female 30,545,765 6.9 11.5 21.1 30,545,765 6.9 11.5 21.1

Male 38,624,554 6.3 11.3 21.8 38,624,554 6.3 11.3 21.8

… … … … … … … … …

language preference

Chinese 1,564,364 6.5 11.1 22.0 1,571,348 6.5 11.1 21.8

… … … … … … … … …



Yahoo! Results
Original Data Sanitized Data

N 𝐥𝐨𝐠𝟐

𝑵

𝝀𝟏

𝐥𝐨𝐠𝟐

𝑵

𝝀𝟏𝟎𝟎
𝐥𝐨𝐠𝟐 𝑮𝟎.𝟓

 𝑵 𝐥𝐨𝐠𝟐

 𝑵

 𝝀𝟏

𝐥𝐨𝐠𝟐

 𝑵

 𝝀𝟏𝟎𝟎

𝐥𝐨𝐠𝟐 𝑮𝟎.𝟓

All 69,301,337 6.5 11.4 21.6 69,299,074 6.5 11.4 21.6

gender (self-reported)

Female 30,545,765 6.9 11.5 21.1 30,545,765 6.9 11.5 21.1

Male 38,624,554 6.3 11.3 21.8 38,624,554 6.3 11.3 21.8

… … … … … … … … …

language preference

Chinese 1,564,364 6.5 11.1 22.0 1,571,348 6.5 11.1 21.8

… … … … … … … … …



Yahoo! Results (Selecting Epsilon)
Original Data Sanitized Data

N 𝐥𝐨𝐠𝟐

𝑵

𝝀𝟏

𝐥𝐨𝐠𝟐

𝑵

𝝀𝟏𝟎𝟎
𝐥𝐨𝐠𝟐 𝑮𝟎.𝟓

 𝑵 𝐥𝐨𝐠𝟐

 𝑵

 𝝀𝟏

𝐥𝐨𝐠𝟐

 𝑵

 𝝀𝟏𝟎𝟎

𝐥𝐨𝐠𝟐 𝑮𝟎.𝟓

All 69,301,337 6.5 11.4 21.6 69,299,074 6.5 11.4 21.6

gender (self-reported)

Female 30,545,765 6.9 11.5 21.1 30,545,765 6.9 11.5 21.1

Male 38,624,554 6.3 11.3 21.8 38,624,554 6.3 11.3 21.8

… … … … … … … … …

language preference

Chinese 1,564,364 6.5 11.1 22.0 1,571,348 6.5 11.1 21.8

… … … … … … … … …

𝜀 = 𝜀𝑎𝑙𝑙 + 22ε′

Any individual participates in at most 23 
groups (including All)
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Conclusions

• Novel differentially private algorithm for integer partitions
• Password Frequency Lists
• Degree Distribution in a Social Network?
• Other applications?

• The Yahoo! Frequency data is now available
• Search: “Yahoo! Password Frequency Corpus”
• What exciting things can we do with it?

• Hope for other organizations to imitate Yahoo!


