
Static detection of C++ vtable escape vulnerabilities in binary code

David Dewey Jonathon Giffin

School of Computer Science, Georgia Institute of Technology
{ddewey, giffin}@gatech.edu

Abstract

Static binary code analysis is a longstanding technique
used to find security defects in deployed proprietary soft-
ware. The complexities of binary code compiled from
object-oriented source languages (e.g. C++) has limited the
utility of binary analysis to basic applications using simpler
coding constructs, so vulnerabilities in object-oriented code
remain undetected. In this paper, we present vtable escape
bugs—a class of type confusion errors specific to C++ code
present in real, deployed software including Adobe Reader,
Microsoft Office, and the Windows subsystem DLLs. We de-
veloped automated binary code analyses able to statically
detect vtable escape bugs by reconstructing high-level ob-
jects and analyzing the safety of their use. We implemented
our analysis in our own general object code decompilation
framework to demonstrate that classes of object-oriented
vulnerabilities can be uncovered from compiled binaries.
We successfully found vtable escape bugs in a collection of
test samples that mimic publicly disclosed vulnerabilities in
Adobe Reader and Microsoft Excel. With these new analy-
ses, security analysts gain the ability to find common flaws
introduced by applications compiled from C++.

1. Introduction

Many security vulnerabilities in software arise due to
violations of memory safety. Safety violations in object-
oriented programs include type confusion [21], a vulnera-
bility that occurs when a pointer points to an object of an
incompatible type. By design, C++ permits the introduc-
tion of type confusion errors via its static cast opera-
tor: pointers can be unsafely downcast to incompatible child
types or cast through void. When vulnerable software sub-
sequently accesses virtual object methods through incom-
patible pointers, vtable escapes may occur: the process in-
terprets arbitrary memory beyond the bounds of a C++ ob-
ject’s vtable as a code pointer and unsafely transfers exe-
cution. Professional security analysts have identified vtable

escape vulnerabilities in widely deployed software, includ-
ing Microsoft Excel [24], Adobe Reader [1], and Microsoft
Windows subsystem DLLs [23].

Static detection of possible memory safety violations
employs offline analysis of source or binary code to find un-
safe execution paths in the software. Many common com-
puting environments use proprietary software, so analysis
requires reverse engineering of binary code. For example,
an intrusion prevention system (IPS) provider needs to be
able to develop a signature that detects attacks against a
known vulnerability. An anti-virus vendor may need to in-
tegrate with an operating system in ways that are unpub-
lished. The complexity of binary code analysis is driven by
the architectural decisions, choice of source language, and
compiler options selected by the software’s developers. In
this paper, we statically detect vtable escape vulnerabilities
by addressing the challenges faced by static binary analysis
of executable code that was originally developed in C++.

Object code compiled from C++ includes complexities
resulting from the object-oriented nature of the language.
When straight C code is compiled to its binary equivalent,
the programmatic structure of the source code is largely left
intact. Most C-level constructs translate directly into assem-
bly code. In contrast, C++ constructs are lost as the com-
piler translates object-oriented source code into untyped as-
sembly, producing binary code with widespread program-
matic flow through dynamically-computed indirect calls.
The result is compiled code that obscures vulnerabilities
from static analyzers.

We address the complexity of reverse engineering pro-
prietary software written for Microsoft Windows. Widely-
used applications are written in C++ so that they can take
advantage of the interoperability provided by the Windows
API. Reverse engineers working with Windows software
will regularly encounter C++ code, often more frequently
than pure C. We create analysis passes in the IDA Pro dis-
assembler and LLVM compiler framework that identify ob-
ject instantiation and construction, compute vtable bounds,
track flows of object pointers to vtable dispatch locations,
and verify the safety of the vtable accesses. Our analyzer re-

verses x86 binary code compiled from C++ into a static sin-
gle assignment (SSA) intermediate representation suitable
for extensive analysis. We remove indirect control flows
arising due to dynamic dispatch through vtables and recon-
struct the call graph of the program. Subsequently, tradi-
tional static analysis algorithms applied to software writ-
ten with simpler constructs once again produce results. We
choose to use static data-flow analysis to detect the pres-
ence of vtable escape vulnerabilities in binary software that
builds without compiler errors or warnings, helping analysts
and developers catch defects unintentionally introduced into
object-oriented software.

Our long-term goal is to fully automate the reversal
and analysis of large production software like Excel and
Reader. Towards this goal, we validate the effectiveness
of our specific object reconstruction algorithms on targeted
microbenchmarks that replicate the vulnerabilities found in
commercial binaries. Extending the analysis from test sam-
ples to production-grade binaries requires additional engi-
neering of x86 instruction reversal to account for the diver-
sity of instructions present in real software. This engineer-
ing work remains in progress.

In summary, we make the following contributions:

• Resolve vtable dispatch calls in compiled binaries:
We use a set of data flow analyses to programmatically
resolve C++ virtual function calls as they exist in com-
piled code. We then generate a static call graph (or
multiple versions of a static call graph) to enable ex-
isting analyses to operate on code employing dynamic
dispatch.

• Programmatically identify vtable escape vulnera-
bilities introduced by C++ developers: We demon-
strate that our virtual function resolution analysis can
immediately identify a type-safety issue commonly in-
troduced into enterprise-class closed source software.

• Construct a general C++ decompilation frame-
work: We create a framework for reversing C++ com-
piled code into the intermediate representation used by
the LLVM compiler infrastructure, allowing an ana-
lyst to employ any of the dozens of pre-built analyses
that ship with LLVM. We implemented this system as
a plugin for the popular IDA Pro disassembler.

2. Related Work

This paper spans several areas of research regarding
static code analysis. We will cover topics in the areas of
binary decompilation, binary data structure recovery, vul-
nerability detection systems, and existing static compiler
analyses.

2.1. Binary Decompilation

Binary decompilation has been studied thoroughly in
both academia and industry. Most binary decompilation
is accomplished through the elevation of the binary code
to some form of intermediate representation. Cousot and
Cousot showed that by restructuring a language into an ab-
stract representation, complex analyses are more easily im-
plemented [8]. Following this concept, Song et al. devel-
oped the BitBlaze framework for binary decompilation and
analysis [31]. Several open source and commercial tools
exist specifically for the decompilation of binary code. For
example, the popular Hex-Rays plugin for IDA Pro reverses
binary code to a C-like intermediate representation [17].
Dullien and Porst developed the Reverse Engineering In-
termediate Language (REIL) for their commercial product,
Bindiff [13]. These tools all struggle with C++ compiled
code, returning code fragments that are largely useless to
analysts. Our work specifically tackles the problem of de-
compiling and analyzing binaries compiled from C++.

2.2. Binary Data Structure Recovery

One of the major tasks accomplished in this work is the
ability to reconstruct an object by analyzing its represen-
tation in a compiled binary. Binary data structure recov-
ery has been studied for use in host-based intrusion pre-
vention systems, forensic analysis, and reverse engineering.
For example, Dolan-Gavitt et al. [12] developed a dynamic-
analysis system that creates attack detection signatures by
monitoring kernel data structures in a way that is resistant
to evasion. Similarly, Cozzie et al. developed Laika [9], a
system that uses Bayesian unsupervised learning to detect
the presence of data structures in memory indicative of a
bot infection. Slowinska et al. [30] created a system that
recovers data structures from a compiled binary for the pur-
pose of reverse engineering.

While research has been done in the area of C++ object
reconstruction [28], that work relies on access to the source
code or runtime type information (RTTI). In this work, we
reconstruct C++ objects from their compiled binary equiv-
alent without access to any additional information. Intu-
itively, one can see how this is very similar to the type infer-
ence and data structure recovery systems mentioned above.
We extend these concepts to allow for the identification of
unsafe type-casting and other intricacies specific to C++.

2.3. Vulnerability Detection Systems

Software vulnerability detection systems have existed
for many years. Lint, created in 1977, has the ability to
find flaws in the source code of C programs [18]. Lint-like

systems have been developed over the years for the analy-
sis of C programs. For example, Sparse [32] is a tool de-
signed to find flaws in the Linux kernel. Splint [33] is the
modern-day and maintained version of Lint, and Clang [7]
is a popular compiler with built-in static analysis capabil-
ity. Larochelle and Evans built upon these early works to
statically detect the presence of buffer overflow vulnerabil-
ities in source code [15, 19]. Shankar et al. developed a
system to statically detect format string vulnerabilities [29].
ARCHER, a system developed by Xie, Chou, and Engler,
uses a constraint solver to determine the safety of array ac-
cesses [37]. Similarly, Austin et al. created a system to de-
tect pointer and array access errors [2]. Yet even with all the
work in this area, Heelan points out that these problems are
still unsolved [16].

As simple buffer overflows and format string vulnera-
bilities became increasingly rare, research focused on the
detection of dynamic memory errors. Evans [14] and Bush
et al. [5] present differing approaches to the detection of
dynamic memory errors. These concepts were readily ex-
tended to the analysis of compiled C programs. Bugscam
[4] is one of the oldest of these types of binary scanning
tools and has been used to discover hundreds of vulnerabil-
ities since its release. An entire industry has grown from
these early tools: companies like Ounce Labs (now part of
IBM), Coverity, Fortify Software (now part of HP), and Ve-
racode all offer commercial products and services for the
analysis of source code and compiled binaries. Most auto-
mated vulnerability detection falls apart in the face of C++.
Viega et al. developed ITS4 [35]—a vulnerability scanner
with support for C++, but at the source code level. In the
work presented in this paper, we are able to perform all of
our analyses without access to any source or other type in-
formation and focus specifically on vulnerabilities present
in C++ compiled code.

2.4. Compile-Time Analyses

Many static analyses have been integrated directly into
popular compilers to provide developers with warnings and
errors as they are building their software. C++ analyses typ-
ically come in the form of type-checking and checks for
const-ness and volatility and are fully enumerated in the
C++ standard [27]. Significant research has attempted to
extend required checks with virtual function call resolution
in C++ programs. Bacon and Sweeny [3], for example, de-
veloped a static analysis algorithm to determine whether dy-
namic dispatch is truly necessary for a given method call. In
cases where it is not, it can be replaced with a static function
call, thus reducing the size of the compiled binary and the
complexity of the program. Pande and Ryder [25, 26] and
Calder and Grunwald [6] continue this concept to eliminate
late binding where possible to take advantage of instruction

pipelining on modern-day processors. SAFECode, a system
developed by Dhurjati, Kowshik, and Adve [11] introduces
a new type system that can be enforced at compile-time to
prevent several types of vulnerabilities.

These prior works demonstrate the different needs for
virtual function call resolution, but they all share one com-
mon trait: they require access to the source code. Many
security analysis needs exist in environments where the an-
alyst will not have access to the source code, yet will still
need to accomplish the tasks described above.

3. Background

The C++ additions to C create new ways for developers
to introduce software vulnerabilities into their code. Some
of these extensions introduce safety conditions, including
the type confusion error leading to vtable escape vulnera-
bilities, that compilers cannot identify during code genera-
tion. In this section, we discuss these issues, the complex-
ities that C++ introduces into reverse engineering process,
and the assumptions that underlie our analyses of Section 4.

3.1. Silent Type Confusion

A number of C++ code-level defects do not present the
developer with any sort of compile-time warning. For ex-
ample, the static cast operator (a) converts a pointer to
a base class into a pointer to a derived class, or (b) converts
a pointer to or from a void pointer. There is no check for
object congruence; this is not a language error but an de-
liberate design choice to allow developers to insert unsafe
casts into their software [34]. Casts through void pointers
clearly deactivate all compiler type-checking for the pointer,
but common developer documentation of static cast
omits this behavior, presenting only operation (a) [22, 36].
Both cast types (a) and (b) violate type safety, and uses of
static cast without additional safety checks by the de-
veloper can result in type confusion. Neither Microsoft Vi-
sual Studio nor g++ warn of unsafe static casts because to
do so would violate the very purpose of the operator.

Consider the example code shown in Figure 1a. A hu-
man analyst can see that the method debug should never be
called on an object of type class1. The static cast
operation deliberately permits this type of error in software,
and both Visual Studio and g++ build the code without
warning or error. Running the compiled code will crash,
perhaps in an exploitable way. At a low-level, when this
code executes, it attempts to dereference the fourth entry
in the vtable for class1. Class1, however, only has two
entries in its vtable causing this dereference to read arbitrary
memory—a vtable escape bug.

This class of vulnerability has impacted widely deployed
proprietary software. For example, in March 2010, Mi-

class class1 {
public:
class1();
˜class1();
virtual void addRef();
virtual void print();

};

class class2 : public class1 {
public:
class2();
˜class2();
virtual void voidFunc1() {};
virtual void debug();

};

int tmain(int argc, TCHAR* argv[])
{
class1 C1;

C1.addRef();
C1.print();

static cast<class2*>(&C1)->debug();

return 0;
}

(a) Excerpt of original source (member function implementations omit-
ted)

.text:00401000 wmain proc near

.text:00401000

.text:00401000 var 20 = dword ptr -20h

.text:00401000 var 1C = dword ptr -1Ch

.text:00401000 var 18 = dword ptr -18h

.text:00401000 var 14 = dword ptr -14h

.text:00401000 var C = dword ptr -0Ch

.text:00401000 var 4 = dword ptr -4

.text:00401000

.text:00401000 push ebp

.text:00401001 mov ebp, esp

.text:00401003 and esp, 0FFFFFFF8h

.text:00401006 push 0FFFFFFFFh

.text:00401008 push offset loc 401950

.text:0040100D mov eax, large fs:0

.text:00401013 push eax

.text:00401014 sub esp, 18h

.text:00401017 push esi

.text:00401018 mov eax, dword 403018

.text:0040101D xor eax, esp

.text:0040101F push eax

.text:00401020 lea eax, [esp+2Ch+var C]

.text:00401024 mov large fs:0, eax

.text:0040102A mov [esp+2Ch+var 18], offset off 402138

.text:00401032 xor eax, eax

.text:00401034 mov [esp+2Ch+var 4], eax

.text:00401038 mov [esp+2Ch+var 20], offset off 40214C

.text:00401040 mov [esp+2Ch+var 1C], eax

.text:00401044 mov byte ptr [esp+2Ch+var 4], 1

.text:00401049 mov esi, ds:printf

.text:0040104F push offset Format ; "I’m in class1\n"

.text:00401054 mov [esp+30h+var 14], 1

.text:0040105C call esi ; printf

.text:0040106A mov eax, [esp+34h+var 20]

.text:0040106E mov edx, [eax+0Ch]

.text:00401071 add esp, 8

.text:00401074 lea ecx, [esp+2Ch+var 20]

.text:00401078 call edx

.text:0040107A xor eax, eax

.text:0040107C mov ecx, [esp+2Ch+var C]

.text:00401080 mov large fs:0, ecx

.text:00401087 pop ecx

.text:00401088 pop esi

.text:00401089 mov esp, ebp

.text:0040108B pop ebp

.text:0040108C retn

.text:0040108C wmain endp

(b) Compiled Binary

Figure 1: C++ code with a type-safety violation.

crosoft patched a vulnerability in Excel that was the result
of C++ object type confusion [24]. In April 2011, Adobe
announced a 0-day type confusion vulnerability in their
Flash Player [1] after exploits appeared in the wild. Another
actively exploited type confusion vulnerability occurred in
the Microsoft ATL [23], a set of C++ template code that
ships with Visual Studio. Developers were inadvertently in-
cluding the vulnerable code in their own projects.

3.2. Reverse Engineering C++ Software

When C++ code is compiled more high-level informa-
tion is lost than with what is experienced in C, leading to
many unsolved problems in C++ reverse engineering. Dy-
namic dispatch is one of the most significant challenges:
C++ developers can optionally create objects in such a way
that the methods of an object are called through indirection.

In object-oriented design, polymorphism can be
achieved by constructing objects that implement dynamic
dispatch. This allows for the substitution of a method’s im-

plementation using the same interface. In C++, this is ac-
complished by declaring a member function virtual. All
of the virtual functions have a corresponding pointer to the
function’s implementation in the vtable of the object. They
are each stored in the order that that are declared in the ob-
ject and referenced as an offset from the base of the vtable.
For example, consider the code shown in Figure 1a. In this
case, there are four virtual member functions in class2.
When this code is compiled, these four functions appear in
the vtable as shown in Figure 2b, and as calls are made to
those member functions, they will appear as an indirect call
to the base of the vtable plus the offset coresponding to the
correct member function.

3.3. Assumptions

Our analyses and implementation provide automated
tools that reduce the manual labor a reverse engineer must
employ to better understand commercially available soft-
ware. This may be needed to evaluate the security of a

.rdata:00402138 off 402138 dd offset sub 4010D0

.rdata:0040213C dd offset sub 4010A0

.rdata:00402140 dd offset nullsub 1

.rdata:00402144 dd offset sub 4010B0

.rdata:00402148 dd offset dword 402274

.rdata:0040214C off 40214C dd offset sub 4010D0

.rdata:00402150 dd offset sub 4010A0

.rdata:00402154 align 8

.rdata:00402158 db 48h ; H

.rdata:00402159 db 0

.rdata:0040215A db 0

.rdata:0040215B db 0

.rdata:0040215C db 0

(a) Disassembly of the vtables for class2 and class1

Class2	

ptr	
 to	
 VTable	

prop1	

prop2	

…	

VTable	

void	
 (Class1::*AddRef)()	

void	
 (Class1::*print)()	

void	
 (Class2::*voidFunc1)()	

void	
 (Class2::*debug)()	

void	
 Class1::AddRef()	

{	

	
 	
 	
 	
 prop1++;	

	

	
 	
 	
 	
 return;	

}	

void	
 Class1::print()	

{	

	
 	
 	
 	
 cout	
 <<	
 “I’m	
 in	

Class1”	
 <<	
 	
 	
 	
 	
 	
 	
 	
 	

	
 endl;	

	

	
 	
 	
 	
 return;	

}	

void	
 Class2::voidFunc1()	

{	

	
 	
 	
 	
 return;	

}	

void	
 Class2::debug()	

{	

	
 	
 	
 	
 cout<<“In	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 debug”<<endl;	

	

	
 	
 	
 	
 return;	

}	

(b) Structure of a C++ object after compilation

Figure 2: Compiled objects in binary code

given program or to try to inter-operate with closed source
software (e.g., creating a Microsoft Word rendering engine).
The techniques presented in this paper are designed to an-
alyze legitimate applications like these examples, and they
may not have applicability to malware or other obfuscated
programs. From a security perspective, legitimate, closed-
source applications often require similar levels of analysis
as required for malware because attackers will very often
leverage software vulnerabilities in legitimate applications
as a way to deliver malware payloads. Hence, understand-
ing these vulnerabilities is also extremely important.

The binaries that we analyze throughout the paper were
all compiled using Microsoft Visual Studio. We chose this
as the target compiler for our analysis because most Win-
dows programs that require reverse engineering are built
in this environment. In contrast, applications that are built
with the GNU developer tools are also usually open source
and do not require the complex binary analyses we present
here. However, all of the compiler-based issues we discuss
are also present in g++, and our analyses could be extended
to other platforms. The basis for the issues we discuss are
rooted in the C++ standard rather than the implementation
of that standard by the various compilers.

The analyses presented in this paper do not make use
of any sort of Runtime Type Information (RTTI). As RTTI
is only optionally compiled into the binary, we wanted to
ensure our analysis would work in its absence.

4. Object Reaching Definition Analysis

As C++ code is compiled, it introduces constructs into
the binary that make reverse engineering difficult. Notably,
object methods declared as virtual introduce layers of
indirection that can be nearly impossible to manually tra-
verse. To assist in the analysis of C++ compiled code, we
have created a data-flow analysis called Object Reaching
Definition Analysis, with three goals:

1. Resolve the indirect virtual function calls present in
binary code due to virtual function dispatch.

2. Statically construct the program’s call graph to im-
prove existing automated analyses.

3. Identify object vtable congruence failures.

Automated virtual function resolution allows analysts to
easily navigate control flows in the compiled code. In
resolving the virtual function calls, the static call graph
becomes more accurate and enables existing analyses de-
signed for C software to additionally operate on C++ soft-
ware. Congruence failures at a point of virtual function dis-
patch indicate the presence of vtable escape vulnerabilities
in the application.

Object Reaching Definition Analysis proceeds in five
steps, each detailed in the remainder of this section. (1) Ob-
ject identification locates instantiations of C++ aggregate
objects in a binary program under analysis. (2) Constructor
analysis determines the details, notably the vtable bounds,
of each object. (3) Reaching definition analysis applies
a standard fixed-point data-flow algorithm to determine
which objects flow to which virtual function dispatch lo-
cations. (4) Virtual function resolution computes the vtable
entry indexed at a dispatch site. (5) Object congruence eval-
uates the safety of each vtable access and warns of vtable
bounds violations.

4.1. Object Identification

In the data flow analyses that will be introduced in the
following subsections, we will need to be able to identify
all of the new objects that are instantiated in a given basic
block. When working directly with source code, identifying
the instantiation of objects is rather easy. They are either
declared on the stack as with any other sort of variable, or
they are instantiated on the heap using the new operator.
When analyzing binary code, we do not have access to these

obvious identifiers and must find other ways to locate the
instantiation of new objects. Here we present four heuristics
to detect the four ways an object instantiation can appear in
binary code: either stack or heap creation, and either inlined
or called constructors.

First, consider stack declaration with an inlined con-
structor (Figure 1a). Object C1 is declared on the stack and
Visual Studio is set to aggressively inline functions, so the
constructors appear as shown in Figure 1b. We make the
assumption that if we encounter a structure where the first
element is a pointer to an array of function pointers that we
are dealing with an object. In Figure 1b, the first element
of a structure is being initialized to a pointer to an array of
function pointers at 0x02A. We now assume that this is an
object and we will track this unique type throughout the rest
of the program.

The second object instantiation we handle is when the
object is declared on the heap using new and the construc-
tor is inlined. In this case, we can be more precise in our de-
termination that we are dealing with an object and not just
a generic structure. We gain this precision because Visual
Studio always applies the mangled name YAPAXI to the
new operator, and g++ similarly always applies the man-
gled name Znwjxxx (where xxx may vary) to new. We
can apply the same logic as above, but only in cases where
the pointer to an array of function pointers is being assigned
to the value returned by one of the known new operators.

The third and fourth types of object instantiation occur
when the objects are declared on the stack or heap, and the
constructors are not inlined. In this case, we must employ
an inter-procedural analysis to determine that we are deal-
ing with an object. For this analysis, we make another as-
sumption. Compilers will nearly always make the call to an
object’s constructor immediately after the call to new. With
that, we assume that the next call we encounter after a call
to new is a constructor, and we can validate that assump-
tion with the heuristics mentioned regarding the pointer to
a table of function pointers.

4.2. Constructor Analysis

In the previous section, we covered the heuristics that
we use to identify a constructor. To properly track an ob-
ject’s use throughout the control flow of a program, we need
to know more details about that object. Specifically, we
need to know the size of the vtable, which function pointers
the vtable stores, and the number and size of the properties
stored within the object. These details can be extracted from
the constructor.

To gain a full understanding of the vtable, we follow the
pointer that is assigned to the first element of the object’s
structure. Figure 2a shows the vtable for an object of type
class2 followed by the vtable for class1 as referenced

in Figure 1a. We can see in the code in Figure 1b that the
vtable starting at 0x138 is being referenced by the construc-
tor for class2. In order to perform our later analyses, we
need to understand the precise size of the vtable and the
function pointers contained in that table. To determine the
length of the vtable, we use three tests. First, if a data ele-
ment is pointed to by another program point, it is likely the
start of some other data structure (i.e. the next element past
the end of our vtable). The element at 0x14C is an example
of this case. The second test is that if a pointer in the table
does not point to a function, we assume that it is the next el-
ement past the end of the table. The element at offset 0x148
is an example of this case. The third hint is zero padding,
as compilers will often pad the end of a data structure with
zeros. Beginning at offset 0x154, we can see zero padding
past the vtable for class1.

4.3. Reaching Definition Analysis

Now that all of the object instantiations have been iden-
tified, we can analyze object flow to indirect call sites. We
perform a fixed-point interprocedural reaching definition
analysis for each object definition we encountered during
the previous step. The data-flow equations used in reaching
definition analysis are defined below.

For each basic block S:

REACHIN [S] =
⋃

p∈pred[S]

REACHOUT [p] (1)

REACHOUT [S] =

GEN [S] ∪ (REACHIN [S]−KILL[S]) (2)

where GEN is the set of objects that were identified as be-
ing instantiated using the heuristics listed in Section 4.2 and
KILL is the set of objects that are deleted. In our anal-
ysis, objects must be tracked interprocedurally. In those
cases, REACHIN at the entry of a function F is equal to
REACH[c] at the call site to F from a call site c.

4.4. Virtual Function Resolution

Given the set of objects that reach a given program point,
we can resolve the virtual function calls that appear in the
binary. There are several cases that can occur when evalu-
ating the reaching definitions. In the first case, only a single
object definition reaches. In the second case, a single ob-
ject definition or NULL reaches. In the third case, a decid-
able number of object definitions reach. In the final case,
an undecidable number of object definitions reach. We will
discuss each of these cases below:

1. Single Object Definition

In this case, we can make the safe assumption that
only a single object definition reaches a given program
point. With this assumption, we can resolve the func-
tion calls made to methods of the object by simply
indexing into the vtable based on the offset from the
base. For example, in the code in Figure 1a, only a
single object definition reaches. In the compiled equiv-
alent in Figure 1b, we can see at line 0x078 there is
a call through edx. Since we have reconstructed the
vtable for the object, we can tell that it is actually a call
to debug. As we resolve the virtual function calls, we
can also check for congruence, as explained in Section
4.5.

2. Single Object Definition with NULL

Visual Studio sometimes adds a check for the return
from the new operator and sets it to NULL in the case
of failure. In these instances, it is possible for a devel-
oper to end up with a NULL pointer dereference even
though they did not explicitly add this code. The code
in Figure 3b at line 0x025 is an example of this check.
In these cases, our analysis treats the object definition
exactly as in Case 1. Further work can be done to de-
termine the safety of this check insertion.

3. Decidable Number of Object Definitions

In this case, multiple object definitions reach a given
program point, and we are able to determine the exact
number and type of those objects. For each object defi-
nition, we perform the analysis to determine the safety
of the use of the object as done in Case 1.

4. Undecidable Number of Object Definitions

This case occurs when objects are instantiated and
stored in a manner that does not allow our heuristics
to determine their type. This scenario is typically en-
countered when a class pointer is stored in a collec-
tion of some type. When a class pointer is stored and
retrieved from the heap in a manner other than direct
variable assignment, our reaching definition analysis
will fail. An example of this would be instantiating an
object and storing its pointer in a std::map. Since
this object can now be referenced by the key value,
we cannot check for congruence or resolve the virtual
function calls.

4.5. Object Congruence

In addition to using object reaching definition analysis
for virtual function resolution, we also test for object con-
gruence. We define two objects as congruent when they are
made up of the same number of methods and properties.

The method at each equivalent location in the two vtables
must require the same number and type of arguments. The
properties of the two objects must correspond in size and
type at each offset in the property table.

As binary code is analyzed in the manner described in
Section 4.4, when an object use is identified, we implement
a congruence check to make sure the object is being refer-
enced in a way that is safe with regard to the actual object
type that reaches that use. This becomes particularly impor-
tant when more than one object definition reaches a given
use. We have to ensure that any object, when referenced,
will be referenced safely. If even one of the possible reach-
ing object definitions is unsafe for use, then the program
point as a whole has to be marked unsafe because static
analysis cannot guarantee which object definition will be
actually used at runtime.

5. Implementation

In order to test and verify the data flow algorithms pre-
sented in Section 4, we created a framework called RE-
CALL. This tool allows us to reverse x86 compiled bina-
ries into the intermediate representation used by the LLVM
compiler framework [20]. Then, we use the analysis ca-
pabilities in LLVM to implement the algorithms for Object
Reaching Definition Analysis, virtual function resolution,
and object congruence testing. This section presents the de-
tails of how we built this system.

5.1. High-Level Architecture

As compiled binaries are translated into the LLVM IR
and analyzed, the data traverses several tools and formats.
The diagram provided in Figure 4 shows the process de-
scribed below.

The initial input into RECALL is x86 machine code com-
piled from x86 source. There are several commercially
available and free tools that disassemble machine code into
its assembly equivalent. RECALL uses IDA Pro, a com-
mercially available disassembler with an extensive set of
tools available for reverse engineers. It focuses almost en-
tirely on analyzing the assembly representation of the com-
piled code. IDA Pro offers a plugin infrastructure whereby
a developer can inter-operate with the analysis framework.
In RECALL, we created a plugin for IDA Pro called llvm-
bcwriter that traverses the assembly code and translates it
into the LLVM intermediate representation. The converted
IR is then written to LLVM’s bitcode format to be consumed
by their analysis framework in the next step. This conver-
sion process is described in detail in Section 5.2.

With a completed bitcode file, we can now implement
the analyses detailed in Section 4 using the tool suite pro-
vided with LLVM. We use a tool called opt that allows de-

class class1 {
public:
class1();
˜class1();
virtual void addRef();
virtual void print();
virtual void voidFunc1() { };
virtual void debug();

};

class class2 {
public:

class2();
˜class2();
virtual void addRef();
virtual void print();

};

int _tmain(int argc, _TCHAR* argv[])
{

class1 *C1 = new class1;
class2 *C2 = new class2;

void *pv = C2;

C1->addRef();
C1->print();

C2->addRef();
C2->print();

static_cast<class1*>(pv)->debug();

return 0;
}

(a) Original Source

.text:00401000 _wmain proc near

.text:00401000 push esi

.text:00401001 push edi

.text:00401002 push 8

.text:00401004 call ??2@YAPAXI@Z

.text:00401009 add esp, 4

.text:0040100C test eax, eax

.text:0040100E jz short loc_401019

.text:00401010 call sub_401070

.text:00401015 mov edi, eax

.text:00401017 jmp short loc_40101B

.text:00401019

.text:00401019 loc_401019:

.text:00401019 xor edi, edi

.text:0040101B

.text:0040101B loc_40101B:

.text:0040101B push 8

.text:0040101D call ??2@YAPAXI@Z

.text:00401022 add esp, 4

.text:00401025 test eax, eax

.text:00401027 jz short loc_401032

.text:00401029 call sub_4010A0

.text:0040102E mov esi, eax

.text:00401030 jmp short loc_401034

.text:00401032

.text:00401032 loc_401032:

.text:00401032 xor esi, esi

.text:00401034

.text:00401034 loc_401034:

.text:00401034 mov eax, [edi]

.text:00401036 mov edx, [eax]

.text:00401038 mov ecx, edi

.text:0040103A call edx

.text:0040103C mov eax, [edi]

.text:0040103E mov edx, [eax+4]

.text:00401041 mov ecx, edi

.text:00401043 call edx

.text:00401045 mov eax, [esi]

.text:00401047 mov edx, [eax]

.text:00401049 mov ecx, esi

.text:0040104B call edx

.text:0040104D mov eax, [esi]

.text:0040104F mov edx, [eax+4]

.text:00401052 mov ecx, esi

.text:00401054 call edx

.text:00401056 mov eax, [esi]

.text:00401058 mov edx, [eax+0Ch]

.text:0040105B mov ecx, esi

.text:0040105D call edx

.text:0040105F pop edi

.text:00401060 xor eax, eax

(b) Compiled Binary

Figure 3: C++ code with heap-declared objects

velopers to test custom code analyses. It provides the same
infrastructure that would be available inside the compiler
without requiring compiled output. Opt disassembles the
bitcode into the LLVM IR and provides interfaces for analy-
sis. The LLVM IR is a static single assignment (SSA) form,
providing benefits to static analysis. For example, in SSA
form the use-def chains are implicit, which greatly assists in
the reaching definition analysis as described in Section 5.3.

Much like IDA Pro, opt provides a plugin infrastructure
for custom analysis. In this phase of our framework, we
created a plugin for opt called ClassTracker that performs
a reaching definition analysis on objects as they appear in
the LLVM IR. With this reaching definition analysis com-
pleted, we can resolve virtual function calls and perform
type-safety checks on object usage. These procedures are
covered in Section 5.3.

With the virtual function resolution performed by
ClassTracker, we can now propagate that information back
into the LLVM IR or even the disassembly. With this infor-
mation provided in these lower-level formats, other analyses
are now possible that were previously broken by dynamic

dispatch.

5.2. Decompilation

The first step of RECALL is to reverse the x86 machine
code into the LLVM intermediate representation. Llvm-
bcwriter, our IDA Pro plugin, makes several passes over
the x86 assembly code to generate the IR. First, we create a
generic class object that can later be referenced as instantia-
tions of new object are identified. This is done early because
in the LLVM framework, types must be predefined. The
second step is to collect all the functions in the module. We
identify their arguments, local variables, and return types,
and create each function in the IR. Third, we insert each ba-
sic block into the functions we have just created. Then, for
each basic block, we insert the individual instructions. Ad-
ditional low-level detail of the decompilation process can
be found in an extended technical report [10].

With a completed LLVM intermediate representation of
the code, we can now continue automated analysis. How-
ever, there is already a benefit for a human reverse engineer

IDA Pro

llvm-bcwriter

x86 Machine Code

Assembly

LLVM bitcode opt

ClassTracker

LLVM IR

Resolved Methods

Type Mismatches

Figure 4: High-Level Architecture of RECALL: Representation of how data flows from x86 assembly through to the LLVM
IR for analysis

at this point in the framework. The SSA-based intermedi-
ate representation used by LLVM is very easy to read and
in many cases will represent vulnerable code more clearly
than the x86 assembly equivalent. We thus optionally run
llvm-dis to generate the textual equivalent of the inter-
mediate representation in a form loadable by IDA Pro, pro-
viding an alternate representation of the original binary to
assist manual analysis.

5.3. Analyzing the Intermediate Representation

Our RECALL framework includes a plugin for opt
called ClassTracker that performs all of the analysis de-
scribed in Section 4. It first collects all of the instantiations
of new objects by using the heuristics described in Sections
4.1 and 4.2, and it indexes the objects by the relative virtual
address of the constructor applied to the new object. Next,
it applies the fixed-point reaching definitions algorithm de-
scribed in Section 4.3, recording all of the possible defini-
tions for each use point (indirect function call site). Third,
as calls are made referencing function pointers in a vtable,
those function pointers are resolved to their static address.
At this point, the congruence check is implicit in that if a
call is made to a function pointer that does not exist in the
bounds of the vtable, we can report the error. Low-level
implementation details of ClassTracker are available in a
technical report [10].

6. Results

By employing the data flow analysis techniques docu-
mented in this paper, we demonstrate that we can increase
the effectiveness of existing static analysis techniques on
compiled C++ code, as well as identify a class of vulnera-
bility that is often overlooked by existing techniques. Most
importantly, all of this analysis can be performed on a com-
piled binary with no access to the original source. This al-
lows for third parties like software developers, security an-
alysts, or a software consumer software looking to validate

"401034": ; preds = %"401032", %"401029"
. . .

%25 = getelementptr %0* %24, i32 0, i32 0 ; <i32 (...)***>
. . .

call void %29()
. . .

%31 = getelementptr %0* %30, i32 0, i32 0 ; <i32 (...)***>
. . .

call void %35()
. . .

%37 = getelementptr inbounds %0* %36, i32 0, i32 0 ; <i32 (...)***>
. . .

call void %41()
. . .

%43 = getelementptr inbounds %0* %42, i32 0, i32 0 ; <i32 (...)***>
. . .

call void %47()
. . .

%49 = getelementptr inbounds %0* %48, i32 0, i32 0 ; <i32 (...)***>
. . .

call void %53()
. . .

br label %return

Figure 5: Excerpt from LLVM bitcode file generated by
llvm-bcwriter

code quality to gain a much better view into the code con-
structs embedded in a compiled binary.

To test our decompilation framework, we created test
programs each representing one of the four combinations of
stack or heap object declaration and inline or explicit con-
structor. These programs were compiled without symbols
and were provided to IDA Pro as input. In each case, the
system was tested for its ability to resolve virtual function
calls and to identify instances of type confusion. An exam-
ple of this process is detailed in Section 6.1. We created a
more complex test where an object is declared in one func-
tion and referenced in another function, testing the ability
of RECALL to perform the analyses described in Section 4
on an interprocedural basis. This test is detailed in Section
6.2.

6.1. Heap-Declared Object, Explicit Constructor

Figure 3a shows an unsafe use of static cast through a
void pointer resulting in a vtable escape error. The source

class class1 {
public:
class1();
˜class1();
virtual void addRef();
virtual void print();
virtual void voidFunc1() { };
virtual void debug();

};

class class2 {
public:
class2();
˜class2();
virtual void addRef();
virtual void print();

};

int internalFunction(void *pv) {

static_cast<class1*>(pv)->addRef();
static_cast<class1*>(pv)->print();
static_cast<class1*>(pv)->debug();

return 0;
}

int _tmain(int argc, _TCHAR* argv[])
{
class1 *C1 = new class1;
class2 *C2 = new class2;

internalFunction((void *)C1);
internalFunction((void *)C2);

return 0;
}

(a) Original Code

.text:00401000 sub_401000 proc near

.text:00401000

.text:00401000 mov eax, [esi]

.text:00401002 mov edx, [eax]

.text:00401004 mov ecx, esi

.text:00401006 call edx

.text:00401008 mov eax, [esi]

.text:0040100A mov edx, [eax+4]

.text:0040100D mov ecx, esi

.text:0040100F call edx

.text:00401011 mov eax, [esi]

.text:00401013 mov edx, [eax+0Ch]

.text:00401016 mov ecx, esi

.text:00401018 call edx

.text:0040101A xor eax, eax

.text:0040101C retn

.text:0040101C sub_401000 endp

.text:0040101C

.text:00401020 _wmain proc near

.text:00401020 push esi

.text:00401021 push edi

.text:00401022 push 8

.text:00401024 call ??2@YAPAXI@Z

.text:00401029 add esp, 4

.text:0040102C test eax, eax

.text:0040102E jz short loc_401039

.text:00401030 call sub_401080

.text:00401035 mov esi, eax

.text:00401037 jmp short loc_40103B

.text:00401039

.text:00401039 loc_401039:

.text:00401039 xor esi, esi

.text:0040103B

.text:0040103B loc_40103B:

.text:0040103B push 8

.text:0040103D call ??2@YAPAXI@Z

.text:00401042 add esp, 4

.text:00401045 test eax, eax

.text:00401047 jz short loc_401061

.text:00401049 call sub_4010C0

.text:0040104E mov edi, eax

.text:00401050 call sub_401000

.text:00401055 mov esi, edi

.text:00401057 call sub_401000

.text:0040105C pop edi

.text:0040105D xor eax, eax

.text:0040105F pop esi

.text:00401060 retn

.text:00401061

.text:00401061 loc_401061:

.text:00401061 xor edi, edi

(b) Compiled Binary

Figure 6: Code requiring interprocedural analysis

code shows two heap-declared objects C1 and C2. In the
disassembly of the code shown in Figure 3b, we see that the
constructors for the two objects are explicitly called at lines
0x010 and 0x029 respectively. Additionally, we can see
several calls to virtual functions. Lines 0x03A and 0x043
correspond to the calls to addRef and print for C1.
Lines 0x04B and 0x054 correspond to the calls to addRef
and print for C2. We can see the erroneous call to debug
at line 0x05D.

After translating the code in Figure 3b to the LLVM IR,
it appears as shown in Figure 5. This is an excerpt of the
full code that is emitted from llvm-bcwriter. The entire out-
put can be found in our technical report [10]. In the LLVM
IR, we can see the virtual function calls just as in the dis-
assembly, but it is still just as unclear which function will
actually get called. In the LLVM IR, we see the instructions
call void %29 and call void %35, which corre-
spond to the calls to addRef and print for C1. We also
see the instructions call void %41 and call void
%47, corresponding to the same functions in C2. The final
call, call void %53, corresponds to the erroneous call

to debug.
When the Object Reaching Definition analysis in

ClassTracker is applied to this code, the various function
calls were resolved except for the call to debug. In this
case there was no corresponding method in the vtable, and
ClassTracker returns a vtable escape error. The detailed out-
put from ClassTracker can be seen in Appendix A.

6.2. Interprocedural Analysis

The previous example shows how RECALL is able to
translate binary code into the LLVM IR and perform Ob-
ject Reaching Definition Analysis. However, the vulnera-
ble code that it was able to identify is very unlikely to ever
appear in production code. We would hope that this sort
of type-casting would be identified through simple code re-
view. Consider the more complex example in Figure 6a:
an object is declared in one function and referenced by an-
other function. This code is much more realistic, espe-
cially when we consider the possibility that the function
internalFunction could be called from many differ-

"401000":
. . .

%2 = getelementptr inbounds %0* %1, i32 0, i32 0 ; <i32 (...)***> [#uses=1]
. . .

call void %6()
. . .

%9 = getelementptr inbounds %0* %8, i32 0, i32 0 ; <i32 (...)***> [#uses=1]
. . .

call void %13()
. . .

%16 = getelementptr inbounds %0* %15, i32 0, i32 0 ; <i32 (...)***> [#uses=1]
. . .

call void %20()
. . .

br label %return

(a) Excerpt of LLVM bitcode generated by llvm-bcwriter

int __cdecl wmain()
{
int v0; // edi@2
int v1; // esi@5

if (operator new(8u))
v0 = sub_401070();

else
v0 = 0;

if (operator new(8u))
v1 = sub_4010A0();

else
v1 = 0;

(**(void (__thiscall ***)(_DWORD))v0)(v0);
(*(void (__thiscall **)(int))(*(_DWORD *)v0 + 4))(v0);
(**(void (__thiscall ***)(_DWORD))v1)(v1);
(*(void (__thiscall **)(int))(*(_DWORD *)v1 + 4))(v1);
(*(void (__thiscall **)(int))(*(_DWORD *)v1 + 12))(v1);
return 0;

}

(b) HexRays output

Figure 7: Results after analyzing code from Figure 1b

ent places in the code, each passing in different object types.
In this example, the source code shown in Figure 6a

is compiled to the binary representation shown in Fig-
ure 6b. Sub 401000 corresponds to the function
internalFunction. We can see in this subroutine
that it makes three virtual function calls, corresponding to
addRef, print, and debug. This binary is provided
as input into llvm-bcwriter, which produces the LLVM IR
shown excerpted in Figure 7a. The full output can be found
in our technical report [10]. Here we can see the the calls to
the virtual functions appearing as call void %6, call
void %13, and call void %20 respectively.

When running ClassTracker on the IR shown in Fig-
ure 6a, the analysis made two passes over the function
internalFunction because it is called twice in this
code. In the first pass, the virtual function calls were re-
solved as they belong to class C1. In the second pass, we
see a second function pointer assigned to each call site.
These are the methods belonging to class C2. Here again
ClassTracker reported for the erroneous call to debug. The
full output from ClassTracker can be found in Appendix B.

7. Discussion

The capabilities that have been demonstrated in the pre-
vious section are advantageous for anyone attempting to re-
verse engineer C++ compiled binaries. We have already dis-
cussed the ability to resolve virtual function calls and iden-
tify type confusion issues. In this section, we provide more
detail into the benefits of these analyses.

7.1. Static Call Graph Reconstruction

Several existing static analysis techniques require a com-
plete static call graph to operate. The static call graph is a

directed graph comprised of each function as a node and a
call location to a function as an edge. As we have seen in
this paper, virtual function calls are performed through in-
direction and make it difficult to identify the corresponding
edges of the static call graph. This results in nodes that are
completely unconnected and call sites that have incomplete
fanout.

By resolving the virtual function calls, we are able to
make the static call graph more complete, allowing for pre-
viously existing analyses to be increasingly effective. An
example of this is dead code elimination, a very common
compiler analysis to try to remove unreachable code. Vir-
tual function calls tend to reduce the effectiveness of dead
code elimination analyses in that there will be functions
strewn around the code that are only reachable through in-
direction. Since most existing analyses cannot resolve the
indirection, for code safety, they must leave any code intact
that appears as if it could be called.

7.2. Comparison with HexRays

HexRays is a popular, commercially available decompi-
lation plugin for IDA Pro. It reverses binary code into a
C-like psuedo-code to make manual analysis easier. Like
many decompilation engines, HexRays struggles with C++
constructs. For example, Figure 7b is the HexRays out-
put when decompiling the code from Figure 1b. Here we
can see that it is unable to resolve the virtual function calls.
Rather, it identifies the first call to the first element in the
vtable, but all subsequent calls are left as calls to a base
pointer plus an offset.

In comparison, ClassTracker is able to fully resolve all of
the virtual function calls. In RECALL, these resolved func-
tion calls are populated back into the LLVM IR and the dis-
assembly in IDA as comments next to the call site. The re-

sults from running ClassTracker against the code from Fig-
ure 1b are shown in Appendix B.

7.3. Further Vulnerability Identification

This paper presented a data-flow analysis technique and
a decompilation framework that allows for the verification
of object congruence. This analysis is based on a the fun-
damental concept of reaching definition analysis. There are
other basic static analysis techniques that could be devel-
oped in this framework to allow for further vulnerability
identification. For example, liveness analysis, when applied
to C++ objects, would allow us to detect use-after-free con-
ditions.

7.4. False Positives/Negatives

As with any static code analysis, the analyses presented
in this paper may incur false positives or negatives. We have
identified several potential situations producing false posi-
tives:

• We may misclassify a data region as a class when a
developer declares a structure on the stack that has the
same form as the structure used for C++ objects. For
example, if a C struct is declared on the stack that has
the same form as that detailed in Figure 2b, then the
first heuristic described in Section 4.1 will incorrectly
identify this as a C++ object. Fortunately, this does
not introduce problems into the further analysis. The
vulnerabilities we intend to identify can be introduced
through C structs as well, so aggressively assuming
a data structure is an object will help identify these
cases.

• We may fail to correctly compute the bounds of a
vtable. Our system relies on IDA Pro to identify the
beginning and end of each vtable, and so our vtable
correctness is exactly as good as that of IDA Pro.

• Absent any defects in our implementation, our algo-
rithms should not propagate a class type to a vtable
dispatch point unless that propagation is possible.

False negatives are possible as well. As noted in Sec-
tion 3.3, the identification of new objects is specific to the
compile-time development environment. Should a devel-
oper link a C++ runtime that does not implement the hints
that we use in Section 4.1, we would not identify instan-
tiations of new objects. While the data flow algorithm we
present is generic, the heuristics used to create the GEN and
KILL sets are specific to a given C++ runtime.

7.5. Analysis of Production Binaries

One of our longer-term goals is to apply our code anal-
ysis algorithms to very large applications such as Microsoft
Excel and Adobe Reader. Improving our existing imple-
mentation so that it can process large software requires
additional engineering. We reverse each x86 opcode and
operand into an LLVM bitcode format via a manually-
written transformation function. Full reversal of a binary
file requires implementations of transformation functions
for all instructions appearing in the file, and as software
becomes large, a greater variety of x86 instructions with
complex behaviors appears.

As a result, we opted to test using smaller microbench-
marks that duplicated the vulnerable code constructs
present in Excel and Reader while eliding all other code
regions with large instruction diversity. Our microbench-
marks elevate the vulnerable code closer to the entry point
of the binary. The simulation of the Excel vulnerability
contains 2560 bytes of code in the .text section, and
the Adobe simulation contains 6656 bytes of code in the
.text section. As such, the subset of the x86 instruction
set used becomes far more tractable. Ten more code sam-
ples of similar size were tested to ensure each of the differ-
ent types of object instantiation were able to be identified,
and the analysis in each case could be applied interprocedu-
rally.

While further work is required to have full support for
production binaries, it is important to note that the specific
analyses described in this paper are not impacted by the cur-
rently unsupported instructions.

8. Conclusions

C++ is one of the most popular object-oriented develop-
ment languages in use today. The advancements it provides
over the C language has led to its use in base operating sys-
tem code, applications, device drivers, and more. Its sup-
port for templates allowed for the development of the stan-
dard template library, which provides a miriad of container
types and algorithms that are commonly needed is software
development.

However, with all these benefits, come a few drawbacks
as well. As we have shown in this paper, standard C++ con-
structs can lead to the introduction of vulnerable code. Ad-
ditionally, the manner in which some of these capabilities
are achieved create complexities in the low-level machine
code that stand in the way of existing compiler analyses.

In this paper, we demonstrated some of the memory
safety drawbacks that are introduced by the C++ program-
ming language, and we presented a data-flow analysis that
can help remediate these issues. With the decompilation

framework we created as part of this research, implement-
ing these data-flow algorithms is straightforward and effec-
tive. With these analysis capabilities, we can ease the un-
derstanding of compiled C++ code and identify classes of
vulnerable code that have previously gone undetected.

References

[1] Adobe. Security update available for Adobe Flash Player.
http://www.adobe.com/support/security/
bulletins/apsb11-07.html, April 2011.

[2] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient detec-
tion of all pointer and array access errors. SIGPLAN Not.,
29:290–301, June 1994.

[3] D. F. Bacon and P. F. Sweeney. Fast static analysis of C++
virtual function calls. In Proceedings of the ACM SIG-
PLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), 1996.

[4] Bugscam. Bugscam IDC Package. http://bugscam.
sourceforge.net/.

[5] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static ana-
lyzer for finding dynamic programming errors. Softw. Pract.
Exper., 30:775–802, June 2000.

[6] B. Calder and D. Grunwald. Reducing indirect function call
overhead in C++ programs. In Proceedings of the ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL), Portland, Oregon, 1994.

[7] Clang. http://clang.llvm.org/.
[8] P. Cousot and R. Cousot. Abstract interpretation: A uni-

fied lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In Proceedings of
the 4th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (POPL), Los Angeles, Califor-
nia, 1977.

[9] A. Cozzie, F. Stratton, H. Xue, and S. T. King. Digging
for data structures. In Proceedings of the 8th USENIX Con-
ference on Operating Systems Design and Implementation
(OSDI), 2008.

[10] D. Dewey and J. Giffin. Static detection of C++ vtable es-
cape vulnerabilities in binary code (extended length). Tech-
nical report, School of Computer Science, Georgia Institute
of Technology, 2011.

[11] D. Dhurjati, S. Kowshik, and V. Adve. Safecode: Enforcing
alias analysis for weakly typed languages. In Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2006.

[12] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin. Ro-
bust signatures for kernel data structures. In Proceedings of
the 16th ACM Conference on Computer and Communica-
tions Security (CCS), Chicago, Illinois, 2009.

[13] T. Dullien and S. Porst. REIL: A platform-independent inter-
mediate representation of disassembled code for static code
analysis. In CanSecWest, 2009.

[14] D. Evans. Static detection of dynamic memory errors. In
Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 1996.

[15] D. Evans and D. Larochelle. Improving security using exten-
sible lightweight static analysis. IEEE Software, 19(1):42–
51, Jan/Feb 2002.

[16] S. Heelan. Vulnerability detection systems: Think cyborg,
not robot. IEEE Security & Privacy, 9(3):74–77, May-June
2011.

[17] Hey-Rays. http://www.hex-rays.com/.
[18] S. Johnson. Lint, a C program checker. Technical Report 65,

Bell Laboratories, 1977.
[19] D. Larochelle and D. Evans. Statically detecting likely

buffer overflow vulnerabilities. In Proceedings of the 10th
USENIX Security Symposium, 2001.

[20] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In Proceed-
ings of the International Symposium on Code Generation
and Optimization (CGO), Palo Alto, California, 2004.

[21] C. Meadows. A procedure for verifying security against type
confusion attacks. In IEEE Computer Security Foundations
Workshop (CSFW), Pacific Grove, California, June 2003.

[22] Microsoft. static cast Operator. Microsoft Developer
Network. http://msdn.microsoft.com/en-us/
library/c36yw7x9%28v=vs.80%29.aspx.

[23] Microsoft. Microsoft Security Bulletin MS09-
035. Microsoft TechNet, July 2009. http:
//www.microsoft.com/technet/security/
bulletin/Ms09-035.mspx.

[24] Microsoft. Microsoft Security Bulletin MS10-017.
http://www.microsoft.com/technet/
security/bulletin/MS10-017.mspx, March
2010.

[25] H. Pande and B. Ryder. Data-flow-based virtual function
resolution. In Proceedings of the Third International Sym-
posium on Static Analysis (SAS), 1996.

[26] H. D. Pande and B. G. Ryder. Static type determination for
C++. In Proceedings of the 6th USENIX C++ Technical
Conference, 1994.

[27] Pete Becker. Working Draft, Standard for Programming
Language C++. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2005/n1905.pdf.

[28] P. Sabanal and M. Yason. Reversing C++. In Proceedings
of BlackHat DC, 2007.

[29] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. De-
tecting format string vulnerabilities with type qualifiers. In
Proceedings of the 10th USENIX Security Symposium, 2001.

[30] A. Slowinska, T. Stancescu, and H. Bos. Howard: A dy-
namic excavator for reverse engineering data structures. In
Proceedings of the Network and Distributed Systems Secu-
rity Symposium (NDSS), 2011.

[31] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager,
M. Kang, Z. Liang, J. Newsome, P. Poosankam, and P. Sax-
ena. BitBlaze: A new approach to computer security via
binary analysis. In International Conference on Information
Systems Security, 2008.

[32] Sparse. https://sparse.wiki.kernel.org/
index.php/Main_Page.

[33] Splint. http://splint.org/.
[34] B. Stroustrup. The Design and Evolution of C++. Pearson

Education, 1994.

[35] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw. ITS4:
A static vulnerability scanner for C and C++ code. In Pro-
ceedings of the 16th Annual Computer Security Applications
Conference (ACSAC), 2000.

[36] Wikipedia. static cast. http://en.wikipedia.org/
wiki/Static_cast.

[37] Y. Xie, A. Chou, and D. Engler. Archer: Using symbolic,
path-sensitive analysis to detect memory access errors. In
Proceedings of the European Software Engineering Confer-
ence (ESEC), 2003.

A ClassTracker Output

The following is the output from ClassTracker when run
against the LLVM IR shown in Figure 5.

Completed enumeration of class: sub_401070

Completed enumeration of class: sub_4010A0

==

call void %29()
Tracked Back To: %11 = phi %0** [%9, %"401019"],
[%Class0, %"401010"] ; <%0**> [#uses=2]
WARNING: Multiple class definitions reach use
Tracking Class: Class0
Tracked Back To: %Class0 = alloca %0* ; <%0**> [#uses=2]

call void %29() #sub_4010B0

==

call void %35()
Tracked Back To: %11 = phi %0** [%9, %"401019"],
[%Class0, %"401010"] ; <%0**> [#uses=2]
WARNING: Multiple class definitions reach use
Tracking Class: Class0
Tracked Back To: %Class0 = alloca %0* ; <%0**> [#uses=2]

call void %35() #sub_401080

==

call void %41()
Tracked Back To: %23 = phi %0** [%21, %"401032"],
[%Class1, %"401029"] ; <%0**> [#uses=3]
WARNING: Multiple class definitions reach use
Tracking Class: Class1
Tracked Back To: %Class1 = alloca %0* ; <%0**> [#uses=2]

call void %41() #sub_4010B0

==

call void %47()
Tracked Back To: %23 = phi %0** [%21, %"401032"],
[%Class1, %"401029"] ; <%0**> [#uses=3]
WARNING: Multiple class definitions reach use
Tracking Class: Class1
Tracked Back To: %Class1 = alloca %0* ; <%0**> [#uses=2]

call void %47() #sub_4010C0

==

call void %53()
Tracked Back To: %23 = phi %0** [%21, %"401032"],
[%Class1, %"401029"] ; <%0**> [#uses=3]
WARNING: Multiple class definitions reach use
Tracking Class: Class1
Tracked Back To: %Class1 = alloca %0* ; <%0**> [#uses=2]

ERROR: Call to offset outside bounds of vtable

B ClassTracker Output

The following is the output from ClassTracker when run
against the LLVM IR shown in Figure 7a.

Completed enumeration of class: sub_401080

Completed enumeration of class: sub_4010C0

==

call void %6()
Tracked Back To: %Arg_esi_addr = alloca i32 ; <i32*> [#uses=6]
Tracked Back To: %19 = call i32 @sub_401000(i32 %18) ; <i32> [#uses=0]
Tracked Back To: %11 = phi %0** [%9, %"401039"],
[%Class0, %"401030"] ; <%0**> [#uses=2]
WARNING: Multiple class definitions reach use
Tracking Class: Class0
Tracked Back To: %Class0 = alloca %0* ; <%0**> [#uses=2]

call void %6() #sub_401090

==

call void %13()
Tracked Back To: %Arg_esi_addr = alloca i32 ; <i32*> [#uses=6]
Tracked Back To: %19 = call i32 @sub_401000(i32 %18) ; <i32> [#uses=0]
Tracked Back To: %11 = phi %0** [%9, %"401039"],
[%Class0, %"401030"] ; <%0**> [#uses=2]
WARNING: Multiple class definitions reach use
Tracking Class: Class0
Tracked Back To: %Class0 = alloca %0* ; <%0**> [#uses=2]

call void %13() #sub_4010A0

==

call void %20()
Tracked Back To: %Arg_esi_addr = alloca i32 ; <i32*> [#uses=6]
Tracked Back To: %19 = call i32 @sub_401000(i32 %18) ; <i32> [#uses=0]
Tracked Back To: %11 = phi %0** [%9, %"401039"],
[%Class0, %"401030"] ; <%0**> [#uses=2]
WARNING: Multiple class definitions reach use
Tracking Class: Class0
Tracked Back To: %Class0 = alloca %0* ; <%0**> [#uses=2]

call void %20() #sub_4010B0

==

call void %6()
Tracked Back To: %Arg_esi_addr = alloca i32 ; <i32*> [#uses=6]
Tracked Back To: %21 = call i32 @sub_401000(i32 %20) ; <i32> [#uses=0]
Tracked Back To: %Class1 = alloca %0* ; <%0**> [#uses=2]

call void %6() #sub_401090
#sub_401090

==

call void %13()
Tracked Back To: %Arg_esi_addr = alloca i32 ; <i32*> [#uses=6]
Tracked Back To: %21 = call i32 @sub_401000(i32 %20) ; <i32> [#uses=0]
Tracked Back To: %Class1 = alloca %0* ; <%0**> [#uses=2]

call void %13() #sub_4010A0
#sub_4010D0

==

call void %20()
Tracked Back To: %Arg_esi_addr = alloca i32 ; <i32*> [#uses=6]
Tracked Back To: %21 = call i32 @sub_401000(i32 %20) ; <i32> [#uses=0]
Tracked Back To: %Class1 = alloca %0* ; <%0**> [#uses=2]

ERROR: Call to offset outside bounds of vtable

