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So here’s the problem statement...

For an incoming login request, with correct
credentials, assess level of suspiciousness online and
take an action accordingly.
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What second tactors could we require”

Prove you're a human

I'm not a robot

Establish contact through another channel
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What data do we have to score logins”

e Request data:
|IP address (and derived country, ISP, etc.)
Browser’s user agent (and OS, version, etc.)
Timestamp
Cookies
and more...

e Reputation scores
e (Global counters
e History of member’s previous (successful) logins




Formalizing the problem fturther...

The scoring model must decide whether

Plattack|u, X
P|legitimate|u, X|

> 1

X = random variable representing vector of user data
(timestamp, IP address, user agent, etc.)

u = random variable representing user whose account is being
accessed




Computation isn’t straightforward...

The scoring model must decide whether

Plattack|u, X]|
P|legitimate|u, X|

> 1

Hard to estimate likelihood ratio directly from the data:
e Most members are never attacked (numerator is 0)
¢ Only a few samples per member.

e Members come from previously unseen values of X
(IP addresses, browsers, etc.)
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Computing the likelihood of attack

Assumptions:
Attack features are independent of the member being attacked
Features are class conditionally independent
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Computing the likelihood of attack

Global likelihood of

Asset Reputation Score seeing data X

(interpreted as a probability) Value of account
to attacker
attack] 1\A " pridfattac
Priattack|u, X Pri.X Priulattac
: = Prlattack| X] - :
Pr|legitimate|u, X] yPr[Xu] Pr|u]
Appearance of data X Likelihood of member u
in u's (legitimate) login history logging in

Remember we said members come from previously unseen values
of x (IP addresses, browsers, etc.) ...



Smoothing

Q: How do we estimate Pr|X|u] when Xis an IP address
that v has never logged in from?

A: We have auxiliary information about unseen |Ps:

e Use ISP- or country-level data to estimate probabilities.

e (ive higher weight to unseen events from a known |SP.
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Smoothing via Backoff

Pbackoff[X|U] — PK:k[Xl’U,]

where K represents level of granularity
and k represents the most granular level.
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Smoothing via Interpolation

Or, take a linear combination of the estimates Px [X |u]

Pinterp [XIU] — ZK /\KPK [Xlu]

where K represents various levels of granularity.
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System architecture
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Experiments

Prototype model using two features:
IP hierarchy & user-agent hierarchy

Test data:

6 months of successful login attempts (compromised and
legitimate)

unsuccessful login attempts from botnet observed in Jan 2015

Simple Heuristic: Country Mismatch
99% of Jan 2015 attack blocked on country mismatch

6 Month dataset:
Detection rate: 7% , False Positives: 4%
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Experiments

Attacker AUC | TP @ 10% FP
Dumb password-only 1.00 1.00
Simulated botnet 0.99 0.99
Researching 0.99 0.99
Phishing 0.92 0.74
Real Botnet 0.97 0.95
Compromised accounts | 0.93 0.77

Simulated four attacks:
Dumb attack: single IP, scripting useragent
Botnet attacker: rotates IPs and useragents
Researching attacker: scrapes target’s country info
Phishing attacker: captures IP and user agent data
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Further directions

Can the adversary learn the classification boundary?
e How many queries are necessary?

Use nearline scoring to further classity “gray area.”
e (Combine login score with post-login activity.

More features!
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