
Pitfalls in Designing Zero-Effort Deauthentication:

Otto Huhta∗, Prakash Shrestha†, Swapnil Udar∗, Mika Juuti∗,
Nitesh Saxena† and N. Asokan‡

∗Aalto University
†University of Alabama at Birmingham

‡Aalto University and University of Helsinki

NDSS’16, 24 February, San Diego, CA, USA

Opportunistic Human Observation Attacks

2

The deauthentication problem

• Threat:
• unauthorized access to a terminal

• after legitimate user has walked away

• What we actually want is zero-effort deauthentication

• Both innocent and malicious adversaries

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

3

Zero-effort deauthentication systems

Terminal

Attacker

• Already in use!
• BlueProximity

• Keyless Entry in high end cars

• Based on short-range wireless channels: RSS from user devices

http://sourceforge.net/projects/blueproximity/

Legitimate User

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

http://sourceforge.net/projects/blueproximity/
http://sourceforge.net/projects/blueproximity/
http://sourceforge.net/projects/blueproximity/

4

ZEBRA: a recent proposal for deauthentication

[1] Mare, et al., “ZEBRA: Zero-effort bilateral recurring authentication.”

IEEE Symposium on Security and Privacy (SP) 2014

http://dx.doi.org/10.1109/SP.2014.51

Authenticator:
• Compare both sequences
• Decide “Same User” or

“Different User”

2

Targeted for hospital wards, factory floors, …
User may step away from Terminal but lingers nearby

Bracelet

Short-range Wireless

Channel

Terminal Legitimate User

Input (Keyboard/Mouse)1a

Accept/Reject3

1b Sensor Data

• No user profiling!

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

http://dx.doi.org/10.1109/SP.2014.51

5

ZEBRA works by averaging out
misclassifications [1]

Window size 10,
Threshold 70%

8/10 matches ≥ 70%
User remains logged in

Bracelet data  classes:
1. (any) typing
2. (any) scrolling
3. mouse ↔ keyboard movements (MKKM)

T T
MK
KM S S

MK
KM T T T T T

MK
KM

MK
KM T T

T T T S MK
KM

MK
KM T T S T MK

KM
MK
KM

MK
KM T T

Actual input sequence (Terminal)

Predicted input sequence (bracelet)

T

T

Authentication window

(Bracelet)

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

6

Only interactions seen at Terminal
considered [1]

Interaction
Extractor

Interaction
Classifier

Authenticator

Terminal

Transfer sensor data

Input events

Accelerometer
& Gyroscope

measurements

Input Events
Listener

Segmenter
Feature

Extractor

Segmented
data

Features

Input events

Predicted
Interaction
sequence

ZEBRA Engine

“Same user”
Or

“Different user”

Interaction
time
interval

Actual
Interaction
Sequence

Bracelet

User

– Why? User privacy [1], accuracy of classifier?

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

7

ZEBRA vs malicious attackers [1]

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

– Attacker required to mimic all of victim’s
interactions

– 20 participants as attackers; researchers as victims

• Victims verbally announce their interactions

Sensor Data

Input (Keyboard/Mouse) by
mimicking Victim ’s activities

2

Bracelet

Accept/Reject4
Input (Keyboard/Mouse)1a

Authenticator decides
“Same user” or

“Different user”?
3

Benign Channel

Adversary Channel

Attacker with clear
view/sound of Victim Device

Attacked TerminalVictimVictim Device

1b

8

Does ZEBRA resist malicious attackers?
[1]

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

Fraction of adversaries remaining logged in
(window size = 21, threshold=60%)

g = deauthentication
at # failed windows

Average window
length = 6s

9

Is this a reasonable adversary model?

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

10

More realistic adversary models

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

1. Naïve all-activity
– As in Mare et al [1]: mimics all

2. Opportunistic keyboard-only
– Mimics selected typing

3. Opportunistic all-activity
– Mimics selected activities

4. Audio-only opportunistic KB-only
– Mimics selected typing,

but no line of sight

Interaction
devices

Observation
channels

11

Our implementation of ZEBRA

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

• Implemented end-to-end ZEBRA from scratch

• Using off-the-shelf Android Wear smartwatch

– Wider applicability: existing affordable models

• Re-use ZEBRA parameters/methodology
wherever possible

12

Parameter comparison

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

Parameter name Original implementation Our implementation

Minimum duration 25 ms 25 ms

Maximum duration 1 s 1 s

Idle threshold 1 s 1 s

Window size 21 20

Match threshold 60% 60%

Overlap fraction Not reported 0

Grace period 1, 2 1, 2

Classifier Random forest Random forest

Classifier training data Form filling Form filling

Validation methodology Not reported Leave-one-user-out

• Bracelet hardware, datasets used...

13

Our implementation Architecture

Synchronize time,
transfer interactions

and feature set

Input events

Accelerometer
& Gyroscope

measurement
s

Communicator

Input Events
Listener

Interaction
Extractor

Segmenter

Interaction
Classifier

Feature
Extractor

Segmented
data

Features

Input
events

Authenticator

Predicted
Interaction
sequence

ZEBRA Engine

Same user
Or

Different
user

Interaction time
interval

Actual
Interaction
Sequence

Terminal

Bracelet

User

Communicator

Interaction
time interval

Features

ZEBRA Engine

Android Wear application for smartwatch
Matlab Random Forest classifier for interaction classification
Java application for Terminal Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

14

Our implementation of ZEBRA (2)

Zebra/java$ find –name *.java -print | xargs grep –v ”\\\\” |

grep –v ”1$” | grep –v ”*” | wc –l

Zebra/java$ 7706

Synchronize time,
transfer interactions

and feature set

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

15

Naïve malicious attackers: comparison

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

– 20 participants as victims; researchers as attackers

– All attackers are deauthenticated

Our naïve all-activity attackerOriginal malicious attacker (naïve) [1]

g = deauthentication
at # failed windows

16

ZEBRA does not resist opportunistic
malicious attackers

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

– 20 participants as victims; researchers as attackers

– Attackers do not eventually get logged out

Our opportunistic KB-only attackerOriginal malicious attacker (naïve)

g = deauthentication
at # failed windows

17

Can still protect against innocent
“attackers”

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

– mismatched traces model
innocent attackers

– All users eventually
deauthenticated

– Avg. window length = 14s

Mismatched user traces

g = deauthentication
at # failed windows

18

What went wrong? [1]

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

1. Inadequate adversary modeling in [1]!

2. Fundamental design flaw in ZEBRA:
”Authentication based on input source controlled by adversary”

– Attacker controls Terminal:

• Can choose type/timing of interactions

– A case of tainted input:

• Standard fixes

https://xkcd.com/327/

https://xkcd.com/327/

19

Strengthening ZEBRA [1]

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

• Recognizing more terminal interactions

• Recognizing off-terminal interactions!

• Black/whitelisting, sanitizing input

• Augmenting with trusted input: RSS

20

Take-home message

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

1. Zero-effort security is appealing

– Balance between usability and security

– Care in defining adversary model

2. ZEBRA susceptible to opportunistic attackers,
still effective for preventing accidental misuse

Ask me for a demo!

