Pitfalls in Designing Zero-Effort Deauthentication:
Opportunistic Human Observation Attacks

Otto Huhta*, Prakash Shrestha®, Swapnil Udar*, Mika Juuti*,
Nitesh Saxena®and N. Asokan?

*Aalto University
"University of Alabama at Birmingham
*Aalto University and University of Helsinki

NDSS’16, 24 February, San Diego, CA, USA A! “ %

Aalto University ety OF HELSINKI

The deauthentication problem

* Threat:

e unauthorized access to a terminal
 after legitimate user has walked away

 What we actually want is zero-effort deauthentication

e Both innocent and malicious adversaries

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

Zero-effort deauthentication systems

* Already in use! £ sueroimy
* Bl ue P roxim |ty http://sourceforge.net/projects/blueproximity/

e Keyless Entry in high end cars

* Based on short-range wireless channels: RSS from user devices

2
Terminal

Attacker

’\ ™~
Legitimate User

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication 3

http://sourceforge.net/projects/blueproximity/
http://sourceforge.net/projects/blueproximity/
http://sourceforge.net/projects/blueproximity/

ZEBRA: a recent proposal for deauthentication

Targeted for hospital wards, factory floors, ...
User may step away from Terminal but lingers nearby

Short-range Wireless

Channel

Bracelet
@ ‘7 Sensor Data\@f ﬂ
Authenticator: :

€ \
* Compare both sequences ‘ ‘In ut (Keyboard/Mouse .
* Decide “Same User” or E @ P (y /) v
“Different User” ’ . >

@ Accept/Reject

Terminal Legitimate User

* No user profiling!

[1] Mare, et al., “ZEBRA: Zero-effort bilateral recurring authentication.”
IEEE Symposium on Security and Privacy (SP) 2014
http//dxd0|orq/10 1109/SP201451 Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication 4

http://dx.doi.org/10.1109/SP.2014.51

ZEBRA works by averaging out
misclassifications [1]

Authentication window
Actual input sequence (Terminal)

MK MK MK [l MK
KM KM kv Il KM
Predicted input sequence (Bracelet)l

MK MK MK MK MK
KM KM KM KM KM

Window size 10, 8/10 matches > 70%
Threshold 70% User remains logged in

Bracelet data = classes:
1. (any) typing
2. (any) scrolling
3. mouse <> keyboard movements (MKKM)

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

Only interactions seen at Terminal
considered [1]

Terminal

Input events . Input Events W Input events

'L Listener J

Interaction
Extractor

A 4

o

Accelerometer Transfer sensor data

Interaction
Classifier

Feature
Extractor

& Gyroscope

measurements
\
\

v

\
1
; 1
\ |
! l
s . ’ : Actual [
. |
| Interaction |
! Sequence |
| ' |
, 1 “Same user”
.) |
! Ir.1teract|0n Authenticator Or
! time ‘“Different user”
I interval h :
1
I Predicted |
: Interaction
|
: sequence
1
| Segmented Features |
| I
\ |
T |
\ I

Segmenter

\ ZEBRA Engine S

B

— Why? User privacy [1], accuracy of classifier?

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication 6

ZEBRA vs malicious attackers [1]

Authenticator decides
Benign Channel “Same user” or
“Different user”?

=== Adversary Channel

Input (Keyboard/Mouse) by
Bracelet ‘ = mimicking Victim{(V)’s activities
‘ Input (Keyboard/Mouse) | ’ YQ Sensor Data .
! : - @ Accept/Reject
“ — - >

Attacker {.4) with clear
view/sound of Victim Device (VD)

Victim Device (VD) Victim (V) Attacked Terminal (A7)

— Attacker required to mimic all of victim’s
interactions

— 20 participants as attackers; researchers as victims

* Victims verbally announce their interactions

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication 7

Does ZEBRA resist malicious attackers?

[1]

2 10 : ! . ; | | g = deauthentication
3 : | ' § | 9=1 at # failed windows
Sy o e

g § i Average window

o - : : : —

® oel... | . R L S S o] length = 6s

S o : ! : : ;

E 5 |

L 5 |

£ 041 | e R

] : :

= . .

2 . : : : : :

© : : :

= . .

S 5 |

E 0.0 | | 1 | !

L 0 2 4 6 8 10 12 14

Window (w)

Fraction of adversaries remaining logged in
(window size = 21, threshold=60%)

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication 8

s this a reasonable adversary model?

More realistic adversary models

Interaction Observation
. Naive all-activity devices é channels
— As in Mare et al [1]: mimics all "))
. Opportunistic keyboard-only
— Mimics selected typing @)
selected

selected

Our implementation of ZEBRA

* Implemented end-to-end ZEBRA from scratch

* Using off-the-shelf Android Wear smartwatch
— Wider applicability: existing affordable models

* Re-use ZEBRA parameters/methodology
wherever possible

Parameter comparison

Minimum duration 25 ms 25 ms

Maximum duration 1s 1s

|dle threshold 1s 1s

Window size 21 20

Match threshold 60% 60%

Overlap fraction Not reported 0

Grace period 1, 2 1, 2

Classifier Random forest Random forest
Classifier training data Form filling Form filling
Validation methodology Not reported Leave-one-user-out

 Bracelet hardware, datasets used...

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
\

4
1

Accelerometer
& Gyroscope

measurement
_

A

Our implementation Architecture

Bracelet

----------------------- -
~
A Y
4 \

Segmented

Segmenter

data

?

Interaction
time interval

ZEBRA Engine

Feature
Extractor

Features

Communicator

Input events

Terminal

Input Events

Synchronize time,
transfer interactions
and feature set

'l Listener

Input
events

v Actual

Interaction
Sequence

Interaction

Extractor Authenticator

Android Wear application for smartwatch

— e i — — ——————————————

!nteractlon time Predicted
interval 7
Interaction
sequence
. Features f Interaction
Communicator 'L Classifier
\ u
\
N ZEBRA Engine
S -7

Matlab Random Forest classifier for interaction classification

Java application for Terminal

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

Same user
Or

Different
user

13

Our implementation of ZEBRA (2)

Device Connectivity

COMNMECTED

Main Sensor Savvice is ruing \ | _ : P
Service Intialized sensor listeners ‘ = . A Classifier Connectivity

Proximity IMMEDIATE . ‘ i /

w | Connect to 131300-r00S-0

COMMECTED

- Synchronize time,
transfer interactions
and feature set

P rosimity

IMMEDIATE

Authentication result

N Current YT

Zebra/java$ find —-name *.java -print | xargs grep -v “\\\\”
grep -v ”18” | grep -v ”"*” | wc -1
Zebra/java$ 7706 Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

14

Fraction of adversaries with access in window w

Naive malicious attackers: comparison

g = deauthentication
at # failed windows

1.0 T 1
_9:1
. . s . N — —g=2
0.6 it --
0.4 bt ---
s N . . .
0.0 L L L . 10 15 20 25 30
0 2 4 6 8 10 Windows (w)
Window (w)
Original malicious attacker (naive) [1] Our naive all-activity attacker

— 20 participants as victims; researchers as attackers
— All attackers are deauthenticated

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication 15

/EBRA does not resist opportunistic
malicious attackers

g = deauthentication
at # failed windows

—_

o
©

o
)

e
~
T

o
[e2]
T

———— —— — ——— — — — — —

o ¢
~
T T

o
w
T

Fraction of logged in adversaries
o
a

o
o

Fraction of adversaries with access in window w

0.1
Tl]] |] 0 i i i i L i
2 4 6 8 10 12 14 5 10 ‘ 15 20 25 30
Window (w) Windows (w)
Original malicious attacker (naive) Our opportunistic KB-only attacker

— 20 participants as victims; researchers as attackers
— Attackers do not eventually get logged out

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication 16

Can still protect against innocent
“attackers”

g = deauthentication

— mismatched traces model ~t # failed windows
innocent attackers - =T

o9l - - e —_—— =2

o
00

— All users eventually
deauthenticated

e
‘\I

0.6

— Avg. window length = 14s §™[|\ .

Ly o S R o |

Fraction of logged in "wrong" users

i I i j
10 15 20 25 30
Windows (w)

Mismatched user traces

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication 17

What went wrong? [1]

1. Inadequate adversary modeling in [1]!
2. Fundamental design flaw in ZEBRA:
“Authentication based on input source controlled by adversary”

— Attacker controls Terminal:
* Can choose type/timing of interactions

— A case of tainted input:

HI, THIS 1S OH DEAR —DID HE | DID YOU REALLY WELL, WE'VE LOST THIS
YOUR SON'G SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WERE HAVING SOME IN A WAY - Robert'); DROP I HOPE YOURE HAPPY.
(OMPUTER TROUBLE. TABLE Students;-~ 7 \:'

R R AND I HOPE
j) ~ OH.YES UITTLE - YOUVE LEARNED

m ROBBY TABLES, T0 SANITIZE YOUR
» ! ﬁ WE CALL HIM. DATABASE INPUTS.

https://xkcd.com/327/ Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication 18

https://xkcd.com/327/

Strengthening ZEBRA [1]

Recognizing more terminal interactions
Recognizing off-terminal interactions!
Black/whitelisting, sanitizing input
Augmenting with trusted input: RSS

Take-home message

1. Zero-effort security is appealing
— Balance between usability and security
— Care in defining adversary model

2. ZEBRA susceptible to opportunistic attackers,
still effective for preventing accidental misuse

Ask me for a demo!

Mika Juuti: Pitfalls in Designing Zero-effort Deauthentication

20

