
Henry Carter1, Benjamin Mood2, Patrick Traynor2, Kevin Butler2

1School of Computer Science, College of Computing, Georgia Institute of Technology
2SENSEI Center, Computer & Information Science & Engineering Department, University of Florida

Outsourcing Secure Two-Party Computation as a Black Box

•  For large circuits, the outsourced protocol and two-party
protocol run in approximately the same time.

•  This overhead will be further reduced as better SMC
protocols and MAC protocols develop.

Secure multiparty computation (SMC) offers a technique to preserve functionality
and data privacy in mobile applications. Current protocols that make this costly
cryptographic construction feasible on mobile devices securely outsource the
bulk of the computation to a cloud provider. However, these outsourcing
techniques are built on specific secure computation assumptions and tools, and
applying new SMC ideas to the outsourced setting requires the protocols to be
completely rebuilt and proven secure. In this work, we develop a generic
technique for lifting any secure two-party computation protocol into an
outsourced two-party SMC protocol. By augmenting the function being evaluated
with auxiliary consistency checks and input values, we can create an outsourced
protocol with low overhead cost. Our implementation and evaluation show that in
the best case, our outsourcing additions execute within the confidence intervals
of two servers running the same computation, and consume approximately the
same bandwidth. In addition, the mobile device itself uses minimal bandwidth
over a single round of communication. This work demonstrates that efficient
outsourcing is possible with any underlying SMC scheme, and provides an
outsourcing protocol that is efficient and directly applicable to current and future
SMC techniques.

•  The goal of SMC is to allow mutually distrustful parties to
jointly compute a result.

•  Security is defined by input privacy and output
correctness, and is proven through the real/ideal
simulation paradigm.

•  Techniques for performing SMC include garbled circuits,
secret sharing, homomorphic encryption, and others.

•  The optimal technique differs based on function
representation, available bandwidth, and number of
parties.

•  Outsourcing to the Cloud offers a way to run costly
protocols between mobile devices and app servers.

•  Previous protocols build on fixed SMC techniques and
require significant re-engineering to update.

•  Mobile applications use private data. SMC allows this data
to remain encrypted, but requires a high computational cost.

•  We demonstrate a protocol for outsourcing any two-party
SMC protocol for efficient use on a mobile device.

•  Our future work will explore ways to relax security in
exchange for practical efficiency and use-cases.

Fig. 1. Real vs. Ideal world execution

Secure Multiparty Computation

Performance

Conclusions & Future Work

This material is based on research sponsored by DARPA under agreement
number FA8750-11-2-0211
For further information, contact Henry Carter (carterh@gatech.edu).

Fig. 2. The Black Box Protocol

Black Box Construction

•  Mobile apps use a significant amount of private user data.
•  App servers are not necessarily well-secured or trustworthy

when given this information.
•  Secure Multiparty Computation (SMC) allows apps to

process encrypted data, but is computationally expensive. Fig. 6. Execution time for multiple test applications

•  Our protocol outsources any two-party SMC protocol.
•  The mobile device performs minimal input preparation

operations, then hands off computation to the app server
and Cloud.

Fig. 3. The Augmented Circuit

Fig. 4. An example facial recognition application

•  We show the practicality of our protocol in an example
application: secure facial recognition.

•  The mobile can compare a picture to a database of faces
without learning the full database contents. Also, the
database does not learn the contents of the query.

x y

f(x,y)
f(x,y) f(x,y)

x y

x y

 1

 10

 100

 1000

Dijkstra10 Dijkstra20 Dijkstra50

Ti
m

e
(s

)

Program

SS13
Black Box

 1

 10

 100

 1000

 10000

MatrixMult3x3 MatrixMult5x5 MatrixMult8x8 MatrixMult16x16

Ti
m

e
(s

)

Program

SS13
Black BoxMobile Privacy

3

1 & 6

2

5

2

5

2SFE
4 4

Original circuit

AND

XOR

AND

AND

XOR

De
cr

yp
t o

ne
-ti

m
e

pa
d

Ve
rif

y
M

AC

En
cr

yp
t o

ne
-ti

m
e

pa
d

In
pu

t w
ire

s

O
ut

pu
t w

ire
s

Image
Processing

Black Box
SMC

Result

Fig. 5. Test circuit gate counts and overhead

Program Name SS13 Total BB Total Increase SS13 Non-XOR BB Non-XOR Increase

Dijkstra10 259,232 456,326 1.8x 118,357 179,641 1.5x

Dijkstra20 1,653,542 1,949,820 1.2x 757,197 849,445 1.1x

Dijkstra50 22,109,732 22,605,018 1.0x 10,170,407 10,324,317 1.0x

MatrixMult3x3 424,748 1,020,196 2.4x 161,237 345,417 2.1x

MatrixMult5x5 1,968,452 3,360,956 1.7x 746,977 1,176,981 1.6x

MatrixMult8x8 8,069,506 11,354,394 1.4x 3,060,802 4,075,082 1.3x

MatrixMult16x16 64,570,969 77,423,481 1.2x 24,494,338 28,458,635 1.2x

RSA128 116,083,727 116,463,648 1.0x 41,082,205 41,208,553 1.0x

•  Our experiments use a garbled circuit SMC scheme and
measure the overhead incurred from outsourcing.

•  For large circuits, the added gate count becomes minimal.

•  Rather than adding consistency checks to the protocol to
ensure correctness, we add them to the evaluated circuit.

1.  Input preparation

2.  Input delivery

3.  Circuit augmentation

4.  Circuit evaluation

5.  Output delivery

6.  Output verification

