
Korean Shellcode with ROP Based Decoding

Ji-Hyeon Yoon* and Hae Young Lee
Department of Information Security

Seoul Women’s University
Republic of Korea

{ jhy,haelee}@swu.ac.kr

Our Previous Work (Korean Shellcode)

Conclusions & Future Work

 Korean shellcode with ROP based decoding:
 Shellcode can be hidden in Korean text and
reconstructed by ROP based gadgets.
 May evade many detection techniques thanks to
the elimination of the signature.
 Easy to be implemented, yet effective against
payload inspection and LBR based defensive
measures.
 Can be applied to other East Asian languages
such as Chinese and Japanese.

 The future work includes:
 Automation of our approach
 Detection of Korean shellcode
 Applications to other languages

Our Present Approach Background & Motivation

 Demerits in Korean shellcode
 Shellcode embedded in Korean text could be
detected due to ‘the signature of its decoder.’

 Return-Oriented Programming (ROP)
 A computer security exploit technique that
allows an attacker to divert control flow and
execute arbitrary code using existing codes –
without injecting any code.
 Gadget: several small instruction sequences of
existing code used in ROP. Gadgets end with an
indirect ret instruction and are chained together
through that instruction.
 Demerits: Conducting malicious operations
through ‘pure’ ROP may be very difficult or even
impossible to implement if there is no
appropriate instructions in the target program.

 Motivation – How about decoding Korean
shellcode based on ROP?
 The signature of Korean shellcode may be
virtually eliminated if we can reconstruct it using
ROP.
 It would be easier to implement than ‘pure’
ROP; we just need to find appropriate instructions
for the reconstruction.

 Background & Motivation
 Sino-Korean: About 6~70% words in the Korean vocabulary originated from Chinese words.
 Chinese characters are often used to clarify meaning of Sino-Korean.
 Korean text may include Korean, Chinese, alphanumeric characters, and symbols, which make up a large portion
(approximately 70%) of the UTF-16 character set.

 Basic Idea
 Each 2-byte code of shellcode is transformed into a Chinese character and then placed within Korean text.
 Many 2-byte codes will already appear to be Chinese characters.
 The others can be transformed into Chinese ones by XOR operations.

 Our Approach: Hiding shellcode by placing pseudo-Chinese words
 A simple decoder retransforms these words through XORs hinted by Korean characters.

 Merits
 Shellcode can be easily embedded within Korean text and reconstructed by a simple decoder.
 Shellcode hidden in text may not be detected by automatic and even manual payload inspection.
 It could be extended to East Asian languages that use Chinese characters (e.g., Chinese and Japanese).

1) Hiding Shellcode in Korean Text
 Some 2-byte codes already will appear to be Chinese characters and the others can be easily transformed
into Chinese characters through XORs.
 These Chinese characters are grouped into pseudo-Chinese words based on reconstruction operations
(XOR masks in the figure).
 Each pseudo-Chinese word is placed within text.
 Some ‘real’ Chinese words can be placed to make text difficult to be distinguished from ‘real’ text.

2) Data for ROP Based Decoding
 Korean shellcode is reconstructed through chaining ‘gadgets.’
 Gadgets are consist of instructions existing in the target program and end with a ret instruction.
 A payload contains: ① Korean shellcode, ② starting addresses of gadgets, and ③ starting address of
reconstructed shellcode.
 Each Chinese word is retransformed through an XOR with a ‘hint’ in text.
 Any real Chinese words can be ignored based on hints.

3) Shellcode Reconstruction
① Injecting Korean shellcode

Through the buffer overflow vulnerability of the target program, the stack is overwritten by a payload that
includes Korean shellcode and data for ROP based decoding.

② Diverting Control Flow
The first encounter with a ret instruction diverts the control flow of the program to the first gadget.

③ Reconstructing Shellcode by Gadget Chaining
The other gadgets are executed by gadget chaining, so that shellcode is reconstructed.

④ Executing Reconstructed Shellcode
The encounter with a ret instruction within the last gadget diverts the flow to the reconstructed shellcode,
so that it is finally executed.

Others

32.68%

Chinese

character

39.89%

Korean

17.04%

ASCII &

Symbols

10.39%

Portion of

Unicode characters

