
Chobham: Taming JIT-ROP Attacks Ben Niu & Gang Tan
Lehigh University

What are JIT-ROP Attacks?

JIT-ROP, or Just-In-Time Return-
Oriented Programming, is an attack
form that defeats fine-grained ASLR. It
harvests ROP gadgets at runtime by
exploiting memory disclosure bugs and
reading code pages. Then it compiles
the attack payload using the gadgets
found. The workflow is shown in the
following diagram.

CFI with Input-triggered CFG Generation

Control-Flow Integrity (CFI) is a general approach to defending
against ROP attacks. Traditionally, CFI precomputes a CFG for the
victim program, and instruments the program’s binary to ensure
that any runtime control-flow should not deviate from the CFG.
CFI, especially when a fine-grained CFG is generated for the target
program, makes it more difficult to chain ROP gadgets, since the
chain has to follow a control-flow path allowed by the benign
program. Thus in general, the finer the CFG is, the more security
we gain from CFI in defeating ROP attacks. Although it is possible
that we can further improve our static analysis to extract more
precise CFGs, we still have a problem that the CFG has to be
“large” enough to cover all possible program inputs. Therefore,
even in the “perfect” CFG, there might still be lots of functionality-
irrelevant control-flow edges that are not needed for a concrete
input. These edges might be ammunition for attackers.

Instead, we propose input-triggered CFI (ITCFI), which generates
the CFG required for each concrete input at runtime. Observing
that any program has to firstly define a target address then use it in
an indirect control-flow transfer, we can dynamically add edges to
the CFG after a target is firstly defined. The following indirect
branch targets need to be considered:
 Virtual methods. Only if a C++ class’s constructor is invoked, then

all its virtual methods’ be reachable.
 Global functions or static member methods. Only if their addresses

are explicitly taken can they be reachable.
 Return addresses. Only if a return address’s preceding call

instruction is executed can it be reachable.
 Catch clauses. Only if a catch clause whose function has been

entered for the first time can it be reachable.
For each kind of the above, we can instrument its definition site to
add it as reachable in the CFG. In addition, we can provide APIs for
developers to dynamically drop CFG edges.

The performance, compared to the conventional CFI, would be
worse due to dynamic CFG edge addition. However, since the
edges are added once, we can dynamically patch the edge addition
instrumentation code to minimize the overhead to a per-program
constant. For example, a return address can be added into the CFG
in the following way:

Heap Zone

For programs, especially web browsers that heavily use the
memory heap, we could identify the objects that are always in the
heap and sanitize their methods to check whether the access
happens in memory areas other than the heap.

Callee-saved Register Restoration Randomization

Conventionally, attackers can use call-preceded gadgets to control
register values. However, CFI makes it hard for attackers to
control arbitrary register values, but still easy for those callee-
saved registers defined by the calling convention. During attacking,
the attackers need to control such register values and find a
control-flow path to pass these values to function argument
passing registers (on x86-64). By randomizing the order in which
the registers are restored, we can raise the bar of attacking.

It should be noted that JIT-ROP attacks
do not necessarily require a JIT
compiler. Any exploit that finds and
chains ROP gadgets on-the-fly can be
considered as JIT-ROP. Since JIT-ROP
requires (1) memory disclosure; and (2)
ROP gadget chaining, we can mitigate it
by restricting disclosed memory and
raising the bar of chaining ROP gadgets,
shown on the right.

Compiled code

call printf
ra_printf:

Load-time code patch

call CFG_Add_RA
ra_printf:

Run-time code patch

call printf
ra_printf:

foo:
// omitted
pop %rbx
pop %rbp
pop %r12
ret

call foo
movq %rbx, %rdi
movq %rbp, %rsi
movq %r12, %rdx
call mprotect

Load-time randomization
foo:
// omitted
pop %rbp // Functions’ prologues as well
pop %r12 // as stack unwinding data (e.g., eh_frame)
pop %rbx // also need to be changed.
ret

Stack

Heap Zone

Code

For each program, we allocate a heap
zone in its address space that only holds
program-allocated heap objects. No stack
and code would be in the heap zone,
therefore, any heap buffer overflow
(sequential) or UAF will not directly steal
or pollute information in the code and
stack. For objects (e.g., JavaScript-
accessible objects) that only operate on
the heap, we can sanitize their access
methods to make sure their access only
happens in the Heap Zone.

Guard Zone

Guard Zone

For example, we can add checks to the ArrayBuffer object to make
sure its element read and write only happen in the heap instead of
the code or stack..

