Towards automated detection of buffer
overrun vulnerabillities: a first step

Jeffrey S. Foster
Eric A. Brewer Alexander Aiken

NDSS 2000 Feb 3, 2000

Introduction

e The state of computer security today Is depressing

. and most holes arise from simple programming errors in legacy C code
e ‘Buffer overruns’ are one of the worst offenders

— A common coding error with uncommonly-devastating effects

A puzzle: spot the bug

ek ﬂdir!f EERITEEET SEESENFES EITE

o ui.’lj FEIELE FLE Ha A L= T EEEREY S F EE R
al FEF RAE ERCEEECE B FE EEPS)
=B] H|!E|J & BETH I EIETE(E [k(R
| ﬂiﬂﬂﬂiinﬂldﬂ H..‘Irﬂ"ll S KTERS T g T bR IFE e
_rlﬂ > IR Dabrl el IS B[R R 51 ER " Bk (B "EREERESERTEL]
g 1..L’-Ii|f||_! S BEEEE] | ECE H]Hdr a4 3438 it'lﬂ.! A

. Udr i (EEE T EEEEEME B] JI]IL'!IL:Idlji-ﬂ R el W R
SRR FEERFF S EE A RIEEIE] [[RERTR :’IH”HJ”U ! ig 1}
k|

[iR TR W
‘_lucm.u.:a.
l.l:..!.h.n.-uﬂ.lu..i.
e TR |
I..L_..l...lu...u.
mlhu_uu
| YT SN
FIPU P g

i
Eh
1.
=l |
'’
o' ind
4

@Q_ulli:muj_.
I.n..u..hi;
e I

;
A A At I] 41T 40
CREEE CEiE SEESE rEER ERrze DR E S EEERELE
EBRE T S EEFEE R S PEERT S RS R e T
T R PRk R SENEEE" 5T EFF < FR FRFFERF

IR EEEER S IR EST RN E [RARS P EgON

]

1

CESNEEFTEFT R BERESefE e

SLEL (1 lF = [F IR %I [Tl A || Idl'if‘iljrll.'lt‘!f_’!ﬂﬂd
4N AL b el R SRS 3) el 34303 Ll o2 LS Tl A
Yl 4 LT il Sl . 350) Tl i
L4 i ol L 5 213 L AR el
SRR SR ey Pl g
e AEELOE X BNk El SRR ERE] R M
LIS P E RN B 1 D B UE T L
ilil]ld? i.ﬂdiﬂ?j LR B il 45 ililt.l ENEENEEENEEN

Here’s sendmail-8.9.3 source; can you spot the coding error?

3

Organization

e Introduction

®

e Techniques for automated detection of buffer overruns
e Evaluation of our prototype

e Summing up

Review

e An example code fragment vulnerable to buffer overruns:

void foo(void) A
char buf [80];
strcpy(buf, gethostbyaddr(...)->hp_hname);

+
e EXxploits are possible by writing past the end of buf.
— Typically allows attacker to execute arbitrary code

— Hacker tools are very good; even an off-by-one error can be exploited

Why are buffer overruns important?

Absolute number of vulnerabilities reported Relative frequency of buffer overruns

Overruns account for 40%-50% of recent holes!
e Compare: this is 2 x what can be blamed on poor crypto

e Upwards trend due to development of hacker tools

Organization

Introduction

Background and motivation

Evaluation of our prototype

Summing up

Overview

Our approach:
e A lint-like tool for analyzing C source code
— Finds potential buffer overruns

— But might issue false alarms, and might miss some bugs—no guarantees!

e Key technique: whole-program static analysis

— Borrow ideas from and theory literature
(Avoid unnecessary innovation.)

Why static analysis?

How do you look for potential vulnerabilities?
e Runtime testing? (i.e., dynamic checking)
+ Some tools already exist [fuzz,Purify, ...]
— But hard to generate test cases, and hard to know when you're done
e Compile time warnings? (i.e., static checking)
+ Opportunity to find and eliminate holes proactively

— But implementation is a challenge

—- Static analysis is potentially very attractive, but how to do it?

Our tool

Approach:
o Simplify!

— e.g.: flow-insensitive analysis

—- Trade off precision for ease of prototyping and scalabillity.

Architecture:
e Constraint-based analysis

— Two phases: constraint generation, constraint solving

10

Notation

Each dynamic quantity of interest gets a set-variable.

If s is a string variable, let len(s) (resp., alloc(s)) denote the set of possible

lengths (resp., number of bytes allocated) for s during a run of the program.

We find a conservative approximation for len(s) and alloc(s).

e Then, checking the safety condition len(s) < alloc(s) is easy.

11

Constraints

Let [m, n] denote the range {m,m + 1,... ,n}.
Constraints take the form, e.g., X C Y, where X, Y are range-variables.

For example,

strcpy(dst,src) ; = len(src) C len(dst)

12

Constraint generation

e Constraint generation is best described by example

— So here is a code snippet to illustrate the analysis:

char buf [128];
while (fgets(buf, 128, stdin)) {
if (!strchr(buf, ’\n’)) {
char error[128];
sprintf (error, "Line too long: %s\n", buf);

die(error) ;

13

The example, with annotations

Original source code The constraints we generate

char buf [128]; [128, 128] C alloc(buf)

while (fgets(buf, 128, stdin)) { [1,128] C len(buf)

if (!strchr(buf, ’\n’)) {
char error[128]; [128,128] C alloc(error)

sprintf (error, "Line too long: %s\n", buf);
len(buf) + 16 C len(error)

die(error) ;

Notice how we focus on primitive string operations?

e \We largely ignore pointer ops; we treat strings as abstract datatypes
(We don’t always catch missing ’\0’ terminators or unsafe pointer
dereferences, but in principle we could, with more effort)
14

The constraint solver

e Uses graph-based algorithms
e Fast, precise, and scalable

= Runs in linear time in practice

And that’s all I'll say. See the paper for more.

15

Organization

e Introduction
e Background and motivation
e Techniques for automated detection of buffer overruns

e Summing up

16

Results

e We implemented the analysis
e \We used the tool to find new vulnerabilities in real programs

— Linux nettools: 7k lines, previously hand-audited
Found several new holes, exploitable from remote hosts

— Latest sendmail: 32k lines, previously hand-audited
Found several new buffer overruns, most likely not exploitable

— Re-discovered old serious holes in e.g. sendmail-8.7.5, popd, ...
(Could have prevented some widespread attacks, if tool had been
available)

e Just a prototype, many rough edges, but it's already useful

17

Limitations

Lots of false alarms:
e Example: 44 warnings for sendmail, only 4 real coding errors

— Mostly because we traded precision for simplicity; see next slide.

e But this still compares quite favorably to the alternatives

— Comparison: grep shows ™ 700 calls to unsafe string ops,
so we reduce the manual auditing effort by 15x over grep

A few false negatives:
e But false negatives appear to be relatively rare.

— Of the (> 10) bugs in sendmail 8.7.5 that have been fixed,
the tool missed only one

18

Possibilities for future iImprovements

Classifying the cause of false alarms in sendmail:

Improved analysis False alarms eliminated

flow-sensitive
flow- and context-sensitive, with pointer analysis
and inter-variable invariant inference

47.5%
95%

(flow-sens. = models control flow;

context-sens. = doesn’t merge function call sites)

e Might do 20x better, using only known techniques?

= Know how to build a much better second system.

19

I SEESES FESEILE
SEEER L‘IHI.'IF*!H‘]

lrl..i(% ﬂﬂllau:jd 35 3 iHLk;Ibﬂldiﬁ ﬂdanl.mu.m EF|
¥ e ELERE ZUER DTSR FRTERICEEION
CEENEEPTERE R RS E s Ee EE EEEE
Y SEFEEER R EERFESTERS CERREBEEE R
M ER AT RS R P R R
il fd I S 30) IS T S
b e R AT ENEE Y R
SN ESCEREEER R ESEEEY P FE R
SEE ST EFRE E R PR EEE FEFEFT
TR RIS MEE P SRS =S | |
S S A U I
00 s ke 3 i WA 42 AR

Shows an overrun. Red spots = lines of code you must understand to find it.

Bug has been there for > 3 years, and has survived several hand audits.

Summary

e A successful research prototype
— Already finding new vulnerabilities in real programs

— But lots of room for improvement

e A promising new methodology: static analysis for code auditing

— Key advantages: proactive security for legacy code;
possibility of compensating for language deficiencies

21

