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Introduction

e The state of computer security today Is depressing

. and most holes arise from simple programming errors in legacy C code
e ‘Buffer overruns’ are one of the worst offenders

— A common coding error with uncommonly-devastating effects



A puzzle: spot the bug
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Here’s sendmail-8.9.3 source; can you spot the coding error?
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Organization

e Introduction

®

e Techniques for automated detection of buffer overruns
e Evaluation of our prototype

e Summing up



Review

e An example code fragment vulnerable to buffer overruns:

void foo(void) A
char buf [80];
strcpy(buf, gethostbyaddr(...)->hp_hname);

+
e EXxploits are possible by writing past the end of buf.
— Typically allows attacker to execute arbitrary code

— Hacker tools are very good; even an off-by-one error can be exploited



Why are buffer overruns important?

Absolute number of vulnerabilities reported Relative frequency of buffer overruns

Overruns account for 40%-50% of recent holes!
e Compare: this is 2 x what can be blamed on poor crypto

e Upwards trend due to development of hacker tools
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Overview

Our approach:
e A lint-like tool for analyzing C source code
— Finds potential buffer overruns

— But might issue false alarms, and might miss some bugs—no guarantees!

e Key technique: whole-program static analysis

— Borrow ideas from and theory literature
(Avoid unnecessary innovation.)



Why static analysis?

How do you look for potential vulnerabilities?
e Runtime testing? (i.e., dynamic checking)
+ Some tools already exist [fuzz,Purify, ... ]
— But hard to generate test cases, and hard to know when you're done
e Compile time warnings? (i.e., static checking)
+ Opportunity to find and eliminate holes proactively

— But implementation is a challenge

—- Static analysis is potentially very attractive, but how to do it?



Our tool

Approach:
o Simplify!

— e.g.: flow-insensitive analysis

—- Trade off precision for ease of prototyping and scalabillity.

Architecture:
e Constraint-based analysis

— Two phases: constraint generation, constraint solving
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Notation

Each dynamic quantity of interest gets a set-variable.

If s is a string variable, let len(s) (resp., alloc(s)) denote the set of possible

lengths (resp., number of bytes allocated) for s during a run of the program.

We find a conservative approximation for len(s) and alloc(s).

e Then, checking the safety condition len(s) < alloc(s) is easy.

11



Constraints

Let [m, n] denote the range {m,m + 1,... ,n}.
Constraints take the form, e.g., X C Y, where X, Y are range-variables.

For example,

strcpy(dst,src) ; = len(src) C len(dst)
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Constraint generation

e Constraint generation is best described by example

— So here is a code snippet to illustrate the analysis:

char buf [128];
while (fgets(buf, 128, stdin)) {
if (!strchr(buf, ’\n’)) {
char error[128];
sprintf (error, "Line too long: %s\n", buf);

die(error) ;

13



The example, with annotations

Original source code The constraints we generate

char buf [128]; [128, 128] C alloc(buf)

while (fgets(buf, 128, stdin)) { [1,128] C len(buf)

if (!strchr(buf, ’\n’)) {
char error[128]; [128,128] C alloc(error)

sprintf (error, "Line too long: %s\n", buf);
len(buf) + 16 C len(error)

die(error) ;

Notice how we focus on primitive string operations?

e \We largely ignore pointer ops; we treat strings as abstract datatypes
(We don’t always catch missing ’\0’ terminators or unsafe pointer
dereferences, but in principle we could, with more effort)
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The constraint solver

e Uses graph-based algorithms
e Fast, precise, and scalable

= Runs in linear time in practice

And that’s all I'll say. See the paper for more.
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Results

e We implemented the analysis
e \We used the tool to find new vulnerabilities in real programs

— Linux nettools: 7k lines, previously hand-audited
Found several new holes, exploitable from remote hosts

— Latest sendmail: 32k lines, previously hand-audited
Found several new buffer overruns, most likely not exploitable

— Re-discovered old serious holes in e.g. sendmail-8.7.5, popd, ...
(Could have prevented some widespread attacks, if tool had been
available)

e Just a prototype, many rough edges, but it's already useful

17



Limitations

Lots of false alarms:
e Example: 44 warnings for sendmail, only 4 real coding errors

— Mostly because we traded precision for simplicity; see next slide.

e But this still compares quite favorably to the alternatives

— Comparison: grep shows ™ 700 calls to unsafe string ops,
so we reduce the manual auditing effort by 15x over grep

A few false negatives:
e But false negatives appear to be relatively rare.

— Of the (> 10) bugs in sendmail 8.7.5 that have been fixed,
the tool missed only one
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Possibilities for future iImprovements

Classifying the cause of false alarms in sendmail:

Improved analysis False alarms eliminated

flow-sensitive
flow- and context-sensitive, with pointer analysis
and inter-variable invariant inference

47.5%
95%

(flow-sens. = models control flow;

context-sens. = doesn’t merge function call sites)

e Might do 20x better, using only known techniques?

= Know how to build a much better second system.
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Shows an overrun. Red spots = lines of code you must understand to find it.

Bug has been there for > 3 years, and has survived several hand audits.



Summary

e A successful research prototype
— Already finding new vulnerabilities in real programs

— But lots of room for improvement

e A promising new methodology: static analysis for code auditing

— Key advantages: proactive security for legacy code;
possibility of compensating for language deficiencies
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