
Towards automated detection of buffer

overrun vulnerabilities: a first step

David Wagner Jeffrey S. Foster
Eric A. Brewer Alexander Aiken

NDSS 2000 Feb 3, 2000

1



Introduction

� The state of computer security today is depressing

: : : and most holes arise from simple programming errors in legacy C code

� ‘Buffer overruns’ are one of the worst offenders

– A common coding error with uncommonly-devastating effects

Goal: eliminate buffer overruns from security-critical source code.

2



A puzzle: spot the bug

Here’s sendmail-8.9.3 source; can you spot the coding error?

3



Organization

� Introduction

� Background and motivation

� Techniques for automated detection of buffer overruns

� Evaluation of our prototype

� Summing up

4



Review

� An example code fragment vulnerable to buffer overruns:

void foo(void) {

char buf[80];

strcpy(buf, gethostbyaddr(...)->hp_hname);

}

� Exploits are possible by writing past the end of buf.

– Typically allows attacker to execute arbitrary code

– Hacker tools are very good; even an off-by-one error can be exploited

5



Why are buffer overruns important?

0

5

10

15

20

25

30

35

1988 1990 1992 1994 1996 1998 2000

Total vulnerabilities
Buffer overrun vulnerabilities

0

20

40

60

80

100

1988 1990 1992 1994 1996 1998 2000

Percentage of vulneabilities that are buffer overruns

Absolute number of vulnerabilities reported Relative frequency of buffer overruns

Overruns account for 40%–50% of recent holes!

� Compare: this is 2� what can be blamed on poor crypto

� Upwards trend due to development of hacker tools

6



Organization

� Introduction

� Background and motivation

� Techniques for automated detection of buffer overruns

� Evaluation of our prototype

� Summing up

7



Overview

Our approach:

� A lint-like tool for analyzing C source code

– Finds potential buffer overruns

– But might issue false alarms, and might miss some bugs—no guarantees!

� Key technique: whole-program static analysis

– Borrow ideas from program analysis and theory literature
(Avoid unnecessary innovation.)

8



Why static analysis?

How do you look for potential vulnerabilities?

� Runtime testing? (i.e., dynamic checking)

+ Some tools already exist [fuzz,Purify, : : : ]

– But hard to generate test cases, and hard to know when you’re done

� Compile time warnings? (i.e., static checking)

+ Opportunity to find and eliminate holes proactively

– But implementation is a challenge

) Static analysis is potentially very attractive, but how to do it?

9



Our tool

Approach:

� Simplify!

– e.g.: flow-insensitive analysis

) Trade off precision for ease of prototyping and scalability.

Architecture:

� Constraint-based analysis

– Two phases: constraint generation, constraint solving

10



Notation

Each dynamic quantity of interest gets a set-variable.

If s is a string variable, let len(s) (resp., alloc(s)) denote the set of possible

lengths (resp., number of bytes allocated) for s during a run of the program.

We find a conservative approximation for len(s) and alloc(s).

� Then, checking the safety condition len(s) � alloc(s) is easy.

11



Constraints

Let [m;n] denote the range fm;m+1; : : : ; ng.

Constraints take the form, e.g., X � Y , where X; Y are range-variables.

For example,

strcpy(dst,src); ) len(src) � len(dst)

12



Constraint generation

� Constraint generation is best described by example

– So here is a code snippet to illustrate the analysis:

char buf[128];

while (fgets(buf, 128, stdin)) {

if (!strchr(buf, '\n')) {

char error[128];

sprintf(error, "Line too long: %s\n", buf);

die(error);

}
...

}

13



The example, with annotations
Original source code The constraints we generate

char buf[128]; [128;128] � alloc(buf)

while (fgets(buf, 128, stdin)) { [1;128] � len(buf)

if (!strchr(buf, '\n')) {

char error[128]; [128;128] � alloc(error)

sprintf(error, "Line too long: %s\n", buf);

len(buf) + 16 � len(error)

die(error);

}
...

}

Notice how we focus on primitive string operations?

� We largely ignore pointer ops; we treat strings as abstract datatypes
(We don’t always catch missing '\0' terminators or unsafe pointer
dereferences, but in principle we could, with more effort)

14



The constraint solver

� Uses graph-based algorithms

� Fast, precise, and scalable

) Runs in linear time in practice

And that’s all I’ll say. See the paper for more.

15



Organization

� Introduction

� Background and motivation

� Techniques for automated detection of buffer overruns

� Evaluation of our prototype

� Summing up

16



Results

� We implemented the analysis

� We used the tool to find new vulnerabilities in real programs

– Linux nettools: 7k lines, previously hand-audited
Found several new holes, exploitable from remote hosts

– Latest sendmail: 32k lines, previously hand-audited
Found several new buffer overruns, most likely not exploitable

– Re-discovered old serious holes in e.g. sendmail-8.7.5, popd, : : :

(Could have prevented some widespread attacks, if tool had been
available)

� Just a prototype, many rough edges, but it’s already useful

17



Limitations
Lots of false alarms:

� Example: 44 warnings for sendmail, only 4 real coding errors

– Mostly because we traded precision for simplicity; see next slide.

� But this still compares quite favorably to the alternatives

– Comparison: grep shows ˜ 700 calls to unsafe string ops,
so we reduce the manual auditing effort by 15� over grep

A few false negatives:

� But false negatives appear to be relatively rare.

– Of the (� 10) bugs in sendmail 8.7.5 that have been fixed,
the tool missed only one

18



Possibilities for future improvements
Classifying the cause of false alarms in sendmail:

Improved analysis False alarms eliminated
flow-sensitive 47.5%
flow- and context-sensitive, with pointer analysis 95%

and inter-variable invariant inference

(flow-sens. = models control flow;
context-sens. = doesn’t merge function call sites)

� Might do 20� better, using only known techniques?

) Know how to build a much better second system.

19



Solution to the puzzle

Shows an overrun. Red spots = lines of code you must understand to find it.

Bug has been there for > 3 years, and has survived several hand audits.

20



Summary

� A successful research prototype

– Already finding new vulnerabilities in real programs

– But lots of room for improvement

� A promising new methodology: static analysis for code auditing

– Key advantages: proactive security for legacy code;
possibility of compensating for language deficiencies

21


