A Real-World Analysis of Kerberos Password Security

Thomas Wu
Computer Science Department
Stanford University
tjwlcs.Stanford.EDU

Abstract

Kerberos is a distributed authentication system that
many organizations use to handle domain-wide pass-
word security. Although it has been known for quite
some time that Kerberos is vulnerable to brute-force
password searches, there has so far been little analy-
sis of the scope and extent of this vulnerability. This
paper discusses the nature of this weakness in detail
and attempts to quantify the severity of the danger
it poses to existing Kerberized installations. The re-
sults of a controlled experiment, in which a large num-
ber of passwords from a Kerberos realm were broken
off-line and subjected to analysis, will be presented.
The author explores possible strategies for repairing
this security hole, the most viable of which is the use
of Kerberos V5 preauthentication coupled with a se-
cure password authentication protocol such as SRP,
SPEKE, or EKE.

1 Introduction

Kerberos [18], developed at MIT about ten years ago,
was an authentication infrastructure designed to as-
sure the security of user accounts and system ser-
vices on potentially insecure networks. By distribut-
ing secret keys and using cryptographic protocols like
Needham-Schroeder [14] to verify possession of these
keys, Kerberos supposedly prevented unauthorized
parties from compromising system security even if
they had the means to subvert the network.

In 1989, Bellovin & Merritt outlined a number of
security weaknesses in Kerberos [2]. While most of
those problems have been addressed in some way
since they were first brought to light, others still re-
main with us to this very day. One of the most seri-
ous of these is the susceptibility of Kerberos to off-line
guessing attacks against its passwords; in a sense, the
Kerberos Ticket-Granting-Ticket (TGT) protocol is
its Achilles’ Heel. Although both Kerberos V4 and

V5 are affected, this vulnerability is especially prob-
lematic in Kerberos V4 because, as will be explained
later, it allows a large-scale attack against it to pro-
ceed virtually undetected. Such an attack would re-
quire nothing more than Internet access, a dictionary,
and spare CPU cycles. Section 2 discusses this attack
in more detail.

Traditionally, sites have attempted to work around
this problem by forcing their users to memorize longer
and more complex passwords. In the spirit of ear-
lier password security analyses [5, 13, 17], the author
conducted an experiment to determine how effective
such a policy has been in practice. The experiment
involved a simulation of a distributed password crack-
ing effort against the password database of a large
Kerberos authentication environment, or realm. Sec-
tion 3 presents the results of this experiment, which
indicate that Kerberos does not protect passwords as
well as previously thought, and which provide evi-
dence that attempting to compel the use of “better”
passwords has not, by itself, been successful in re-
ducing the threat posed by a password-based attack
against Kerberos.

Section 4 then discusses possible approaches to
remedy this situation. The most practical approach,
augmenting the TGT protocol with secure password
authentication technology such as SRP [19], is dis-
cussed in greater depth, along with some implemen-
tation strategies.

Recent attacks against Kerberos [4] have under-
scored the need for continuing scrutiny of security
protocols and the re-evaluation of past assumptions.
This paper is intended for both network security ex-
perts, most of whom may already know about the
security flaw in Kerberos but who may not have ac-
cess to data on its severity, and for average users, who
may not yet be aware of the existence of this prob-
lem or its implications for the security of their own
accounts.

1 0of 10

2 Anatomy of a Security Hole

We start with a very brief summary of how Kerberos
is structured, followed by a closer look at the actual
password authentication protocol. For more in-depth
information on Kerberos, the original paper [18] is
recommended, along with papers describing the un-
derlying component protocols [14].

2.1 Kerberos Tickets

All entities in Kerberos, be they human users or non-
human servers, such as those for E-mail or print ser-
vices, have a secret key, which is shared only with
the central authentication server. To obtain services
from an application server in a “Kerberized” environ-
ment, a client must first obtain what is known as a
Kerberos ticket from the authentication server. This
ticket contains, among other things, a section of data
encrypted with the secret key belonging to the re-
quested service. The client presents this ticket to the
application server, which can then verify the ticket
for authenticity. Since the client does not know the
server’s secret key, it cannot forge a valid ticket, nor
can it tamper with the contents of a ticket without
being detected.

The actual procedure for obtaining, storing, and
using tickets is divided into two steps:

e When the user first logs in and enters his pass-
word, the client software uses the password
to obtain a special ticket known as a Ticket-
Granting Ticket (TGT) from the central authen-
tication server.

e When a user requires access to a Kerberized ser-
vice, the client software presents the TGT to the
Ticket-Granting Server (TGS), which then issues
a ticket for that particular service. This service-
specific ticket is then used to authenticate the
actual requests for service.

This is done to minimize the number of times the
user needs to enter his password. Once a user has
a valid TGT, the application software can automat-
ically obtain service-specific tickets without human
intervention.

2.2 A Closer Look at the TGT

When a user logs into a Kerberized system and wishes
to obtain a TGT, he sends Kerberos a request packet
containing the fields listed in Table 1.

| Field | Contents | Length |
1 | Protocol Version Number 1 byte
2 | Message Type Identifier 1 byte
3 | Username string
4 | Requested Ticket Instance string
5 | Kerberos Realm string
6 | Timestamp 4 bytes
7 | Requested Ticket Lifetime 1 byte
8 | Requested Service string
9 | Requested Service Instance | string

Table 1: TGT Request Format
All string data is variable-length and null-

terminated, with no padding or alignment. Note
that the server cannot authenticate this packet; an
intruder can construct a valid-looking request packet
that is indistinguishable from one sent by a legitimate
user. Instead, Kerberos authenticates the client by
sending back an encrypted packet formatted as de-
scribed in Table 2.

| Field | Contents | Length |
1 | Session Key 8 bytes
2 | Service Name string
3 | Instance string
4 | Realm, or domain string
5 | Ticket Lifetime 1 byte
6 | Version Number 1 byte
7 | Encrypted Ticket Block length | 1 byte
8 | Encrypted Ticket Block (field 7)
9 | Timestamp 4 bytes

Table 2: TGT Return Packet Format

This entire packet is encrypted with a key derived
from the user’s password. Kerberos uses the Data En-
cryption Standard (DES) [15] as the encryption algo-
rithm. Thus, if the user enters the correct password
upon logging in, the client will be able to decrypt the
return packet and obtain a valid TGT. An unautho-
rized user, without the correct password, only sees
useless random bits.

2.3 In Enemy Hands

Normally, if the user enters an incorrect password,
the initial decryption attempt produces a gibberish

2 of 10

packet, which causes the the Kerberos client soft-
ware to notify the user and discard the packet. But
what if the client software, instead of throwing away
the packet after each attempt, allowed the user to
try decrypting the same packet again with different
passwords? And what if, instead of having a human
typing in different passwords, the software automated
the procedure, pulling in passwords from a dictionary
as fast as it could check them? Since the TGT has
a fixed, publicly-known format, the software could
determine if it had found the correct password by
looking for one that decrypted the TGT properly.

This is an example of a dictionary attack, which
has been used in the past, with great success, to com-
promise password security mechanisms [12]. A pro-
gram that performs dictionary attacks against pass-
words is often known as a password cracker. Pass-
words crackers originally did nothing more than test
words from a user-supplied word list, but they have
evolved over the years into sophisticated engines that
can expand dictionaries into massive lists of likely
passwords based on transformation rules. The pass-
word cracker used in the experiment is an example
of such a program, and it will be discussed in more
detail in Section 3.3.

It is a fairly simple matter to construct a client
program that saves tickets in a form suitable for re-
peated trial decryption. The K-DUMP program,
written to gather TGTs for the experiment in Sec-
tion 3, accepts a username and the network address of
a Kerberos authentication server, constructs a valid
request packet of the form described in Table 1, sends
it to Kerberos, and saves the encrypted reply packet
to a file.

2.4 Compromising the TGT

After the K-DUMP program saves a user’s encrypted
TGT to a file, the intruder can begin testing trial
passwords. To verify a password guess P:

1. Convert the password to a DES key: K =
STRING-TO-KEY(P)

2. Decrypt the ticket with the key K and see if it
is a valid Kerberos ticket. If it is, then P is the
user’s password.

The STRING-TO-KEY function varies between
Kerberos realms, but nearly all sites employ one
of two different functions. This can be determined

for any particular domain through trial-and-error!.
Some STRING-TO-KEY functions, because of flaws
in their design, also allow attacks that are not depen-
dent on low password entropy; Section 3.5 explains
this in more detail.

Encryption algorithms such as DES operate on
fixed-sized chunks of data, known as blocks; DES uses
64-bit (8-byte) blocks. If the input to the encryption
algorithm is more than one block long, each block can
be encrypted individually, or they can be chained to-
gether to improve security. In Kerberos, the TGT
encryption uses a chaining method known as Propa-
gating Cipher Block Chaining (PCBC), and it uses K
as the initialization vector (IV). What this means is
that the encrypted ticket blocks Ty, 71, ... are gener-
ated from the plaintext blocks By, By, ..., as follows:

To = Ex(ByaIV)
Ty, = Ekg(B1®BydTp)
T, = Eg(B2®BidT)

This process can be reversed to generate the plain-
text blocks B, from the encrypted ticket blocks T,:

By = Dg(Ty)eIV
B, = Dg(Th)® By T
By = Dg(Tz)® B &T)

Reference [16] has more information on PCBC,
other cipher chaining modes, and initialization vec-
tors.

2.4.1 Verifiable Plaintext

To determine whether or not a given key produces
a valid ticket, the Kerberos client software examines
the decrypted ticket fields to see if they make sense. If
the wrong key was used, and if the software attempts
to find a null terminator for each string, it may find
too many or not enough of them for the number of
strings in a ticket. It may also discover that some of
the other fields, like the timestamp or length fields,
are internally inconsistent.

Lf the wrong STRING-TO-KEY function is used, the
chance of turning up any successful guesses is infinitesimal.

3 0of 10

14 15

X X X X X X X X

lkl lrl

X = DESKey byte

Figure 1: Correctly Decrypted TGT (First Two Blocks)

Kerberos gives the attacker an important piece of
information that greatly simplifies this check: The
“service name” field, which is the second field of the
decrypted ticket, is always the string krbtgt for TGT
packets. Since those seven bytes (positions 8-14 in the
TGT) are always within the second block Bj, only
the first two blocks of the TGT need to be decrypted
before the correctness of the guess can be verified (see
Figure 1). The probability of this string occurring at
random in the right location despite having the wrong
key is only 27°%, so finding this string in the second
block is a highly reliable indicator of success.

For each user, then, only the first two blocks
(To, T1) of his encrypted TGT need to be stored, and
each trial password requires only one call to STRING-
TO-KEY and two DES decryptions.

2.4.2 DES Parity Optimization

The format of the Kerberos TGT packet permits a
further refinement of the password verification pro-
cedure. The DES algorithm requires its keys to have
odd parity, i.e. the number of “1” bits in each byte
of a DES key must be odd [15]. Since the first block
By of the plaintext TGT is a DES session key (see
Table 2), we know each of its bytes must have odd
parity.

Instead of computing both By and B; for each
guess, the attacker can compute just By and check
the parity of all 8 bytes. If any of them are not odd-
parity bytes, he can conclude that the guess was in-
correct without having to decrypt the second TGT
block. 255 out of every 256 tries will, on average,
fail the parity check right away, so most guesses now
require only one DES decryption instead of two.

This optimization nearly doubles the speed of dic-
tionary searches on password files, especially large
ones. Because a large-scale attack against Kerberos
involves testing a large number of DES keys against a
large number of plaintexts, strategies for optimizing
parallelized DES operations, such as [3], can also be
applied for additional performance gains. Section 3.3
discusses performance and benchmark measurements

in more detail.

3 The Experiment

In 1979, Morris & Thompson studied the security of
the UNIX crypt() function against brute-force dic-
tionary attack [13]. Ten years later, Feldmeier and
Karn published a followup paper [5] that charted the
progress of password security and cracking over the
previous decade. We now attempt to bring the anal-
ysis of password cracking methods to the networked
world, nearly twenty years after the original Morris
& Thompson paper.

Usually, when one discusses password-guessing at-
tacks against network protocols, one assumes that an
adversary can at least eavesdrop on legitimate ses-
sions and use that information to verify passwords. In
practice, this requires access to some part of the net-
work between client and server. The attack against
Kerberos described in the previous section, on the
other hand, requires no such access to carry out. In-
stead, Kerberos allows an attacker to initiate requests
for the encrypted TGTs of any or all users in a Ker-
beros realm, as long as he knows the name or IP
address of an authentication server.

The data for this experiment were gathered in this
manner from the authentication server of a large
Kerberos realm, serving over twenty-five thousand
users. A small cluster of three Sun UltraSPARC-2s
(200MHz) and five UltraSPARC-1s (167MHz) par-
ticipated in the off-line password cracking effort us-
ing spare CPU cycles. The run was limited to two
weeks, at which time the results were collected and
tabulated.

3.1 Overall Statistics

From a Kerberos realm containing slightly over
twenty-five thousand users, a grand total of 2045
passwords were successfully guessed by the end of the
two-week experiment. Table 3 shows the distribution
of passwords by length.

4 of 10

| Length | Frequency |
2 2 (0.1%)
3 12 (0.6%)
4 77 (3.8%)
5 146 (7%)
6 227 (11%)
7 164 (8%)
8 1108 (54%)
9 159 (8%)
10 92 (4.5%)
> 10 58 (3%)

Table 3: Passwords by Length

The large number of eight-character passwords is a
consequence of having some client programs that do
not support longer passwords and a password checker
that frowns upon shorter ones. Some interesting ob-
servations on users’ password choices:

e 527 passwords (26%) used at least one digit.

e 84 passwords (4%) used at least one non-
alphanumeric symbol.

e 24 passwords (1.2%) were calendar dates. Only
one of them was a well-known holiday.

e Users preferred the mm/dd/yy notation (21
times) to the mm-dd-yy notation (3 times).

e One person used a telephone number as a pass-
word.

e Shared passwords abounded: 67 passwords were
common to more than one account.

e The most “promiscuous” password was shared
by an astounding 53 accounts! It is believed that
this statistical anomaly was not the result of vol-
untary, coincidental user choice.

e Users generally avoided the shift key: 86% of the
passwords could be typed without it.

The analysis done here may appear similar to [17],
although that study was based on passwords collected
directly from users. This experiment, on the other
hand, deliberately analyzed only those passwords
that were successfully cracked because it sought to
evaluate the efficacy of password checking. It should

not be surprising that the length distribution exhib-
ited by this study is skewed more strongly towards
8-character and longer passwords, since the password
checker would filter out short ones at a disproportion-
ate rate.

3.2 Analysis by Rules

The password cracker combines user-specific informa-
tion, like the username and full name, with a series
of precompiled word lists to obtain a list of password
candidates. To each word in this list, it applies a set
of transformation rules to generate even more poten-
tial passwords. Of the successfully guessed passwords
in the experiment, 283 passwords were based on ei-
ther the corresponding username or some derivation
of the person’s full name. The remainder originated
from one of the word lists.

Only about half of the cracked passwords came
directly from a word list, however. The remaining
“hits” were the result of applying one of the transfor-
mation rules to a password candidate. Table 4 shows
the effectiveness of various word transformations.

| Transformation | Hits |
None 1010 (49%)
Prefix 100 (5%)
Suffix 390 (19%)
Simple 511 (25%)
Other 34 (2%)

Table 4: Transformation Rule Statistics

The “simple” rules include capitalizing, doubling,
or reversing a word.

e The most effective single transform simply con-
verted all the letters in a word to lowercase, ac-
counting for 225 hits.

e 36% of the hits from user-specific information
came from other users’ information; clearly it
pays to cross-check all dictionaries.

e The digit “1” was by far the most frequently used
suffix, occurring 206 times. All other digit suf-
fixes combined totaled only 130 hits.

e “1” was also the most frequent prefix, with 37
hits.

e “2” was a distant second, while “0” and “6” were
the least popular.

5 of 10

3.3 Software and Hardware

The preceding experiment used a well-known Inter-
net password cracking package, modified to decrypt
and verify Kerberos V4 tickets. This package gen-
erates password candidates by reading words from
dictionaries and applying the same transformations
that users often use to generate their passwords. The
list of rules can be extended to accommodate nearly
any type of password-generating transformation, in-
cluding common ones like adding digits to the end of
words or substituting digits for letters that resemble
them.

The running time of the password cracker is di-
vided into two components. Let k& denote the amount
of time needed to convert each password guess into
a key. Most of this time is taken by the STRING-
TO-KEY function of Section 2.4. Let ¢ denote the
amount of time needed to apply this key to a pass-
word entry and check if the key results in a valid
decryption. This time is mostly determined by the
speed of the DES decryption code. Table 5 shows
the relative performance figures for some well-known
hardware platforms.

| Platform | k | c |
Sun UltraSPARC-1 (167 MHz) | 110 us | 4.0 us
Sun UltraSPARC-2 (200 MHz) | 100 us | 3.3 us

Table 5: Password Cracking Benchmarks

Since Kerberos V4 does not “salt”? its password
entries, each new password guess requires only a sin-
gle call to STRING-TO-KEY; the resulting key can
be used to verify an arbitrary number of password
entries. The amount of time needed to search a Ker-
beros domain with n users against a dictionary of w
words is

t = w(k + nc)

For twenty-five thousand users and a million-word
dictionary, this works out to just under 23 hours on
an UltraSPARC-2. Each trial password only requires
0.8 seconds to verify against the entire database.
The lack of salt is just one factor that allows rapid
and exhaustive dictionary searches against Kerberos
V4 passwords. The format of the TGT, which leads

2Salt is a random input to the password-to-key function
that makes any password map to a potentially large number of
keys. This is done to frustrate attempts at building precom-
piled password dictionaries.

to the optimizations outlined in Section 2.4, also con-
tributes to the fast cracking times. In this two-week
experiment, it is estimated that our password cracker
verified slightly over 100 million candidate passwords,
distributed over the eight different workstations. Al-
though that figure might seem high, it was only a
small fraction of the total number of candidate pass-
words available to the password cracker. Had the
experiment been allowed to continue for a greater
length of time, a larger portion of the total password
space could have been searched, with a correspond-
ingly larger number of cracked passwords.

3.4 Dictionary Construction

An important part of the success of this password-
cracking effort was the input dictionary used to con-
struct the password guesses. Because this experiment
was conducted at a site that already implemented
password-checking, it would have been pointless to
try passwords that were already in the password
checker’s dictionary. It thus improves our chances
to have more words in the cracker’s dictionary than
in the dictionary used to screen passwords. At the
same time, it is desirable to ensure that any such
words added to the dictionary are still likely pass-
word choices.

Most password crackers are bundled with standard
dictionaries, which generally contain a modest list of
English words, plus a few categories of words that
commonly appear in passwords (e.g. science fiction
vocabulary, female names, technical terms and jar-
gon). To expand this word list to include words
that a password checker might miss, the experiment
exploited domain-specific characteristics of the user
population.

Users within a particular domain often have
commonalities that are reflected in their password
choices. Including words that are familiar to such
users but not necessarily to those outside the field
enhances the effectiveness of password searches, espe-
cially if the list of words is comprehensive and up-to-
date. For example, a list of company names and stock
symbols might be useful against a financial-services
system, while a list of popular music album and band
names might be useful at a college site.

Today’s Internet search engines makes it a sim-
ple matter to compile current dictionaries based on
nearly any possible category. A quick session using
any of the popular search engines, such as Yahoo,
Excite, or InfoSeek, can yield a great deal of raw

6 of 10

subject-specific text, which can then be filtered and
distilled, and the results merged into the existing dic-
tionary. Some of the more productive categories in
the experiment contributed over 100 successful pass-
word guesses (5%) each. These word lists were com-
piled directly from the pages of the search engines
themselves; a more aggressive strategy (which was
not pursued in the experiment) might involve spider-
ing (i.e. recursively traversing) the sites returned by
the search engines.

The techniques employed here merely scratch the
surface of possible strategies available to password
crackers today. The Web alone provides a nearly lim-
itless source of material, which can be screened selec-
tively to suit any user population, or even specific
users. Section 4.1 explains some of the implications
this has on Kerberos password security.

3.5 Dedicated Key Search

In 1998, the Electronic Frontier Foundation (EFF)
constructed a machine that brute-forced DES keys
with dedicated hardware at a cost of under $250,000
[6]. According to their most recent results, this ma-
chine could search the entire DES keyspace in at
most 228 hours, for an average of 114 hours per
key. Although the attack of Section 2.4 could be
conducted directly by this machine, a design flaw in
some STRING-TO-KEY functions permits an opti-
mization that makes this attack much more feasible.
Specifically, for Kerberos V4 implementations that
interoperate with the Andrew File System (AFS), the
STRING-TO-KEY function performs this following
step as part of its password processing: For passwords
of 8 characters or less, it passes the string through the
UNIX crypt () function with a constant salt and uses
the first 8 bytes of the output as a DES key. Unfortu-
nately, while the output of crypt () represents a 64-
bit DES block, this output is encoded as 11 ASCII
bytes in a base-64 encoding, not as a pure binary
block. By saving only the first 8 bytes of this data,
the resulting DES key only has 48 bits of entropy.
Because the 64 possible values of each key byte
are fixed, a dedicated DES cracker can be easily be
configured to search this reduced key space. The EFF
cracker, in its present form, would require at most 54
minutes (average 27 minutes) to compromise these
keys. Table 3 shows that 84.5% of the passwords in
our cracked sample were 8 characters or less and thus
vulnerable to this attack. It is clear from this example
that once a weak protocol exposes passwords to any

form of brute-force search, the inevitability of highly
optimized attacks against the protocol is assured.

4 Devising a Cure

To protect an authentication system from dictionary
attacks, one can attempt to make the passwords more
difficult to guess, or one can use cryptographic tech-
niques to prevent dictionary attacks from occurring
at all. The first approach has been used in the past,
but with very limited success. Our experimental data
provide some useful insights into the habits of users,
and they demonstrate why the prevention of dictio-
nary attacks is best done through careful use of cryp-
tography instead of administrative policy.

4.1 Stronger Passwords?

The experiment targeted a Kerberos realm that al-
ready had password strength-checking in place. De-
spite this, over two thousand passwords were com-
promised in only two weeks. Compared to previous
password case studies [13], the percentage of crack-
able passwords was in fact lower than it would have
been if no such checking were used, yet a password
security system that permits this many passwords to
fall into the hands of an attacker is unacceptably weak
by almost any criterion.

Password checkers generally reject only those pass-
words that match some well-defined criteria, like be-
ing entirely numeric, or containing a dictionary word.
They often fail to detect passwords that pass sim-
ple algorithmic tests but still have low entropy, like
alb2c3d4 or wwxxyyzz (both these passwords were
considered to be “good” by the password-checking
software used by the Kerberos realm in Section 3).
On the other hand, users are very good at select-
ing such passwords, because their low entropy makes
them easy to remember. The “Simple” collection of
transformations in Table 4 included many such ex-
amples of “ordered nonsense”; many of the 511 so
compromised passwords fell into this category.

Users are also very good at selecting passwords that
are just “good enough” to pass whatever checking
is in place. This often takes the form of append-
ing or prepending digits and symbols to a dictionary
word until it “passes”, leading again to a password
that is only slightly harder to crack than the origi-
nal. The number of passwords broken by such rules
(Section 3.2) points out the frequency with which this
practice occurs.

7 of 10

One might legitimately ask why these dictionary
and transformation rules can’t be used in the pass-
word checking software itself to prevent a cracker
from succeeding with them. But this question points
out exactly the futility of trying to match dictionaries
with attackers. Even if system administrators knew
exactly what dictionaries their adversaries were us-
ing (which they don’t), it is far more difficult to
upgrade widely-distributed security databases than
it is to add words to a cracker’s wordlist. In ad-
dition, while the password checker must constantly
be upgrading his wordlists, an attacker only needs
to build a dictionary when she is about to mount
an attack. Thus the attacker has more up-to-date
dictionaries, may have access to greater computing
power (an unfortunate consequence of Moore’s Law -
the attacker can choose what computers to employ in
the attack), and can thus overwhelm most password-
strength measures with less effort than it took to en-
force those measures. This form of reverse leverage
works in favor of the attacker and all but guarantees
that relying on password checks alone will produce
unsatisfactory results.

Other methods of password strengthening, includ-
ing system-generated passwords, periodic password
cracking by administrators, and asking users to pick
stronger passwords voluntarily, appear to be even
less successful [17] in practice. Although individual,
security-conscious users can select passwords that are
virtually uncrackable, it is perhaps a bit unrealistic
to assume that all users possess that level of com-
mitment to system security [7]. Indeed, any form
of password checks stringent enough to offer long-
term security would tend to pose a significant incon-
venience to most casual users, frequently rejecting
even reasonable password choices. To maintain the
same level of security over any length of time would
require the constant review and upgrade of acceptable
password standards, with a corresponding reduction
in user convenience. While password checking can
certainly reduce the number of crackable passwords
in a system, it is evident that even a dramatic reduc-
tion from, say, ten thousand to two thousand broken
passwords still leaves the overall system vulnerable
to attack, while gradually eroding usability to unac-
ceptable levels.

4.2 Kerberos V5?7

Kerberos V5 introduces preauthentication, which re-
quires the user to provide some evidence that she

knows the shared key K before the authentication
server will issue a TGT. This evidence comes in the
form of an encrypted timestamp ¢:

c Y g
c e g

The server S sends its reply to the client C' only
if ¢ decrypts to the correct time within some pre-
defined tolerance. Although this prevents an at-
tacker from requesting TGTs, it does not protect
against an eavesdropper who captures either Ex (t)
or Ex(TGT). Either of those quantities constitutes
verifiable plaintext that can be used to mount a dic-
tionary attack. While this is an improvement relative
to Kerberos V4, an attacker with a network sniffer
can still carry out the same off-line dictionary attack
against any authentication requests captured over the
network [10]. Kerberos V5 by itself is thus an incom-
plete solution.

4.3 Stronger Cryptography

Rather than incrementally increasing the difficulty
of password cracking, we instead apply a variant of
public-key cryptography to eliminate the possibility
of dictionary attacks altogether. This approach takes
advantage of a password authentication technique
known as the Secure Remote Password (SRP) pro-
tocol [19]. The SRP protocol authenticates a client
to a server without exposing the password to off-line
dictionary attack, which preserves security even if the
password has low entropy. Such a protocol can be in-
corporated into Kerberos V5 as a preauthentication
mechanism, an idea originally proposed by Jaspan [9].

Instead of using the password itself to encrypt and
decrypt the initial TGT, the client and server use
the first round of the protocol to negotiate a secure
session key:

c &4 s
c & s

The quantities A and B are exchanged as part
of the authenticated key agreement phase; each side
uses the other side’s quantity to construct the session
key K' [19]. R is the original TGT request packet
(see Table 1). After the initial round, the client then
proves its knowledge of the session key before receiv-
ing the encrypted TGT:

8 of 10

M

C — S
c PelIST g

M is a function of the shared key K', effectively
making it a preauthenticator. Since K' is not deriv-
able from the user’s password and other publicly
available information, verifiable plaintext in the TGT
no longer poses a security risk. A variant of SRP
performs the entire secure ticket exchange in a sin-
gle round, which fits even better with Kerberos V5’s
preauthentication model. Other strong authentica-
tion protocols like EKE [1] and SPEKE [8] can also be
used to augment Kerberos. The main cryptographic
advantage of SRP over similar past proposals is that
SRP stores password verifiers in a form that is not
plaintext-equivalent to the password. Traditionally,
the Kerberos KDC (Key Distribution Center) stores
a quantity P for each user that, if revealed publicly,
would allow an attacker to compromise that user’s
account. While EKE and SPEKE would also require
the KDC to store P, SRP only requires that the KDC
store V = g¥ (mod n). For well-chosen values of g
and n, it is computationally infeasible to extract P
from V [11].

By resisting both passive and active dictionary at-
tacks, SRP protects the Kerberos TGT protocol from
dictionary attacks launched from anywhere on the
network. The advantages of this approach are ob-
vious: Users can use even fairly simple passwords
without exposing the system to dictionary attacks,
and such a solution can be deployed without mod-
ifying or adding a public-key infrastructure. This
long-term solution requires no significant change to
the Kerberos authentication model and consequently
introduces the least inconvenience for both users and
administrators.

5 Conclusion

Vulnerability to dictionary attacks has long been an
acknowledged weakness in Kerberos [2], yet at the be-
ginning of this experiment, there existed little hard
data on its severity. Could simple password-checking
prevent a password cracker from revealing any pass-
words, as some have claimed in the past?

That question was answered exactly nine seconds
into the experiment, when the first cracked password
appeared on the screen. Two thousand passwords
later, it became obvious that another approach was

needed to cope with the threat of off-line dictionary
attack. Distributed systems need to contend with
several long-term trends that magnify this threat:

e Computers are becoming faster and cheaper.

e As cracking ability increases, the minimum en-
tropy needed for a “safe” password rises.

e Human memory is not improving to match.

e The average number of users served by each
distributed system is increasing (i.e. bigger
password databases). This reduces the average
amount of CPU time needed to attack each pass-
word.

e Attackers can take advantage of both software
and hardware improvements more quickly than
defenders. This also applies to newer dictionaries
and wordlists.

A system that exposes its passwords to dictionary at-
tacks from the network is inherently insecure in the
face of these trends. It is not particularly surprising
that attempts to compel the use of harder passwords
have yielded only modest gains in overall system se-
curity, along with some disgruntled users.

Secure password technologies like SRP, on the
other hand, prevent dictionary attacks from occur-
ring in the first place. This ensures long-term network
security with a one-time deployment effort and lit-
tle user-visible change. Ultimately, the best solution
would involve a combination of SRP and light pass-
word strength-checking, instead of relying entirely on
a single approach.

References

[1] SM. Bellovin and M. Merritt. Encrypted
key exchange: Password-based protocols secure
against dictionary attacks. In Proceedings of
the 1992 IEEE Computer Society Conference on
Research in Security and Privacy, pages 72-84,
1992.

[2] Steven M. Bellovin and Michael Merritt. Limita-
tions of the kerberos authentication system. In
Proceedings of the 1991 Winter USENIX Con-
ference, pages 253-267, 1991.

[3] Eli Biham. A fast new des implementation in
software. In Fast Software Encryption 4, 1997.

9 of 10

[4]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Bryn Dole, Steve Lodin, and Eugene Spafford.
Misplaced trust: Kerberos 4 session keys. In
Proceedings of the Internet Society Network and
Distributed System Security Symposium, pages
60-70, March 1997.

David C. Feldmeier and Philip R. Karn. Unix
password security - ten years later. In CRYPTO
Proceedings, 1989.

The Electronic Frontier Foundation. Cracking
DES: Secrets of Encryption Research, Wiretap
Politics & Chip Design. O’Reilly, July 1998.

Israel Herschberg. The hackers’ comfort. Com-
puters and Security, 6(2):133-138, April 1987.

D. Jablon. Strong password-only authenticated
key exchange. Computer Communication Re-
view, 26(5):5-26, October 1996.

B. Jaspan. Dual-workfactor encrypted key ex-
change: Efficiently preventing password chain-
ing and dictionary attacks. In Proceedings of
the Sizth Annual USENIX Security Conference,
pages 43-50, July 1996.

Charlie Kaufman, Radia Perlman, and Mike
Speciner. Network Security: Private Com-
munication in a Public World, pages 310-311.
Prentice-Hall, Inc., Englewood Cliffs, New Jer-
sey, 1995.

B.A. LaMacchia and A.M. Odlyzko. Computa-
tion of discrete logarithms in prime fields. De-
signs, Codes, and Cryptography, 1:46—-62, 1991.

Philip Leong and Chris Tham. Unix password
encryption considered insecure. In Proceedings
of the Winter USENIX Conference, 1991.

R.H. Morris and K. Thompson. Unix pass-
word security. Communications of the ACM,
22(11):594, November 1979.

R.M. Needham and M.D. Schroeder. Using en-
cryption for authentication in large networks
of computers. Communications of the ACM,
21(12):993-999, December 1978.

National Bureau of Standards. Data encryption
standard. NBS FIPS PUB 46, January 1977.

Bruce Schneier. Applied Cryptography. John Wi-
ley & Sons, Inc., New York, 1996.

[17]

[18]

[19]

10 of 10

Eugene H. Spafford. Observations on reusable
password choices. In Proceedings of the Third
Useniz Unixz Security Symposium, pages 299—
312, Baltimore, MD, September 1992.

J.G. Steiner, B.C. Newman, and J.I. Schiller.
Kerberos: An authentication service for open
network systems. In USENIX Conference Pro-
ceedings, pages 191-202, February 1988.

Thomas Wu. The secure remote password pro-
tocol. In Proceedings of the Internet Society
Network and Distributed System Security Sym-
posium, pages 97-111, March 1998.

