A Secure and Reliable Bootstrap Architecture

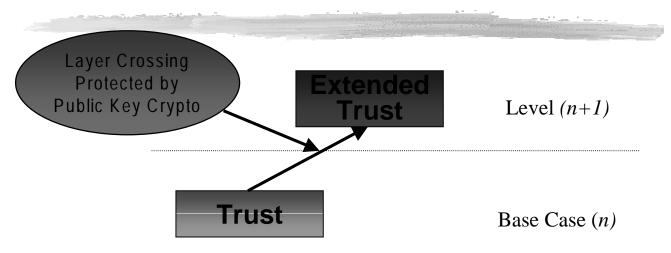
"Trust, but Verify"
Old Russian Saying

William A. Arbaugh
Angelos D. Keromytis
Jonathan M. Smith
David J. Farber
University of Pennsylvania
http://www.cis.upenn.edu/~waa

The Problem

- Every Computer System is Currently Invoked by an Untrusted Process- Even "Secure Systems".
- This Leads to a False Sense of Security for the Users of those Systems.

Motivation: Security


- Detect changes to Bootstrap Components
 - I Malicious Changes
 - I Inadvertent Changes
 - Failures

Mitigate Some Denial of Service Attacks

Motivation: Administration

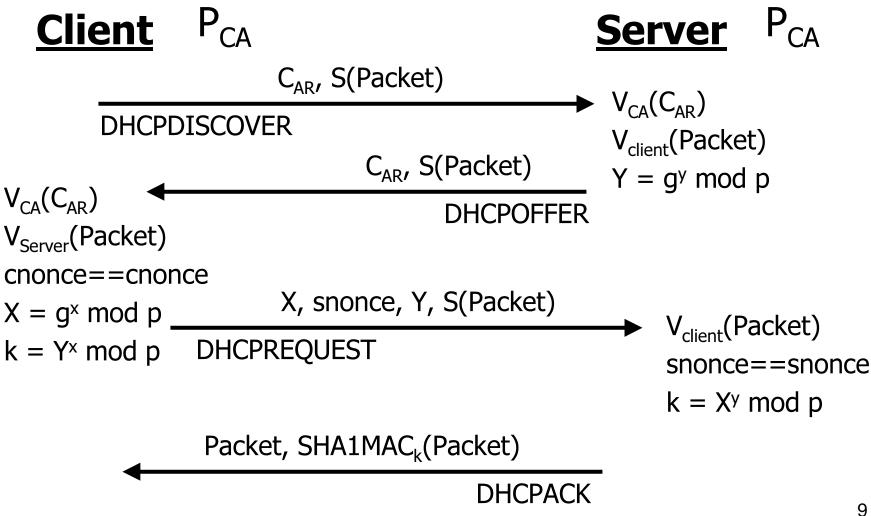
- Security Motivation Plus
 - I Reduce Bootstrap Failures
 - Detect Configuration Changes
 - I Provide Capability for Remote Management of Bootstrap Process

Approach

- Integrity and Trust Must be "*Grounded*" at the Lowest Possible Point.
- Protect Transitions
- Recover whenever possible.

AEGIS Architecture

Formal Proof


- AEGIS Bootstrap
 Architecture has been
 Formally Proven Correct
 using PVS.
 - I Darryl Dieckman and Perry Alexander, University of Cincinnati.

http://www.ececs.uc.edu/~ddieckman

Recovery Protocol

- Uses Well Known Cryptographic Algorithms and Protocols (DSS, Diffie-Hellman).
- Use Well Known RPL Network Protocols (DHCP, TFTP).
- Protocol is FAIL SAFE

Recovery Protocol

What Can We Recover?

Component	Action
BIOS1	Halt
Recovery ROM	Halt
BIOS2	Repair
Expansion Flash	Repair
Expansion EEPRO	V Shadow
Boot Block	Repair
OS Kernel	Repair
CMOS	Mitigate
Real Time Clock	Mitigate

Recovery Implementation

- SSLeay 0.8.1 Eric Young
- Etherboot 4.0Beta4 Ken Yap et. Al.
- ISC DHCP Server 2.0Beta1-Ted Lemon
- IPSEC Angelos Keromytis
- Intel EtherExpress Pro 100

ROM and Packet Sizes

- Current ROM image is 85Kb <u>un-compressed</u>
 - 30Kb is for X.509v3 support
 - 35Kb is for cryptographic support
- Approximate Packet Sizes

•DISCOVER: 901 Bytes

•OFFER: 1081 Bytes

•REQUEST: 626 Bytes

•ACK: 626 Bytes

Client Performance

■ Sign Packet: 34ms

■ Init and Generation of Random Number Stream: 0.1499 seconds

■ DISCOVER: 0.1533 seconds

■ REQUEST: 40 ms

Server Performance

■ Verify Certificate Chain: 76ms

■ Verify Packet Signature: 36ms

■ Generate DH Public: 93ms

■ Sign Packet: 16ms

■ Total Generate OFFER: 221ms

■ Generate ACK: 126ms

Includes generating shared secret

Dual 300 Mhz PentiumII running RedHat Linux 5.0

Optimizations

- Modified StS need only be done once.
 - Client and Server cache exchanged secret for future use.
- Perform some Server Calculations after Sending Response.
- Improve Client Random Initialization.

Conclusions and Future

- Examining the Potential Uses of a Secure Bootstrap:
 - Basis for Active Network Security
 - Secure Periods Processing
 - IP Protection
- Beyond Bootstrap:
 - Secure DHCP
 - Secure NetPC

Questions?

