A Tune-up for Tor:

Improving Security and Performance in the Tor Network

Robin Snader rsnader2@cs.uiuc.edu

Nikita Borisov Department of Computer Science Dept. of Electrical & Computer Engineering nikita@uiuc.edu

University of Illinois at Urbana-Champaign

The Tor Network

Tor as an Overlay Network

Overlay Network Considerations

- Overlay Networks
 - Link Evaluation
 - Efficient Route Selection
 - High Flow Bandwidth
 - High Aggregate Network Throughput
- Tor as an Overlay Network
 - Secure Link Evaluation
 - Secure, Anonymous and Efficient Route Selection

Anonymous vs. Efficient Route Selection

- Efficient Routes: prefer well-connected routers
- Anonymous Routes: choose routers uniformly at random

Evaluating Link Bandwidth (Current)

- Current Implementation
 - Each node estimates available bandwidth and reports it to directory server
 - Susceptible to manipulation by malicious nodes
 - Bauer, et al. "Low-resource routing attacks against anonymous systems" in WPES'07
 - Not sensitive to relative load
 - Static router popularity

Evaluating Link Bandwidth (Proposed)

- Proposed Method
 - Each node tracks the bandwidth to each of its peers
 - To estimate bandwidth, a node queries 5 of its peers and calculates the median values received
 - Nodes already query peers for lists of available nodes
 - Adjusts to relative load

Evaluation of Bandwidth Estimation

- Current Method Performance: r=0.57
 - Systematic overestimation
 - No malicious nodes

- Proposed Method Performance: r=0.48
 - Balanced prediction

Router Selection (Current)

Selection weighted by bandwidth

10 kB/s 30 kB/s 20 kB/s

- Single Anonymity Level
- Bandwidth weight limited to 10 MB/s (was 1.5 MB/s)
 - Static tradeoff between underutilization and spoofing

Route Selection (Proposed)

Order routers by available bandwidth

10 kB/s	20 kB/s	30 kB/s

- Use non-uniform random variable to weight faster routers more heavily
- Parameterized RV => Parameterized Anonymity

Route Selection (Proposed)

- Selection level 0 gives uniform selection
- Higher selection levels weight faster routers more heavily
- Weighted coin flip to choose known vs. unknown routers
 - Unknown routers always chosen uniformly at random

Evaluation of Router Selection

- Concern: how traceable is your selection level?
 - Attacker can focus on users more concerned with privacy

Evaluation of Router Selection

Evaluation of Router Selection

Tunable Tor: Combining both algorithms

- Evaluation setup:
 - Transfer 1 MB file
 - 40,000 trials for vanilla Tor over 4 weeks, various times of day
 - 20,000 trials for Tunable Tor over 6 weeks, various times of day
 - Selection level chosen uniformly at random
- Evaluate performance
 - Transfer time statistics
- Evaluate anonymity
 - Router selection equality
 - Effects of router compromise

Whole System Evaluation (Performance)

Whole System Evaluation (Performance)

Whole System Evaluation (Performance)

Whole System Evaluation (Anonymity)

Whole System Evaluation (Anonymity)

Conclusions

- Tunable Tor provides:
 - Significantly more security
 - No reliance on self-reported information
 - Multiple, randomly selected, opportunistic router evaluations prevent targeted attacks
 - Tunability
 - 3x throughput improvement for the same anonymity
 - Dramatically more anonymity for the same performance
 - Much shorter "long tail"
 - But...

Current Work: Whole Network Simulation

- What happens when all nodes in the network are using these algorithms?
- Plan
 - Simulate 1000 nodes, 10,000 flows
 - Choose routes according to
 - Current Tor algorithm
 - All users using new algorithm
 - Everybody at a single selection level (for all levels)
 - Plausible mixes (20% level 0, 30% level 15, 5% each for the rest)
 - Transitional phase (some old, some new)

Current Work: Bandwidth Estimation Testing

- Can peer bandwidth measurements from lowbandwidth hosts be used?
- Plan:
 - Patch to monitor peer bandwidth periodically being distributed
 - Compare
 - Measured bandwidth
 - Measured bandwidth ranking

from hosts with different available bandwidth