
A Non-Interactive Dual Channel Authentication Protocol for Assuring
Pseudo-confidentiality

David Irakiza, Md E. Karim, Vir V. Phoha
Center for Secure CyberSpace

Louisiana Tech University
{dir003,mdekarim,phoha}@latech.edu

Abstract

We introduce a non-interactive dual channel authentication
protocol and apply it to long distance communication for
assuring pseudo-confidentiality, a criteria that prevents a
malicious agent from exfiltrating information to unautho-
rized destinations. Unlike previously proposed protocols
that assume a manual (human-aided) or equivalent au-
thenticated channel, our protocol utilizes a non-manual
authenticated channel. We analyze the security properties
for a possible realization of this protocol and develop
a prototype. Through a Raspberry-Pi implementation,
we show how the incorporation of the proposed scheme
into the future design of keyboard interfaces may impact
authentication practices.

1. Non-interactive dual channel authentication
protocols

Non-interactive dual channel authentication protocols
employ two channels and authenticate information r1 re-
ceived through one presumably insecure channel using a
piece of brief information r2 (computed from r1) received
through the other presumably authenticated channel. To re-
main lightweight these protocols employ one way commu-
nication from a message sender, Alice, to a message recipi-
ent, Bob. It can be shown that in these protocols, imposters
cannot authenticate themselves if, (i) only one of the chan-
nels is compromised or (ii) both channels are compromised
but attacks on them are not coordinated.

Existing literature describes a family of non-interactive
message authentication protocols (e.g., [1, 2, 4, 3, 5]),
known as NIMAPs, that use a manual (human-aided) au-
thenticated channel. In these protocols, a hash value for
each message being sent is generated. Alice then transmits

This work is supported by AFOSR Grants FA9550-09-1-0479 and
FA 9550-09-1-0165.

the message and hash over the insecure and authenticated
channels respectively to Bob. In some protocols, a key is
applied to the hash function when generating the hash val-
ue and this key is sent with the message over the insecure
channel [3, 5] or with the hash value over the authenticated
channel [2].

NIMAPs assume that the authenticated channel is
human-aided hence adversarial influence on this channel is
significantly limited. This assumption is sufficient for short
distance communications requiring infrequent authentica-
tion of messages. However, this limits their application in
long distance communications (e.g, over the internet) where
frequent authentication is required and a human-aided au-
thenticated channel is unrealistic and/or infeasible.

2. Proposed protocol

Replacement of the human-aided authenticated channel
in NIMAPs erodes the security benefit assured by such a
channel. This exposes them (NIMAPs) to channel spoof at-
tacks where an adversary, Eve, could spoof the identity of
the authenticated channel when sending her authentication
messages to Bob. Because of the non-interactive nature of

Figure 1. Proposed protocol (Generic)

the protocol, Bob has no way to know whether these authen-
tications are sent by Alice hence, he will accept a message if
its authentication is valid (i.e., it authenticates the message
sent through the insecure channel).

We address this issue by introducing the following: (i)
we assign the task of Alice to a small hardware attachment
that we assume not to be affected by a channel compromise,
and (ii) we assume that it is difficult for the adversary, Eve
to compute r2 given r1.

Figure 1 presents the proposed generic protocol. In this
protocol, Alice is a hardware attachment to the keyboard
with the following properties: (i) She has processing capa-
bilities to parse typed keystrokes and apply a method gen-
erate to identify r1 and to compute r2 from r1; (ii) She only
receives input from the keyboard; (iii) She sends output to
Bob using two different channels (one is insecure that runs
through the host and the other is authenticated that bypass-
es the host). Bob is a verifier program located in a remote
computer.

In Figure 1 (and in subsequent protocol figures), the “′”
added to information received by Bob indicates that the sent
and received values might be different and the insecure and
authenticated channels are represented by “→” and “⇒” re-
spectively.

The protocol is designed based on the following assump-
tions: (i) an r2 can verify the associated r1; (ii) an adversary
can generate an r1 or snoop the r1 generated by Alice but it
is difficult for her to compute the associated r2 from a given
r1; (iii) Bob can compute r2 from r1; (iv) r′1 is accepted on-
ly if (r′1, r′2) is consistent i.e., r2b (the expected r′2 computed
by Bob for the r′1 he received) is the same as r′2.

Alice generates r1 and r2 from the keystrokes typed by
a user and sends r1 through the possibly compromised host
using the insecure channel and r2 directly to Bob using the
authenticated channel. When Bob receives r1 and r2 from
Alice, he accepts r′1 only if (r′1, r′2) is consistent. To de-
feat this protocol, Eve either; (i) waits for Alice to transmit
an r1 and replaces r1 with r1eve and expects that it will be
verified by the associated r2 (generated and transmitted by
Alice), or; (ii) estimates an r2eve for her r1eve and transmits
both of them to Bob pretending that the r2eve is transmitted
over the authenticated channel (by spoofing the authenticat-
ed channel’s identity).

Existing NIMAPs do not make assumption (ii), perhaps
because of the challenge involved with its realization. In-
stead, they assume that Eve cannot successfully use (or
masquerade to be using) the manual authenticated channel.
These protocols can be defeated if the manual channel is
replaced by a non-manual physical channel since Eve then
can compute the right r2eve for her r1eve and masquerade as
Alice.

3. A hash based realization for assuring
pseudo-confidentiality

The exfiltration of information by a malicious agent from
a compromised host to an external adversary can be restrict-
ed by blocking all access from the host to unauthorized des-
tinations. We refer to an authorized destination as a domain
name/IP that: (i) has been typed at least once by a human us-
er (establishing consent/approval), or (ii) has been returned
in a response packet from an authorized destination. We de-
fine pseudo-confidentiality as the security property satisfied
when an adversary cannot exfiltrate information to unautho-
rized destinations.

Figure 2. Hash based realization

A hash based realization of the proposed protocol assur-
ing pseudo-confidentiality is shown in Figure 2. In this real-
ization, the generate function used by Alice produces com-
ponents rv and h. rv is the destination (IP/domain name) of
a request being made and h = HK(rv) is the hashed value
of the requested destination. This realization works in two
phases as described below:

(i) Initialization phase
This is a one step setup process required prior to the estab-
lishment of the rest of the protocol. During this phase, a
human operator (i) informs Bob of the functions H and Ĥ
used by Alice and (ii) initializes a K for Alice and Bob.
During the protocol phase, function H uses K as a parame-
ter to produce h and function Ĥ is used to update K by both
Alice and Bob. Due to some failure or interruption in com-
munication, if Alice and Bob do not have the same updated
K, all destination requests will be rejected and the value of
K will have to be re-initialized.

(ii) Protocol phase
In this phase, components rv and h are transmitted from
Alice to Bob via the insecure and authenticated channels

respectively. When Bob receives both r′v and h′, he com-
putes his own h using his K i.e., h = HK(r′v) and considers
(r′v, h

′) to be consistent if the received h′ = h. The value of
K is updated by both Alice and Bob using another function
Ĥ . Alice updates her K after sending h to Bob and Bob
updates his K every time he receives an h′ #= ∅ from Alice
and accepts r′v . Ĥ(K) transforms the value of K based on
the current value of K to produce a new K.

During experimentation, we relax the definition of con-
sistent by accepting requests to destinations that are (i) non-
typed but had been authorized before and (ii) received in
response to requests to authorized destinations, to improve
the usability of the solution.

Security Analysis
Bob accepts r′v if (r′v, h) is consistent for the current K

(that Bob has knowledge of). Bob can be made to accept a
request from Eve in the following cases:

Case 1: Channel spoof attack
A malicious agent, Eve, residing in the host, can no

longer launch a channel spoof attack simply by sending her
own rv and h to Bob if the K she uses for computing h (at a
certain instance) is not what Bob is expecting Alice to use.
Since our assumption is that Eve has no knowledge of K,
Alice can only expect that the K she is using matches with
the K Bob is expecting. For an n-bit K, the probability of
such a match is 2−n.

Case 2: Second preimage Attack
Eve can replace the destination rv generated by Alice

with her own destination reve and expect that there exists a
K ′′ such that H(rv,K) = H(reve,K ′′). A second preim-
age resistant hash function is relevant in our case because
for a second preimage resistant hash function, given an in-
put rv , it should be difficult for an adversary to find anoth-
er input reve #= rv such that H(reve) = H(rv). If H is
εs second preimage resistant (i.e., εs is the probability of
H(reve) = H(rv) occurring), then the probability of a suc-
cessful attack is εs.

4. Results

We setup a prototype as shown in Figure 3 using
Raspberry-Pis (model B) as the hardware attachments to
the keyboard and collected data for over four months. As
mentioned in Section 3, our experimentation considers a re-
laxed definition of consistent as reflected in the logic for the
Pseudo Confidentiality Verifier in Figure 3. Figure 4 shows
typical results for a representative seven day period. As ex-
pected, all illegitimate requests were denied (requests not
initiated by the user). Some legitimate requests were also
denied because associated destinations were not typed once
before their use. Figure 4 (b) shows the breakdown of the
legitimate typed and un-typed requests.

r2

r1

Ra
sp

be
rr

y

Pi

Ho
st

Pseudo Confidentiality Verifier
Case r'2≠ ø
If (r'1, r'2) is consistent
Accept r'1; Update K= Ĥ(K); Record r'1
Else
Reject r'1
Case r'2= ø
If r'1 is recorded
Accept r'1
Else
Reject r'1

Authenticated Channel

Keyboard

Y N
IP/DN?
(Parser)

ø

Insecure
Channel

Pr
ox

y

Internet

Figure 3. Raspberry-Pi based prototype

1 2 3 4 5 6 7

0

20

40

60

80

100

Day

%
 o

f r
eq

ue
st

s a
cc

ep
te

d

legitimate
illegitimate

1 2 3 4 5 6 70

20

40

60

80

100

Day

%
 o

f r
eq

ue
st

s a
cc

ep
te

d

typed
untyped

(a) (b)

Figure 4. % of requests accepted per day

References

[1] D. Balfanz, D. K. Smetters, P. Stewart, and H. C. Wong. Talk-
ing to strangers: Authentication in ad-hoc wireless networks.
In NDSS, 2002.

[2] C. Gehrmann, C. J. Mitchell, and K. Nyberg. Manual authen-
tication for wireless devices. RSA Cryptobytes, 7(1):29–37,
Spring 2004.

[3] A. Mashatan and D. R. Stinson. Noninteractive two-channel
message authentication based on hybrid-collision resistan-
t hash functions. IACR Cryptology ePrint Archive, 2006:302,
2006.

[4] S. Pasini and S. Vaudenay. An optimal non-interactive mes-
sage authentication protocol. In Proceedings of the 2006 The
Cryptographers’ Track at the RSA conference on Topics in
Cryptology, CT-RSA’06, pages 280–294, Berlin, Heidelberg,
2006. Springer-Verlag.

[5] M. R. Reyhanitabar, S. Wang, and R. Safavi-Naini. Non-
interactive manual channel message authentication based on
etcr hash functions. In Proceedings of the 12th Australasian
conference on Information security and privacy, ACISP’07,
pages 385–399, Berlin, Heidelberg, 2007. Springer-Verlag.

