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Abstract

Security is a major, frequent concern in extensible soft-
ware systems such as Java Virtual Machines and the Com-
mon Language Runtime. These systems aim to enable
simple, classic applets and also, for example, distributed
applications, Web services, and programmable networks,
with appropriate security expectations. Accordingly, they
feature elaborate constructs and mechanisms for associ-
ating rights with code, including a technique for determin-
ing the run-time rights of a piece of code as a function of
the state of the execution stack. These mechanisms pre-
vent many security holes, but they are inherently partial
and they have proved difficult to use reliably.

We motivate and describe a new model for assigning
rights to code: in short, the run-time rights of a piece
of code are determined by examining the attributes of
any pieces of code that have run (including their origins)
and any explicit requests to augment rights. This history-
based model addresses security concerns while avoiding
pitfalls. We analyze the model in detail; in particular, we
discuss its relation to the stack-based model and to the
policies and mechanisms of underlying operating systems,
and we consider implementation techniques. In support
of the model, we also introduce and implement high-level
constructs for security, which should be incorporated in
libraries or (even better) in programming languages.

1 Introduction

In the access control model of security, an access con-
trol matrix associates rights for operations on objects with
subjects. The objects may for example be files and de-
vices; the subjects may for example be users; the oper-
ations may be reading and writing. In systems that rely
on access control for security (and most do), a frequent,
delicate issue is the association of rights with code. For
example, a piece of code may be given the rights of the
subject who executes the code, those of the author of the
code, or some combination of the two. These rights deter-
mine whether the code can perform sensitive operations
(e.g., reading and writing files).

Runtime environments such as Java Virtual Machines
(JVMs) [13, 9] and the Common Language Runtime
(CLR) [5, 2, 12] provide rich support for associating rights
with code, under configurable security policies. These
environments aim to enable simple mobile code (classic
applets) and also, for example, distributed applications,
Web services, and programmable networks, with appro-
priate security expectations. They feature elaborate con-
structs and mechanisms for managing rights, including a
technique for determining the run-time rights of a piece
of code as a function of the state of the execution stack,
and an associated requirement that programmers code cer-
tain security checks. These run-time mechanisms prevent
many security holes, but they are inherently partial, and
remain blind to any interaction not recorded on the cur-
rent execution stack. These mechanisms also have perfor-
mance and usability costs: for most programmers, their
effects are difficult to predict (and even to interpret).

In this paper, we motivate and describe a new model and
practical techniques for assigning rights to code at run-
time. In short, the run-time rights of a piece of code are
determined by examining the attributes of any pieces of
code that have run (including their origins) and any ex-
plicit requests to modify rights. Our model addresses se-
curity concerns while simplifying the tasks of program-
mers and thereby avoiding security pitfalls. Although
widely applicable, it is particularly motivated by the char-
acteristics and needs of JVMs and of the CLR: it is largely
compatible with the existing stack-based model, but it pro-
tects sensitive operations more systematically, and it also
enables a smoother integration with the security mecha-
nisms of an underlying operating system (such as secu-
rity tokens in NT and its descendants). Our model can
be implemented efficiently using a small amount of aux-
iliary state. In addition, we introduce constructs for high-
level languages (such as Java or C]) that facilitate security-
aware programming within the model.

The rest of this paper is organized as follows. In Sec-
tion 2, we review some aspects of associating rights with
code, and in particular stack-based access control. In Sec-
tion 3, we present our history-based access control ap-
proach. In Sections4 and5, we give some examples and
we sketch a high-level language extension in the context
of C]. In Sections6 and7, we further relate our approach



to stack-based techniques and system security. We close
with a discussion of related work and some brief conclu-
sions. An appendix provides some additional code.

Throughout, when we rely on the precise context of a
system, we focus mainly on the CLR. (We do not assume
a detailed knowledge of the existing CLR security model
and of the corresponding mechanisms.) In this concrete
context, we emphasize design, but also investigate imple-
mentation techniques. In particular, we have pieces of
code that embody parts of our model, and we have stud-
ied matters of performance and of compatibility with ex-
isting libraries. However, we have yet to attempt a full
development and integration into the CLR (or Rotor, a
shared-source implementation [20]). This integration is
likely to be a substantial task. In particular, this integration
could include enabling optimizations currently illegal be-
cause of the stack-based model; removing data-structure
customizations for that model; and compiler support for
the new history-based model. We suspect that it is not
too meaningful to conduct detailed performance measure-
ments without this integration work.

2 Associating Rights with Code and
Stack Inspection

In an extensible software system where subjects and
pieces of code are trusted to varying degrees, it is both
important and challenging to manage the permissions of
running programs in order to avoid security holes.

Type safety provides a base line of protection and en-
ables fine-grained access control. Although type safety is
crucial for security in JVMs, the CLR, and related sys-
tems (such as SPIN [1]), it is not by itself sufficient. In
this section, assuming type safety, we discuss some secu-
rity problems that type safety does not solve, as well as a
popular, stack-based technique for addressing these prob-
lems. We point out some shortcomings of this technique
(of which some, but not all, are well known), thus moti-
vating history-based rights computation.

One particular difficulty that has attracted considerable
attention is the so-called “confused deputy” problem [10],
which goes as follows. Suppose that a piece of un-
trusted code calls a piece of trusted code, such as a li-
brary function, perhaps passing some unexpected values
as arguments to the call, or in an unexpected execution
state. Later, the trusted code may invoke some sensitive,
security-critical operations, for example operations on an
underlying file system. It is crucial that these operations
be invoked with the “correct” level of privilege, taking
into account that the call is the result of actions of un-
trusted code. Moreover, this security guarantee should be
achieved under the constraint that we would not expect ev-
ery library function to be rewritten; only a fraction of the
code may ever be security-aware.

One approach to addressing this problem is the tech-
nique called stack inspection, which is presently embod-
ied in JVMs and in the CLR. Following this technique,
an upper bound on its permissions is associated statically
(that is, before execution) with each piece of code, typi-
cally by considering the origin of the piece of code. For
example, whenever a piece of code is loaded from an un-
trusted Internet site, it may be decided that this piece will
have at most the right to access temporary files, but will
have no other rights during execution. At run-time, the
permissions of a piece of code are the intersection of all
the static permissions of the pieces of code on the stack.
Thus, the run-time permissions associated with a request
made by a trusted piece of code when it is called by an
untrusted piece of code include only permissions granted
statically to both pieces of code. An exception to this pol-
icy is made for situations in which a trusted piece of code
explicitly amplifies the run-time permissions. Such ampli-
fications are dangerous, so they should be done only after
adequate checking.1

Although the stack inspection technique has been
widely deployed, it has a number of shortcomings. One
of the main ones is that it attempts to protect callees from
their callers, but it ignores the fact that, symmetrically,
callers may be endangered by their callees. (Similar is-
sues arise in connection with exception handling, multi-
ple threads, shared mutable data structures, callbacks, and
higher-order programming.) If A calls B, B returns (per-
haps with an unexpected result or leaving the system in
an unexpected state), and then A calls C, the call to C de-
pends on the earlier call to B, and security may depend on
tracking this dependency, which stack inspection ignores.
(See Section4 for programming examples.) In theory, one
could argue that A should be responsible for checking that
B is “good” or that it does not do anything “bad”. How-
ever, this checking is difficult and impractical, for a vari-
ety of reasons. In particular, A may be a library function,
which was coded without these security concerns in mind,
and which we may not like to recode—indeed, one of the
appeals of stack inspection is that it avoids some secu-
rity problems without the need to recode such functions.
Moreover, the call to B may be a virtual call (that is, a
dynamically dispatched call), whose target (B) is hard to
determine until run-time.

This shortcoming of stack inspection is a source of er-
rors with serious security ramifications. From a more fun-
damental perspective, stack inspection is a partial protec-
tion mechanism, which addresses only one aspect of the

1The details of stack inspection and of the operations that deal with
permissions vary across systems. In particular, the operation that per-
forms amplifications is coarser-grained in the JDK 1.2 than in earlier
JVMs and than in the CLR. In the CLR, on which we focus, this opera-
tion can give individual permissions, and another operation can remove
individual permissions.



“confused deputy” problem. Other techniques are needed
in order to achieve a more complete solution, with satis-
factory practical and theoretical properties.

Stack inspection is also a source of performance con-
cerns, and these concerns can in turn contribute to er-
rors. In a naive implementation of stack inspection, each
security decision requires “walking” the execution stack
and testing permissions. These operations can be expen-
sive.2 Therefore, programmers that think more about ef-
ficiency than about security often replace stack inspection
with riskier but faster operations, such as LinkDemand
in the CLR [12, page 73]. At least in principle, these
performance concerns could partly be addressed through
“security-passing style” implementation techniques [21].

Stack inspection presents other difficulties because of
its somewhat exotic, ad hoc character. It is a unique mech-
anism, largely motivated by an implementation idea, sep-
arate and distinct from other security mechanisms such as
may be provided by an underlying operating system, or by
a distributed environment. As a result, it is hard to trans-
late the security state of a runtime that uses stack inspec-
tion into a corresponding state that would be meaningful at
the operating system level. Such a translation is often de-
sirable when a thread in the runtime makes an external call
(a local system call, or even a call across a network). In
another direction, it is hard to relate stack inspection to ex-
ecution models for certain high-level languages that target
these runtimes. For example, programmers in functional
languages such as Haskell are not encouraged to think in
terms of stacks, so the runtime stacks are not an appropri-
ate abstraction for their understanding of security. Finally,
stack inspection is directly related to a particular stack-
based execution strategy. Although this strategy might be
reasonable in the context of an interpreter, it is not always
satisfactory in the context of a compiler. Stack inspec-
tion complicates and hinders compiler optimizations that
would affect the stack, such as tail-call elimination and
method inlining.

In light of these difficulties and shortcomings, we
should look for alternatives to stack inspection. An in-
teresting idea is to rely on information-flow control, of
the kind studied in the security literature, particularly in
the context of multilevel security [4]. Unfortunately, de-
spite recent progress (e.g., [14]), information-flow control
is often too restrictive and impractical for general-purpose
runtimes. Nevertheless, it provides an interesting point of
comparison and theoretical background; the work of Four-
net and Gordon explores the application of techniques di-
rectly based on information-flow control [8].

2Debuggers and garbage collectors also perform stack walks, for con-
structing traces and for finding pointers into the heap, respectively. How-
ever, their algorithms are quite different from those for stack-based se-
curity, at least in the CLR, and they are subject to different performance
constraints.

We propose another alternative to stack inspection: we
rely on the execution history (rather than the stack, which
is an imperfect record of the history) for security, as ex-
plained below.

3 History-Based Rights Computation

Next, we detail our design and mechanisms for assign-
ing rights to code at run-time.

In short, the run-time rights of a piece of code are de-
termined systematically by examining the attributes of the
pieces of code that have run before and any explicit re-
quests to augment rights. The pieces of code that have run
include those on the stack but also those that have been
called and returned. In our basic example—A calls B,
B returns, then A calls C—the run-time rights in effect
within C will in general depend on the fact that A, B,
and C have executed. The attributes in question include
in particular the origins of the pieces of code (whether
they come from the local disk, digitally signed by a trusted
party, from an untrusted Internet site, . . . ); they may also
include properties that can be determined by automated
code analysis. Thus, the general idea of our approach is
to remember the history of the computation (or some ab-
straction of this history) in computing run-time rights.

An important way to compute run-time rights is as the
intersection of rights associated with each of the pieces
of code that have run. Specifically, our approach is as
follows:

1. Static rights: We associate some rights with each
piece of code, statically (at compile time or load
time). We refer to these rights as static rights.

2. Current rights: At run-time, we associate current
rights with each execution unit at each point in time.

3. Checking: These current rights are the ones consid-
ered by default when security decisions need to be
taken or when security information needs to be com-
municated to other system components.

4. Storage: These current rights are stored in such a way
that programs can read them and update them (sub-
ject to the conditions given next). In particular, an
ordinary variable can represent these current rights.

5. Automatic updates: Whenever a piece of code exe-
cutes, the current rights are updated: the new current
rights are the intersection of the old current rights
with the static rights of this code.

6. Explicit modifications: At its discretion, a piece of
code may invoke a special operation to modify the
current rights. This operation will at most restore the
static rights of this code, and it may be further con-
strained.



7. Syntax: The controlled modification of rights results
in some useful programming patterns. These patterns
can be supported with special syntax for “granting”
rights and “accepting” results after running untrusted
code.

We expand on each of these points in what follows.
First, however, we illustrate some of them with a triv-
ial example, the following tiny program fragment from a
trusted library:

m(); File .Delete(s);

At run-time, the callm() may affect the value of the pa-
rameters (for example, ifs is an instance variable and
m is an overridden method that setss). Independently of
m’s behavior, if the static rights ofm do not include the
right to delete files, then the set of current rights afterm()
will not include that right either, soFile .Delete(s) will
be prevented.

3.1 Static Rights and Current Rights

Concerning point1 (Static rights), the static rights of a
piece of code typically depend on the origin and the prop-
erties of the code, as explained above. They represent the
maximal rights for that code. They do not change once the
code is loaded. Each piece of code can read its associated
static rights (but not update them).

This point is fairly standard, and is also a prerequisite
for stack inspection mechanisms. In fact, the details can
be worked out so as to keep compatibility with the existing
mechanisms. In particular, we can represent rights by col-
lections of objects that implement a standardPermission
interface (which we may informally call permissions), and
we can rely on existing methods for expressing the se-
curity policies that associate pieces of code with permis-
sions.

Concerning point2 (Current rights), there are imple-
mentation and usability issues in choosing the size of exe-
cution units. The execution unit will typically be a thread.
In that case, whenever a thread is forked, it should start
with the current rights of its parent, by default. When two
threads join, their current rights should be intersected. As
usual, shared mutable memory should be treated with cau-
tion. Alternatively, with appropriate synchronization, the
execution unit may be a collection of threads, such as an
application domain in the CLR, possibly a complete pro-
cess containing many related threads.

According to point3 (Checking), the current rights are
the ones used by default in security decisions, in calls on
services of an underlying operating system, and in calls
to execution environments on remote machines (see Sec-
tion 7). In any case, there is no need to walk an execution
stack in order to make security decisions.

As for point4 (Storage), storing the current rights in a
variable has several advantages:

• Security-aware programmers get flexibility and con-
trol, without the need for any additional run-time
support. For instance, it is possible to code con-
structors that store private copies of the current rights
and methods that use them later to perform security
checks or modify the current rights.

• A variety of standard optimizations can be applied.
The problem of optimizing programs with mutable
variables is a well-understood one—and we need not
be concerned about interactions between optimiza-
tions and stack-based security. For instance, tail-
call elimination, which changes the stack but not the
inter-method control flow, is safe in our model. Fur-
thermore, many optimizations that change the inter-
method control flow (hence the stack) can be per-
formed, with some care. For instance, we can inline
a method if we also inline the corresponding code
that performs the automatic rights update before the
method. (In contrast, method inlining is limited in
the CLR because of potential interactions with stack
inspection.) In all these respects, the current rights
are just like other ordinary variables.

• From the point of view of a programmer in a high-
level language, a global variable is easy to under-
stand. Even in functional languages such as Haskell,
there is the possibility of modeling mutable vari-
ables such as the one in question. (It is less stan-
dard and mundane to model a stack, although the cur-
rent rights obtained by stack inspection might still be
explained to the programmer as a dynamic variable
with implicit bindings, or even as a local variable
passed as an extra parameter for every call, as sug-
gested by security-passing style implementations of
stack inspection [21].)

The variable may be per-thread or per-process, depend-
ing on the chosen level of execution unit. We note that the
CLR already includes similar mechanisms, with different
information and for different purposes, so this implemen-
tation strategy appears viable and generally in tune with
existing infrastructure.

The set of rights may be explicitly represented by a list.
However, alternative representations are possible, such as
the following:

• A symbolic expression whose value is a set of rights.
The symbolic expression can be constructed using
standard set union, intersection, and difference op-
erations. It may be simplified lazily (as the rights are
used) or eagerly (as the expression is constructed).



• A symbolic expression whose value is a set of code
origins (such as users or network zones). Again, the
symbolic expression can be constructed using stan-
dard operations, and the expression may be simpli-
fied lazily or eagerly. Moreover, the associated rights
can be computed as a function of these code origins,
lazily, whenever they are needed. In this case, we
use the disjunction of code origins as the dual to the
intersection of rights. In other words, we may, for ex-
ample, keep track of the fact that all the code comes
from P or Q, rather than the intersection of the rights
associated with P and Q.

• A mixture of the two, where some of the components
refer to code origins and others to abstract represen-
tations of permissions. For instance, if the security
policy associates rights with a few “code groups”,
one may represent intersections of static rights as sets
of groups, and still represent explicit modifications of
rights by sets of permissions.

• At the other extreme, a simple bit pattern (a mask)
that represents which rights are present and which are
not. This representation is particularly efficient, but
is applicable only in the case where there is a fairly
limited and fixed set of rights.

3.2 Updating Current Rights

Point5 (Automatic updates) says that, whenever a piece
of code executes, the current rights are intersected with
the static rights of this code. This update occurs automat-
ically, independently of the code itself, so that security-
unaware code is protected by default from untrusted code
(see examples in Section4). Thus, when A calls B, B re-
turns, then A calls C, the run-time rights in effect within C
will in general depend on the fact that A and B have exe-
cuted. If C needs rights lost in A or B, then C may choose
to restore them explicitly, as explained below, but those
rights are not present by default.

Automatic updates can be efficiently implemented tak-
ing advantage of the following observations:

• An update can be skipped when the current rights are
already included in the static rights of the code. This
inclusion can be determined by static analysis, and
taken into account in calling conventions.

• If the ways of going from one piece of code to an-
other are method calls and returns (assuming that our
“pieces of code” are at least as large as methods),
then the updates to the current rights need to happen
only when there are method calls and returns. This
can directly be extended to exception throwing and
exception handling.

• In this setting, an effective calling convention is that,
whenever a call completes (either normally or with
an exception), the current rights after the call are in-
cluded in the current rights before the call. With this
convention, the automatic updates can be enforced by
calculating an intersection of rights at most once for
every call (before transferring control to the callee).

We expect most updates to be (conservatively) elimi-
nated, for two reasons: many updates (including in partic-
ular many updates in direct calls) will not actually change
the current rights, and many updates are irrelevant (e.g.,
because the resulting current rights are never used). We
may implement the remaining updates as follows:

• For every method (or for every remaining call), we
may use a source-language transformation that in-
serts a code prefix that explicitly performs the update.
This transformation can be implemented on top of a
platform with no specific support for security.

• We may proceed similarly at a lower level in a just-
in-time (JIT) compiler, using a native-code prefix.
In addition, we may provide several entry points for
the same methods, before and after the automatic up-
date, so that the compiler can skip the update when
compiling direct calls from code with the same static
rights (or lower static rights).

• In the case in which there is no amplification, or few
amplifications, we may actually perform all updates
in the JIT compiler, as each piece of code is compiled
before execution. (Later amplifications may force
some recompilation.)

• We may maintain a cache for common intersections.
We expect the same intersections to be computed
again and again.

Concerning point6 (Explicit modifications), the modi-
fication of rights is a sensitive operation, which should be
done only with care and after adequate checking. Whereas
certain reductions of rights happen automatically as de-
scribed in point5 (Automatic updates), other modifica-
tions of rights—amplifications or not—require an explicit
step, which can be taken only by security-aware code. The
explicit step gives us a specific point on which to focus
auditing efforts, and also to place blame when things go
wrong. Code that is not security-aware need not be con-
cerned with such explicit management of rights.

The special operation that modifies rights may fail. Of
course, code may acquire at most its static rights via mod-
ifications; any request to acquire more will fail. In gen-
eral, configurable security policies can define the allowed
modifications, much like they define static rights. A policy
may say, in particular, that certain permissions can never



be acquired via modifications. A policy may also say that
untrusted code should not perform any modification at all,
in order to simplify the writing of code that interacts with
it.

From an implementation perspective, the explicit mod-
ification of rights is straightforward; it may benefit from
static analysis much like the automatic updates discussed
above. From a language perspective (point7, Syntax), it
can benefit from high-level syntactic support, as discussed
in Section5.

4 Examples

In this section we illustrate history-based rights compu-
tation through several examples, written in C]. The ex-
amples do not show explicit rights modifications. The ap-
pendix contains examples with that feature.

4.1 Basic Examples

In these examples, untrusted code attempts to use some
trusted-but-naive code for deleting a file. The examples
rely on FileIOPermissionobjects for representing access
rights for files.

In the first example, some untrusted code (such as an ap-
plet) calls some trusted code (such as a library) that in turn
performs a sensitive operation (such as deleting a file). For
this example, the situation is much like with stack inspec-
tion. We mention our assumptions on static permissions
in comments. (These assumptions would be enforced by
the runtime security policy.)

// Mostly untrusted : static permissions don’t
// contain any FileIOPermission .
class BadApplet{

public static void Main() {
NaiveLibrary.CleanUp(”..\\password”);

}
}
// Trusted : static permissions contain all permissions .
public class NaiveLibrary{

public static void CleanUp(string s) {
File .Delete(s);

}
}

The sensitive operation can be protected in theFile li-
brary class by requiring a permission—in our example,
someFileIOPermission:

// Trusted : static permissions contain all permissions .
public class File { ...

public static void Delete( string s) {
FileIOPermission p= newFileIOPermission(s ...));
p.Demand();
Win32.Delete(s);

}
}

Here,p.Demand() checks that the permission to deletes
is available. Our history-based mechanism keeps track of
the execution ofBadAppletand then prevents the dele-
tion of arbitrary files: since the invocation of the delete
operation occurs after the execution of untrusted code, the
check fails and raises a security exception. Thus, the naive
library is protected by default from untrusted callers.

The sequence of operations on the current rights goes as
follow:

• As control is transferred toBadApplet.Main, the cur-
rent permissions are intersected with the static per-
missions ofBadApplet, thereby removing anyFile-
IOPermissionfrom the current permissions.

• As CleanUp, Delete, andDemandare invoked, the
current permissions are intersected with their respec-
tive static permissions. Since these functions have at
least the static permissions ofBadApplet, these inter-
sections do not actually change the current permis-
sions (and may actually be skipped).

• Finally, p.Demand() checks whether the current per-
missions specifically containFileIOPermission p
and, since this is not the case, raises a security ex-
ception. Thus,p.Demand() prevents the deletion of
the file ” ..\\password”.

In the second example, conversely, some trusted code
(such as a local application) calls untrusted code (such as
a plug-in), then proceeds with the result of the call. Unlike
stack inspection, our mechanism still prevents the deletion
of the file.

// Trusted : static permissions contain all permissions .
class NaiveProgram{

public static void Main() {
string s = BadPlugIn.TempFile();
File .Delete(s);

}
}
// Mostly untrusted : static permissions don’t
// contain any FileIOPermission .
public class BadPlugIn{

public static string TempFile() {
return ” ..\\password”;

}
}

Operationally, the situation here is much as in the first
example:

• Initially, the current permissions contain all the static
permissions ofNaiveProgram.

• When BadPlugIn.TempFile is invoked, the current
permissions are intersected with the static permis-
sions ofBadPlugIn.



• WhenBadPlugInreturns, and later in the computa-
tion, further intersections may be performed, but the
current permissions always remain included in those
of BadPlugIn, hence they never contain anyFileIO-
Permission.

• Finally, p.Demandraises a security exception, as
above.

4.2 Further Examples

The two following examples are complete (synthetic)
C] programs. They illustrate two limitations of stack-
based security that are addressed by history-based secu-
rity. They resemble problematic programs that occur in
practice, although those are typically much longer.

The examples rely on features of the CLR that may
not be familiar for all readers. In particular, they rely
on declarative attributes (rather than assumptions on static
permissions) in order to specify the security policy for
selected methods and classes—for instance, in order to
lower the rights of selected applet methods. We provide
these details so that the examples, when executed, actu-
ally behave as we describe in the text, but the details are
otherwise unimportant.

In the first example, untrusted code creates an object of
a library class (Task), returns it, then trusted code triggers
a call to a dangerous operation (File .Delete(s)). Such
patterns—and, in general, higher-order programming—
are especially common with event- or delegate-based li-
braries, for instance those that provide graphical user in-
terfaces.

public sealed classTask{
private string s;
public Task( string s ) { this .s = s; }
public void Start () { File .Delete(s ); }

}
public class Untrusted{

// The following declarative attribute removes
// all FileIOPermissions for this method.
[ FileIOPermissionAttribute
( SecurityAction.Deny, Unrestricted=true )]

public static Task applet() {
return new Task(” ..\\password”);

}
}
class Program{

static void Main() {
Untrusted. applet (). Start ();

}
}

The situation is similar to the one in the previous ba-
sic example, but less direct. The program erases the
file with stack inspection but triggers a security excep-
tion with our mechanism. With stack inspection, the

responsibility for preventing the file deletion seems un-
clear. There is no way to perform an adequate test in
Program.Main: the object thatUntrusted. applet returns
is opaque. Program.Main may not be aware that this
object encapsulates a file name and thatTask. Start can
delete a file. Perhaps, conservatively, theTask( string s)
constructor could immediately check the permissions that
may later be requested byFile .Delete. However, the
details on these permissions (e.g., how to normalize file
names, whichFileIOPermissions are demanded to delete
a file, and their relation tos) belong to classFile, not to
classTask.

The second example is more involved. It combines in-
heritance and exception handling. Inheritance makes it
easier for an attacker to cause a library to invoke untrusted
code by a virtual call to a method of a well-known trusted
class.

Abstractly, throwing and handling an exception is much
like calling and handling a method. However, by the time
the exception handler proceeds, the stack that contained
any evidence of the origin of the exception has been dis-
carded. Therefore, with stack-based access control, one
should implement any exception handler under the conser-
vative assumption that the exception itself and its parame-
ters are not trustworthy. This conservative assumption can
complicate handling the exception.

With history-based access control, on the other hand,
exceptions are like ordinary method calls. When a piece
of code throws an exception, the exception handler will
start running with at most the static rights of the code. If
that code is untrusted, then those rights will be limited, so
security checks in the exception handler may fail.

public class Naive{
protected string tempFile = ”C:\\temp\\myFile”;
virtual protected void proceed () { ... }

public void m() {
try {

proceed();
}
catch ( SystemException e) {

File .Delete( tempFile);
Console.WriteLine(”Deleted {0}.” , tempFile);

}
}

}

public class PlugIn : Naive{
[ FileIOPermissionAttribute
( SecurityAction.Deny, Unrestricted=true )]

override protected void proceed() {
try {

tempFile = ” ..\\password”;
File .Delete( tempFile);

}



catch ( SecurityException e) {
Console.WriteLine(”The first attempt failed .” );
throw new SystemException(”Out of memory.”);

}
}

}
class Top{

static void Main() { newPlugIn().m(); }
}

Here, the untrusted classPlugIn is a subclass of the
trusted but naive classNaive, and overrides one of its
methods,proceed. The callPlugIn(). m() triggers a call
to proceed, which will in turn first cause a security ex-
ception with an attempt to delete a file, then will throw a
system exception. The exception handler inNaivefinally
attempts to delete a file—but not a temporary file as was
presumably intended inNaive. With history-based access
control, the fact that the new code forproceedis untrusted
is automatically considered in deciding whether to delete
the file.

4.3 A History-Based Policy

In the security literature, some policies use a history of
past sensitive operations as an input to later access-control
decisions. For example, with Chinese Wall policies, ac-
cess to data is not constrained by attributes of the data in
question but by what data the subject has already chosen
to access [3]. See Section8 for further references and dis-
cussion.

While our model does not embody those policies, it can
sometimes help in supporting them. As an example, we
show how it can help in building a simple Chinese Wall.

In the example, a program initially has access to code
from two companies, A and B, but it can actually use code
from at most one of the companies. The code may include
proprietary data and procedures from the two companies,
and might send information back to A and B, respectively.

First, we create a specific class of permission with a
constant string parameter whose presence indicates that
code from a given origin is still allowed to run.

// Specific permission for compartments.
// Most method implementations are omitted .
public class CompartmentAccess: Permissions{

// permission to access a specific compartment
string id ;
public CompartmentAccess(string id ) { this . id = id ; }
// permission to access all compartments
public CompartmentAccess() { ... }

}

The code received from company A need not be modi-
fied, or even inspected beyond a normal type-safety veri-
fication. However, a security policy should be attached to
that code, for instance using attributes:

// Static rights of type CompartmentAccess contain
// at most CompartmentAccess(”A”); demanded rights
// for all code include CompartmentAccess(”A”);
// in CLR parlance:
[assembly:CompartmentAccessAttribute
( SecurityAction.RequestOptional, id=”A”)]

[assembly:CompartmentAccessAttribute
( SecurityAction.Demand, id=”A”)]

// Code from company A, unchanged.
class libraryA { ... }
public class A : Contractor { ... }

The code received from company B is handled similarly.
Now, automatically, a program that initially has access

to code from the two companies can actually use code
from at most one of them. In other words, our Chinese
Wall policy is enforced by the underlying history-based
machinery, without any extra state and extra bookkeeping
at compartment boundaries. For example, one may write
a program that selects an offer:

public class CompliantCustomer{
int examine() {

...
if ( shouldconsiderA ) {

Contractor a= newA(query);
// No B code will ever run past this point .
return A. offer ();

}
}
public void main() {

int offer = examine();
Contractor b= newB();
// Raises a security exception if any A code
// has run.
...

}
}

The security policy may further specify that the per-
missions to access the two compartments should not be
restorable via explicit modifications. Thus, the program
would raise a security exception even if it tries to restore
the right to use B’s code after calling A’s code.

Going beyond the separation between A and B, one may
enforce policies that constrain access to code in the com-
partments, that is, to contractor code. For instance, access
to that code may be allowed only up to a certain program
stage, and certain sensitive operations might even require
that contractor code has never run:

public void PrivateStuff () {
// First exclude further contractor code:
newCompartmentAccess().Deny(); ...

}
public void SensitiveStuff() {

// First check that no contractor code has ever run:
newCompartmentAccess().Demand(); ...

}



5 High-Level Programming Constructs
(in C])

Even if they are not strictly part of the security model,
high-level language constructs can help programmers un-
derstand and live in harmony with rights management.
Consider, as an analogy, the related situation in excep-
tion handling. In principle, it would be possible to pro-
vide access to exception handling using a special library
for registering callbacks to be triggered when an excep-
tion occurs. Nonetheless, using scoped constructs such
astry {} catch () {} finally {} helps. We believe that,
similarly, language constructs are helpful in dealing with
security.

We identify two common programming patterns for the
controlled modification of rights in security-aware code.
These patterns, named “Grant” and “Accept”, consist of
the following operations:

Grant: When running after less trusted code (e.g., when
called by that code):

• check that the execution state is ok,

• amplify rights (to a specific subset of the code’s
static rights),

• perform sensitive operations, and

• reduce rights (at least to their initial state).

This pattern is analogous to certain explicit am-
plifications mechanisms used with stack inspection
(DoPrivilegedin Java,Assertin the CLR) with sim-
ilar effects but different implementations.

Accept: When running less trusted code (e.g., when call-
ing less trusted methods):

• save parts of the execution state,

• perform untrusted operations,

• check that the execution state is ok, and

• amplify rights (at most to their initial state).

This pattern does not explicitly reduce rights before
the untrusted operations: since these operations have
limited static rights, this reduction occurs automati-
cally. (In Section6, we show that, with some care,
Accepts can be used to implement the same behavior
as stack inspection.)

Both patterns comply with the efficient calling convention
outlined in Section3.2: their final current rights are al-
ways included in their initial current rights. In both cases,
the operation that checks whether the execution state is
ok depends on the security policy, and typically involves
validating some of the values passed as parameters and
checking the presence of some current rights.

These patterns would greatly benefit from direct syn-
tactic support in programming languages (as is already
the case with stack-based rights computations). Next, we
describe corresponding high-level programming-language
constructs, in the context of C], and sketch their imple-
mentation in terms of lower-level operations on current
rights. A more detailed implementation in C] and exam-
ples are given in the appendix.

We extend the grammar of statements with two con-
structs,Grant(P) {B} and Accept(P) {B}, whereP is a
subset of the static permissions to be amplified and{B} is
a block of code containing the operations to be performed
(and which are the scope of the constructs). Optionally,P
may be omitted, its default value being all static permis-
sions. These statements are executed as follows:

Grant(P){B}: Before runningB, the initial value of the
current permissions is saved and the selected permis-
sionsP are added to the current permissions. When
B completes (possibly with an exception), the current
permissions are assigned the intersection of their ini-
tial and final values. Note thatGrant does not leave
extra rights after completion of the blockB, and pre-
serves the loss of any right while runningB.

Accept(P) {B}: Before runningB, the initial value of the
current permissions is saved. IfB completes nor-
mally, then the intersection of this initial value and
P is added to the current permissions. (IfB termi-
nates with an uncaught exception, then the current
permissions are not modified.)

The code that executesAccept takes responsibility
for the effect of the operations performed byB on
the rest of the program, and should therefore perform
sufficient checks withinB before its normal comple-
tion. Note thatAcceptdoes not provide any extra
right before the completion ofB.

6 Further Comparison with
Stack Inspection

As Sections3 and4 explain, history-based access con-
trol has safety and simplicity benefits, and it is also at-
tractive from a performance perspective (in particular, be-
cause it enables compiler optimizations). We now revisit
the relation between history-based and stack-based access
control, further relating their effects.

Technically, the key difference between history-based
and stack-based access control occurs when a method ter-
minates (normally or with an exception). In our model,
with the calling convention given in Section3.2, the cur-
rent rights when a method terminates are lower than or
equal to their value before the method call. In contrast,
with stack inspection, the current rights are restored to



their value before the method call, possibly augmenting
them. Therefore, given the same static rights and assum-
ing our calling convention, history-based current rights are
always included in stack-based current rights. This prop-
erty can be quite helpful in transitioning from stack-based
to history-based access control: legacy code may generate
additional security exceptions, but should remain at least
as secure.

History-based and stack-based access control can also
be compared by studying encodings of each in terms of
the other.

• To recover a stack-inspection semantics on top of
history-based mechanisms, we can add an “Accept”
around every call that may lower the current rights
(typically, around every call to potentially less trusted
code). For example, we may write:

Accept( current ) { applet.run (); }; SQL.run();

If the call to applet.run() entails the loss of some
permissions becauseapplet.run() is untrusted code
with few static rights, then the “Accept” may re-
store those permissions. Those permissions may be
needed for executingSQL.run().

We believe that there are relatively few such calls
in existing libraries and, more importantly, that the
presence of an “Accept” or not for such calls should
not make any difference in most legacy applications:
at this stage, there are not many partially trusted li-
braries, and even the libraries designed to be callable
from partially trusted code do not often rely (or
should not rely) on partially trusted code for their im-
plementation.

• Conversely, to implement history-based rights on top
of stack inspection mechanisms, for any given call,
we can (in theory) apply a “continuation-passing-
style” transform that passes an extra function param-
eter to be called with the result, upon completion
of the callee. Hence, the callee still appears on the
stack while its result is used by the caller’s continua-
tion. However, this encoding is not practical, except
maybe for a few sensitive interfaces.

As an example of the latter encoding, consider the follow-
ing method, which takes a delegate parameter:3

// Define the class StringCode of “ code pointers ” to
// methods that take no argument and return a string .
public delegate string StringCode();

3In C], an instance of a delegate class encapsulates an object and a
method on that object with a particular signature. So a delegate is more
than a C-style function pointer, but slightly less than a closure. When it
encounters a delegate declaration, the compiler provides an implementa-
tion for the class of delegates with the given method signature.

public class Plain {
public static void Foo(StringCode badCode)
{

string s = badCode();
// When checking permissions,
// badCode is not on the stack anymore.
File .Delete(s);

}
}
With stack-inspection, this dangerous method enables

any untrusted codebadCodepassed as a parameter to pick
the file to be deleted. To implement the more secure be-
havior of history-based permissions, on top of stack-based
permissions, for this method only, one may use instead:

// Define two auxiliary delegate classes :
public delegate void StringCont( string s);
public delegate void StringApplet(StringCont c);

public class Encoded{
// Same function , with a different API
public static void Foo( StringApplet badCode)
{

// Use a built−in constructor of class StringCont
// to create a delegate to method Callback:
StringCont sc= newStringCont(Callback);

// Pass this delegate to badCode:
badCode(sc);

}

private static void Callback( string s)
{

// When checking permissions,
// badCode is still on the stack .
File .Delete(s);

}
}

7 History-Based Rights and
System Security

When a piece of code is verified and managed by a lan-
guage runtime, its sensitive operations (hence its rights)
still affect a broader, layered security infrastructure which
may include, for instance, a local-host operating system
and some distributed components. Each layer provides
its own security models and mechanisms, with sometimes
unfortunate overlaps and discrepancies.

For instance, rights management in the CLR is gener-
ally finer and more expressive than in NT, since the CLR
can rely on type safety rather than memory isolation, but
there is also a deep mismatch between permissions in the
CLR and access control in NT. Even when they manipu-
late the same abstract rights, such as file access rights, the
two layers use distinct models and interfaces, with no ob-
vious mapping between the two. Pragmatically, the CLR



expects to run as a highly-trusted application and, after
performing its own security checks, calls the system with
all its privileges (see also [21, page 7]). Hence, erroneous
amplifications of rights within the CLR can typically be
exploited despite NT security.

Our model has a more direct counterpart in terms of
system security. In the context of NT [19, page 506],
the “restricted token” mechanism enables us to construct
a disjunction of a user id with some set of special secu-
rity identifiers (SIDs) to represent limitations of rights;
this disjunction corresponds to the intersection of current
rights described in point5 of Section3 (Automatic up-
dates). Specifically, we can interpret restricted tokens as
the result of a coarse-grained history-based computation:

• The system represents rights symbolically, using sets
of SIDs. From these SIDs, an access-control policy
computes the access rights for specific objects, on de-
mand. For every process, the system represents the
current rights as a security token, consisting of one
or more such sets of SIDs. The process is granted a
right when each set of SIDs independently grants the
right. At any point, one can update the current rights
by adding another set of SIDs to the security token,
which further restricts the process.

• There is no counterpart for the explicit amplification
of rights. Restricted tokens correspond to permis-
sions that cannot be acquired via explicit modifica-
tions (see Section3.2). Thus, restricted tokens pro-
vide strong guarantees (a process will never obtain
a right once the right is denied) at the cost of ex-
pressiveness (sensitive operations must instead be re-
quested using inter-process communication).

Beyond the reuse of well-known security concepts, a
mapping from current rights to security tokens has con-
crete advantages. Crucially, system calls can be per-
formed with the appropriate privileges. Also, SIDs can
be shared across machines within the same domain. In
contrast, at present, code-based security policies and per-
missions in the CLR are relative to the local host machine
(for example, dealing with permissions for all files on the
local driveC:\).

When handling calls on services of an underlying op-
erating system (or calls to execution environments on re-
mote machines), it is particularly attractive to avoid com-
plicated translations of rights, as those translations can be
expensive and inaccurate. Such translations are easy to
avoid if the current rights are exactly those of one particu-
lar user of the underlying operating system. In that special
case, the user id can be employed as the representation for
those rights. We can generalize from this special case by
keeping track of rights partly in terms of code origins, as
discussed in Section3.

8 Related Work

The security literature contains much related work.
Some of it is mentioned above, for example the use of
information-flow control (e.g., [4, 14]).

History-based access control may be viewed as a prag-
matic approximation to information-flow control that
keeps track of code execution but not data dependencies.
Going further back, there is related work in the classic lit-
erature on operating systems, expressed in terms of pro-
tection rings [18, 16]. These rings might be seen as a
very simple, fixed hierarchy of sets of static rights, with
an automatic update mechanism for current rights, and
with hardware support. In the remainder of this section we
focus on recent related work, particularly on work about
stack inspection.

Stack-based mechanisms for access control are widely
documented for JVMs [9] and the CLR [5, 12]. In the
research literature, many works treat the analysis and op-
timization of permissions (see for instance [11, 15]). Oth-
ers deal with interesting, non-trivial implementations of
stack inspection, for instance with inlined reference moni-
tors [7] or in security-passing style [21]. These implemen-
tations suggest that an eager computation of current rights
can be made as efficient as a lazy computation by stack in-
spection. (The operations performed by these implemen-
tations to simulate a stack-based semantics are similar but
generally more complex than the operations for comput-
ing history-based rights described in Section3.2.)

At a more semantic level, Wallach et al. explicate stack
inspection in terms of a logic of access control (ABLP
logic) [21]. They model security contexts and decisions
in terms of logical statements. The powerful idea of re-
lating stack inspection to logic should also apply, mutatis
mutandi, to our history-based technique. We discuss this
point only in order to highlight differences with stack in-
spection, so we avoid formal details. Basically, Wallach
et al. associate a set of logical statementsEF with each
stack frameF . They map operations to logical statements:
Ok(T ) means that it is ok to perform operationT . The ac-
cess control problem consists in deciding whether a frame
can perform an operationT , and is reduced to deciding
whetherEF logically impliesOk(T ). When a frameF
calls a frameG, for each ofF ’s statementss, one adds
F says s to G’s statements. Significantly, there is no cor-
responding modification whenG returns. In contrast, with
history-based rights, the current rights are affected when-
ever there is any transfer of control—whether the transfer
corresponds to a method call or return, and also for exam-
ple if it results from exception handling.

Fournet and Gordon also consider an abstract model of
stack inspection mechanisms [8], based on that of Pottier
et al. [15]. In a simple functional setting (a lambda cal-
culus), they discuss limitations of stack inspection. Using



formal operational semantics, they also explore several al-
ternatives to stack inspection with stronger properties by
refining the reduction rule that discards a security frame
after an evaluation. The present paper can roughly be
seen as an elaboration of one of these alternatives, focused
on control transfers (rather than more general flows of in-
formation), and targeted at a full-fledged runtime system
(quite different from the lambda calculus).

Execution history also plays a role in Schneider’s secu-
rity automata [17] and in the Deeds system of Edjlali et
al. [6]. However, those works focus on collecting a selec-
tive history of sensitive access requests and use this infor-
mation to constrain further access requests: for instance,
network access may be explicitly forbidden after reading
certain files. In contrast, our approach considers the his-
tory of control transfers, rather than a history of sensitive
requests.

9 Conclusions

From a functional perspective, history-based rights
computation is largely compatible with existing security
machinery and libraries, although it requires runtime mod-
ifications and suggests optimizations and language exten-
sions. From a security perspective, we believe that the
benefits of access control based on execution history are
substantial. It provides a simpler alternative to stack in-
spection, and supports a safer, wiser posture with respect
to security checks.
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public class Permissions
{

// Static permissions attributed to the immediate caller :
public static Permissions Static;

// Dynamic permissions at this stage
private static Permissions now;
// Automatically updated whenever some code runs,
// with an implicit : now = now. Intersect ( Static ).

// Dynamic permissions can be read and updated:
public static Permissions Current{

get { return now; }
set {

if ( value.IsSubsetOf( Static )) now= value;
else throw newSecurityException(” Amplification not permitted .” );

}
}

// Imperative actions on permissions ( same interface as in the CLR):
public void Demand() {

if ( this .IsSubsetOf(Current)) return ;
else throw newSecurityException(”Operation not permitted .” );

}
public void Assert() { Current = now.Union(this ); }
public void Deny() { now= now.SetDifference( this ); }
public void PermitOnly() { now= now. Intersect( this ); }

// Data methods (same methods as in the CLR):
public Permissions Union(Permissions p) {}
public Permissions SetDifference(Permissions p) {}
public Permissions Intersect(Permissions p) {}
public bool IsSubsetOf(Permissions p) {}
}

}

Figure 1. The classPermissions.

Appendix:
A Partial Implementation in C ]

In this appendix, we provide a modified interface to per-
missions and its partial implementation, in the context of
C] and the CLR. Two essential aspects of an implemen-
tation are omitted here: the automatic update mechanism
for the current rights (represented as the public property
Permissions.Current), and an access mechanism to the
static rights associated with a given piece of code (repre-
sented as local variablesPermissions. Static).

First, in Figure1, we define a classPermissions, used
below, that provides the base interface to history-based
permissions—specific permission classes would be repre-
sented as subclasses ofPermissions. Whenever possible,

we use the same method names as in the existing (stack-
based) system classCodeAccessSecurityPermissionin the
CLR.

Next, we illustrate in some detail our two amplification
patterns, “Grant” and “Accept” (Figures2 and 3). For
each pattern, we first rely on the high-level syntax de-
fined in Section5, then we implement the same behav-
ior in terms of lower-level operations on the current rights
(defined in the classPermissionsin Figure1).



public class GrantExample
{

// Static permissions attributed to this class by the security policy :
static Permissions Static;

// Handpicked sets of permissions ( application−specific ):
static Permissions prior; // rights of a minimally−trusted valid caller .
static Permissions extra; // extra rights of a privileged callee .

// GRANT is a controlled form of privilege elevation
// that temporarily gives extra permissions to a specific block.
public void LibraryGate() {

// usually checks preconditions
// such as the presence of some permissions:
prior .Demand();

// elevates permissions for this block of code:
Grant ( extra) {

/∗ run sensitive code requesting elevated privileges∗/
}
/∗ continue with ordinary code∗/

}

// idem, using lower−level operations on Permissions . Current .
public void ImplementLibraryGate() {

prior .Demand();
Permissions before= Permissions.Current;
try {

extra. Assert(); // privilege elevation
/∗ run sensitive code requesting elevated privileges∗/

}
finally {

before.PermitOnly(); // cancels privilege elevation
}
/∗ continue with ordinary code∗/

}
}

Figure 2. “Grant”.



delegate int IntCode(); // some basic interface to untrusted code

public class AcceptExample
{

// Static permissions attributed to this class by the security policy
static Permissions Static;

// Handpicked sets of permissions ( application−specific ):
static Permissions saved; // rights restored after untrusted calls

// ACCEPT is a controlled form of privilege elevation
// that restores some or all permissions possibly lost in
// a specific block ( for the benefit of any following code).
private static int LibraryProxy(IntCode badCode) {

int i ;
Accept( saved) {

// Runs code that may interact with less trusted code;
i = badCode();
// usually checks post−conditions;
// by design , unhandled exceptions won’t restore permissions .
if ( i<0) throw new InvalidOperationException(”bad integer ” );

}
return i ;
// From the caller ’s viewpoint , the resulting permissions are
// the same as if this method had produced i itself .

}

// idem, using lower−level operations on Permissions . Current :
private static int ImplementLibraryProxy(IntCode badCode) {

int i ;
Permissions before= Permissions.Current;
i = badCode();
if ( i<0) throw new InvalidOperationException(”bad integer ” );
before. Intersect(saved). Assert();
return i ;

}
}

Figure 3. “Accept”.
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