
Accountability and Control of Process Creation
in Metasystems

�

Marty Humphrey, FrederickKnabe,AdamFerrari,andAndrew Grimshaw

Departmentof ComputerScience
Universityof Virginia

Charlottesville,VA 22903-2442
humphrey@cs.virginia.edu

Abstract

The distinguishingfeature of a metasystemis middle-
ware that facilitates viewing a collection of large, dis-
tributed,heterogeneousresourcesas a singlevirtual ma-
chine, whereeach userof themetasystemis identifiedbya
uniquemetasystem-level identity. Thephysicalresources
of the metasystemcan exist in multiple administrative
domains,each with different local securityrequirements
and authenticationmechanisms(e.g., Kerberos, public-
key). The problemthis paper addressesis how to map
the metasystems-level identity to an appropriate account
on each local physicalmachine for the purposesof pro-
cesscreation, such that the accesscontrol and authen-
tication policies of each local machine are not violated.
This mappingmustensure the integrity of the local ma-
chines,mustensure the integrity of themetasystemuser’s
data,andmustnot unnecessarilyburdeneither themeta-
systemusers, themetasystemsystemadministrator, or the
local machine systemadministrators. Specificexamples
aredrawnfromexperiencesgainedduringthedeployment
of the Legion metasystem.For example, Legion configu-
rationsfor local siteswith different accesscontrol mech-
anismssuch asstandard UNIX mechanismsandKerberos
are compared. Throughanalysisof theseconfigurations,
theinherentsecuritytrade-offs in each designarederived.
Theseresultshavepractical importanceto currentandfu-
ture metasystemusers andto sitesconsideringany future
inclusionof local resourcesin a globalvirtual computer.

�
This work was funded by DARPA contract N66001-96-C-8527,

DOE contract SandiaLD-9977, DOE contract Lawrence Livermore
B506727,andGrummancontract9720373-02.

1 Introduction

Theemergingwidespreadintroductionanduseof giga-
bit wide areaandlocal areanetworkshave thepotentialto
transformtheway peoplecompute,andmoreimportantly
thewaythey interactandcollaboratewith oneanother. The
increasein bandwidthwill enabletheconstructionof wide
areavirtualcomputerscalledmetasystemsor metacomput-
ers(seeFigure1). Thechallengein theconstructionof the
metasystemlayeris to provide theillusion of a singlevir-
tualmachinefrom resourcesthatmayconsistof thousands
of heterogeneousprocessors,storagesystems,databases,
legacy codes,anduserobjects,all distributedover wide-
areanetworks spanningmultiple administrative domains.
Thephysicalmachinesthata sitechoosesto participatein
a metasystemaregenerallystill available for useby the
site’s local users,so it is importantthat the metasystem’s
impacton localusersbeminimal.

A key challengeof the metasystemis to provide a se-
cureenvironmentfor bothresourceownersandusers.Se-
curity servicesprovidedby themetacomputersoftwarein-
frastructurearenot unlike traditionalservicesrequiredin
uniprocessoroperatingsystems.Usersmustauthenticate
themselvesto the“system”. Usersmustnot beallowedto
accessarbitraryresources.Loggingmechanismsmustbe
usedto holdusersaccountableandto trackintruders.

However, a solutionto themetacomputersecurityprob-
lemrequiressignificantadditionsovertheuniprocessorse-
curity solution[5], particularlybecausethemachinesthat
comprisethe metacomputermay not be administeredby
a singlepolicy-makingentity. A single metasystemcan
spanmultipleorganizations,but only if eachindividualor-
ganization’srequirementswith respectto resourcesowned
by that organizationaresatisfied. The metasystemmust
be madeto accommodatelocal policy, over which the
metasystemdesignershave little or no influence.That is,
metasystemdeveloperscannotmandateunderlyingsecu-
rity policy or mechanism;thechallengeis to adhereto and

Metasystem

Host/OS 1,1 Host/OS 2,1 Host/OS n,1

Administrative Administrative
Domain n

Administrative
Domain 1 Domain 2

Figure 1. General Metasystem Architecture

supportlocal securitypolicieswhile creatingan easy-to-
useandsecureenvironmentfor endusers.

Thus, in a metacomputingenvironment, the security
problemcanbedividedinto two mainconcerns:

1. Protectingthe metacomputer’s high-level resources,
services,andusersfrom eachotherandfrom possi-
bly corruptedunderlyingresources(within themeta-
systemlayerin Figure1)

2. Preservingthesecuritypoliciesof theunderlyingre-
sourcesthatform thefoundationof themetacomputer
andminimizingtheirvulnerabilityto attacksfrom the
metacomputerlevel (theverticalarrows in Figure1)

For example, restricting who is able to configure a
metacomputer-wide schedulingservicewould fall in the
first category—itssolutionrequiresmetacomputer-specific
definitionsof identity, authorization,and accesscontrol.
Meanwhile, enforcing a policy that permits only those
metacomputeruserswho have local accountsto run jobs
on a givenhostfalls in the secondcategory, andit might
requirea meansto mapbetweenmetacomputeridentities
andlocal identities. Satisfyingthis secondconcernis vi-
tally important,becausethe typical physicalmachinethat
in part comprisesthe metacomputerappearsidentical to
other local machinesto the local users(its participation
in themetacomputershouldbecompletelyhiddento non-
metacomputerusers).

In a metasystem,arbitraryusersmustnot beallowedto
allocateresourceson arbitrarymachines.In contrast,al-
lowingthisisanalogoustoalocalsysadmingrantinganac-
countto any personwithoutanevaluationof whattheper-
sonmight do on themachineif anaccountweregranted!
Sysadminsrarelyallow thisin orderto protecttheintegrity
of thedataon their machinesandto ensurethatresources

will beavailableto legitimateusers.Similarly, local sites
will chooseto participatein a metasystem,but contingent
on assurancesthat their local securitypolicieswill not be
violated.

The specificrequirementof a metasystemthat this pa-
peraddressesis thatthemetasystemmustonly createpro-
cessesfor usersthat have beenauthenticatedandareau-
thorizedto usethe particularunderlyingresources.For
example,a site’s securityrequirementscould rangefrom
notrestrictive(allowingany metasystemusertocreatepro-
cesses,even if the particularmetasystemuser doesnot
have an accounton the computersat the site) to very
restrictive (allowing only thoseuserswho have personal
accountson the machineson their site, and only after
Kerberosauthentication). Note that in all cases,only
userswho have authenticatedthemselvesto the metasys-
temlayerareallowedto createprocesses.A challengein
themetasystemis to efficiently selectthoseresourcesthat
supportoneormoreof theuser’sauthenticationcertificates
or credentials,and then securelypresentthe appropriate
certificatesor credentialswith minimal (if any) direct in-
teractionwith theuser.

To createaprocessononeof thephysicalmachinesthat
comprisethe metasystem,the unique metasystemiden-
tity mustbe mappedto an appropriateaccounton these-
lectedphysicalmachine.Thismappingmustbespecificto
theauthenticationrequirementsof thelocalmachine,must
onlybeperformedfor thosephysicalmachinesuponwhich
the metasystemuseris allowed to createprocesses(a lo-
cal systemmayonly beaccessibleby a subsetof all users
of themetasystem),andmustbe securelyconfiguredand
performed(a non-privilegeduseris notallowedto specify
this mapping).In addition,it is our belief thatthesuccess
of ametasystemgreatlydependsonits easeof useby end-
users,sotheimpactonthemetasystemusermustbekeptto

aminimum.� However, theremustbeabalancebetweenthe
user’s desireto only have to beinteractively authenticated
oncefor the entiremetasystemversusa systemadminis-
trator requiringa particularform of strongauthentication
that is uniqueto her site. In otherwords, the userdoes
notwantto have to managepotentiallydozensof SecurID
cards,smartcards,andpasswords,while the systemad-
ministratorof a governmentsupercomputercertainlywill
not accepta one-size-fits-allapproachfor authentication
in the metasystemthat placesthe authenticationrequire-
mentsof a university computeron the samelevel asher
morestrategic resources.

Thecontributionof this paperis that it revealshow this
metacomputingproblemmanifestsitself andis solved in
the context of Legion, which is a object-basedmetasys-
temprojectdiscussedin Section2. It presentstheLegion
solutionto threesite-specificrequirementsto authentica-
tion andauthorizationfor thepurposesof processcreation.
In the first scenario,the site requiresstandardUNIX ac-
cesscontrol(similar to mostUNIX installationsatuniver-
sities).In thenext two scenarios,thesitesrequireKerberos
authenticationbut differ in their specificsecuritypolicies
regardingprocesscreationafter Kerberosauthentication.
Themechanismby which to mapLegion identity to local
accountis discussedfor eachscenario.The “level of se-
curity” ascomparedto easeof useof eachscenariois dis-
cussedin termsof the likelihoodandramificationsof the
compromiseof usercredentials.The importanceof this
work is thatit describesthesolutionto real-world security
problemsthat exist asa resultof userswho increasingly
createprogramsthat requiretransparent,secureaccessto
multiple, distributed,heterogeneousresources.Sitesare
eagerto deploy theLegionmetasystemsoftware,but only
afterreceiving assurancesthattheir local securitypolicies
aresatisfied.Without solutionssuchasthesedescribedin
thispaper, Legioncannotbedeployedona large-scaleba-
sis.

The organizationof this paperis asfollows. Section2
presentsthe Legion mechanismsfor securitythat are in-
dependentof any underlyinghost system. This section
coversidentity, authentication,authorization,andaccount-
ability. Section3 describeshow processesarestartedand
controlled,andhow files arewritten,ona systemthatem-
ploys standardUNIX accesscontrol. Section4 describes
two configurationsin which Legion integrateswith a Ker-
berizedhost. Section5 describesprojectsthatarerelated
to thiswork. Section6 containstheconclusions.

2 Security provided by Legion mechanisms

Legion [7, 8] is anobject-basedmetasystemwith a goal
of supportingmillions of objectsspreadacrossthousands
of machines.Legion executesasmiddleware—below the

end-userapplicationsbutabovetheoperatingsystem(thus,
theLegion infrastructureitself is notprivilegedcode).Le-
gionprovidesprocessmanagement,inter-processcommu-
nication, persistentstorage,a single unified file system,
andsecurityservices.LegionsupportsPVM, MPI, C, For-
tran,aparallelC++,JavaandtheCORBA IDL. Legioncan
selectresourcesfor useby applicationsandsecurelyco-
ordinatelarge-scaleapplicationexecution,eliminatingthe
needfor theend-userto explicitly log on to eachmachine,
FTPfiles, createprocesses,createtemporaryfiles, etc. A
project of Legion’s size and scopeis facedwith numer-
oustechnicalchallenges,all relatedtomanagingthepoten-
tially hugenumberof underlyingheterogeneoushardware
andsoftwareplatforms.

In theLegion system,hostobjectsrepresentprocessing
resources.WhenaLegionobjectis instantiated,it isaHost
Objectthatactuallycreatesa processto containthenewly
activatedobject. TheHost Objectthuscontrolsaccessto
its processingresourceandcanenforcelocalpolicies,e.g.,
ensuringthat a userdoesnot consumemore processing
time thanallotted.Vault objectsin Legionrepresentstable
storageavailablewithin thesystemfor containingObject
PersistentRepresentations(OPRs). JustasHost Objects
arethe managersof active Legion objects,Vault Objects
are the managersof inert Legion objects. For example,
Vaultsarethepoint of accesscontrolto storageresources,
andcanenforcepoliciessuchasfile systemallocations.

Thesecuritymodelfor Legiondifferssignificantlyfrom
that of conventionalsystems. A Legion “system” is re-
ally a federationof resourcesfrom multipleadministrative
domains,eachwith its own separatelyevaluatedanden-
forcedsecuritypolicies.As such,thereis nocentralkernel
or trustedcodebasethat canmonitor andcontrol all in-
teractionsbetweenusersandresources.Nor is therethe
conceptof a superuser—no onepersonor entity controls
all of theresourcesin a Legionsystem.

While thereis no singlesuperuser, in practicethereare
a few privilegeduserswho control accessto the corere-
sourcessuchasvaultsandhosts. Theseprivilegedusers
establishtrust relationshipsbetweenthemselves,anduse
thesetrust relationshipsuponwhich to control accessto
their respective resources.For example,assumethatthere
aretwo setsof resources,controlledby two separateprivi-
legedusers,andthatthereareestablished,non-overlapping
setsof usersof theseresources.Oneof theseprivileged
usersmayagreeto let theother’s setof usershave access
to herresources,aslongasareciprocalrelationshipis also
established.It is a subjectof futureresearchto determine
to what degreethis privilegecanbe dispersedamongsta
largergroupof privilegedusers(with decreasingprivilege)
andstill remainanoperationalmetasystem.

The purposeof this sectionis to provide a discussion

of Legion securitymechanismsthat is independentof the
underlyingsecuritymechanismsand policiesof the host
systems.Thematerialin thissectionis presentedprimarily
to establishthe context for the remainingsections. For
moredetailsregardingthesemechanisms,see[5].

2.1 Identity

Identity is fundamentalto higher-level securityservices
suchasaccesscontrol.EveryLegionobjectis identifiedby
a unique,multi-field, location-independentLegion Object
Identifier, or LOID. Oneof the LOID fields containsse-
curity informationsuchasanX.509certificate[3] or more
simplyjustanRSApublickey. TheX.509certificatein the
LOID is not anX9.57 attributecertificate[16], but rather
an ID certificate(also referredto asa public-key certifi-
cate[4]), andpairsa public key with a person’sname,or-
ganization,identificationof thepublic key algorithm,and
otherinformation. A certificatemaybesignedby a certi-
ficationauthority(CA) thatvouchesfor theassociationof
thekey with theidentifyinginformation.To coverthecase
wherea recipientdoesn’t recognizetheCA, theCA’s own
certificatecanbechainedontothecertificate,allowing the
CA’s CA to be the basisof authority. The user’s X.509
ID certificateis propagatedwith requestsandmethodcalls
madedirectly or indirectly on behalfof the user. The in-
formationin thecertificateis usedwhenmakingentriesto
accesslogs. While it is sufficient to useonly the LOID,
at timesit is easierto simply includethis informationdi-
rectly in thelogs,withoutrequiringamappingfrom LOID
to useridentificationsuchasname,organization,etc.

In a distributedobjectsystemsuchasLegion, the user
typically accessesresourcesindirectly, and objectsneed
to be able to performactionson his behalf. Oneway in
which to allow intermediateobjectsto requestserviceson
behalfof an originatingobjectis to give the intermediate
objectsa copy of theprivatekey of theoriginatingobject,
thusproviding necessaryauthenticationinformation.This
approachis clearlyinsecure,asintermediateobjectscould
thenmaliciouslyoriginateoperationsonfalsebehalfof the
originatingobject. An alternative approachis to have in-
termediateobjectscall backto theuseror histrustedproxy
whenthey receiveaccessrequestsin theuser’sname.This
stepputscontrolbackin theuser’s hands.Therearesev-
eral drawbacksto this approach,though. First, the fine-
grain control affordedby authorizationcallbacksmay be
mostly illusory. It can be very difficult to craft policies
for a userproxy (or even the real userhimself!) that are
muchmorethan“grantall requests”—toomuchcontextual
andsemanticinformationis generallymissingfrom there-
quest.Beyondthisbarrier, callbacksareexpensiveanddo
notscalewell. In Legion,afterall, everyobjectrepresents
a resourceof sometype,anda callbackon every method

call wouldbea cripplingperformancehit.
The intermediatesolutionbetweentheseapproachesis

to issuecredentials(also known as X509v3 certificates
with explicit authorizationsor X9.57attributecertificates)
toobjects.A credentialis alist of rightsgrantedby thecre-
dential’s maker, presumablytheuser. They canbepassed
throughcall chains.Whenanobjectrequestsa resource,it
presentsthecredentialto gainaccess.Theresourcechecks
therightsin thecredentialandwho themaker is, anduses
thatinformationin decidingto grantaccess.Therearetwo
maintypesof credentialsin Legion: delegatedcredentials
and bearer credentials. A delegatedcredentialspecifies
exactly who is grantedthe listed rights, whereassimple
possessionof a bearercredentialgrantsthe rights listed
within it. A Legioncredentialspecifiestheperiodthecre-
dentialis valid, who is allowedto usethecredential,and
the rights—whichmethodsmay be calledon which spe-
cific objectsor classof objects. The credentialalso in-
cludesthe identity of its maker, who digitally signsthe
completecredential.

2.2 Access control

EachLegion objectis responsiblefor enforcingits own
accesscontrolpolicy. Thegeneralmodelfor accesscontrol
is that accessis only availablethroughmethodcalls,and
thateachmethodcall receivedat anobjectpassesthrough
a MayI layer beforebeingserviced(seeFigure2). MayI
decideswhetherto grantaccessaccordingto whateverpol-
icy it implements.If accessis denied,the objectwill re-
spondwith an appropriatesecurityexception,which the
callercanhandleany way it seesfit.

MayI canbe implementedin multiple ways. The triv-
ial MayI layer just allows all access.Most objects,how-
ever, usethe Legion-provideddefault MayI implementa-
tion, which essentiallydefines,on a per-methodbasis,an
allow list andadenylist. If aLOID is onbothlists,access
is denied.Theentriesin thelists aretheLOIDs of callers
that aregrantedor deniedthe right to call the particular
method. Default allow anddeny lists canbe specifiedto
covermethodsthatdon’t have theirown entries.

By default, an object is createdwith an ACL that is a
function of the classof the object andgivesreadaccess
to theworld andwrite accessto theowner. For example,
all methodsthat involve “reading” areallowed to be ex-
ecutedby usersthat have authenticatedto the particular
Legionsystem.Theownerof theobjectis freeto dynami-
cally modify any allow list or any denylist for any method
– including the methodthat is executedto modify these
lists! Usually, theselists aremodifiedthroughthe useof
a GUI. Currently, theuseof a standardizedaccesscontrol
languagesuchasGAA [13] is beinginvestigated.

Whena methodcall is received, the credentialsit car-

A MayI? foo()

B.foo()

No!

Ok

B

Figure 2. Legion Implementation of Access Control

riesarecheckedby MayI andcomparedagainsttheaccess
control lists. For example,in thecaseof a delegatedcre-
dential,thecallermusthave includedproof of his identity
in thecall sothatMayI canconfirmthatthecredentialap-
plies. Multiple credentialscanbecarriedin a call; check-
ing continuesuntil oneprovidesaccess.

2.3 Communication between Legion objects

A methodcall from one Legion object to anothercan
consistof multipleLegionmessages.BecauseLegionsup-
portsdataflow-basedmethodinvocation,thevariousargu-
mentsof a methodcall may flow into the target asmes-
sagesfrom severaldifferentobjects.A messagefrom one
Legion objectto anotherLegion objectmay be sentwith
no security, in private mode, or in protectedmode. In
bothprivateandprotectedmodes,certainkey elementsof
a message(e.g.,any containedcredentials)areencrypted
with thepublic key of therecipientLegion object. In pri-
vatemodethebodyof themessageis encrypted,whereas
in protectedmodeonly a MessageAuthenticationCode
(MAC) is generatedto provide an integrity guarantee.To
enablefastercomputations,protectedmodeis thedefault,
althoughthe usercan easilychangethis. Unlessprivate
modeis alreadyon, protectedmodeis selectedautomati-
cally if amessagecontainscredentials.Themodeselected
for useby anoriginatingobjectis appliedfor all messages
indirectlygeneratedasaresultof theoriginatingmessage.
For example,a usercanselectprivatemodewhencalling
an object. The calls that the object makes on behalf of
the userwill alsouseprivatemode,andso on down the
line. Currently, encryptionis basedon the RSA toolkit
(RSAREF2.0).

In addition to protecting credentials,both protected
modeand private modeencrypta computationtag con-
tainedin every Legion message,a randomnumbertoken
that is generatedfor eachmethodcall. All the messages
thatmakeupagivenmethodcall containthesamecompu-
tationtag.Thetagis usedto assembleincomingmessages
frommultipleobjectsinto asinglemethodcall andto iden-
tify thereturnvaluefor a call madeearlier. If anattacker
knowsthecomputationtagfor a methodcall, hecanforge

completemessagescontainingargumentsor returnvalues,
evenwithoutholdingany credentials.Thecomputationtag
is treatedasasharedsecret,andis never transmittedin the
clearunless“no security”modeis selected.

The securitylayer doesnot provide mutualauthentica-
tion. The sendercanbe assuredof the identity of the re-
cipient,becauseonly thedesiredrecipientcanreadtheen-
cryptedpartsof themessage.Therecipientusuallydoesn’t
carewhotheactualsenderis; its decisionsarebasedsolely
on the credentialsandthe X.509 ID certificate(s)that ar-
rivedin themessage.

3 Legion integration with standard UNIX
access control

Theprevioussectiondescribedobjectinteractionsat the
logical level of the metasystemin Figure1—specifically,
how oneLegion objectcanauthenticatewith anotherLe-
gion object and exchangesecurecommunication.How-
ever, Legion objectsmustphysicallyexist on a host that
is partof themetasystem.This sectiondescribeshow the
metasystemidentity is mappedto a physicalaccountand
anobjectis instantiatedon a hostthat requiresonly stan-
dardUNIX accesscontrol.

Our generalstrategy for isolatingLegion objectsfrom
oneanotheris to runthemin separateaccountson thehost
system.Theaccountsthatcanbeusedfor thispurposefall
into two categories:

� For thoseLegionuserswho happento have accounts
on the system,objectscanrun on their normaluser
accounts.

� For otherusers,thereis a pool of genericaccounts
thatareassignedfor Legionuse.

The genericaccountsusuallyhave minimal permissions.
ThelocalHostObjectandVaultObjectalsohavetheirown
accounts.

Theuseof genericaccountsis appropriatefor thosesites
that requirethatoneuserbe isolatedfrom anotheron the
underlyinghostmachine(e.g.,differentUNIX accounts)

but� donotrequirestrict,persistentmappingfrom metasys-
temID to localaccount.In thesesituations,accountability
is throughloggingLegion userX.509ID certificates.The
more“tightly controlled” metasystemswill probablynot
make useof genericaccounts,if only becausepolicy of-
ten mandatesthat no personcanmake useof a resource
withoutfirst filing theappropriateaccountapplications.

Objectcreationrequestsarriveat theHostObjectasnor-
mal methodinvocations,andcanthusbecontrolledusing
the standardLegion accesscontrol mechanismfor meth-
ods. For eachrequest,the host checksthe credentials
againsttheuserLOIDs andgroupsthatareallowedto cre-
ateobjectson it. If everythingis acceptable,it next selects
anaccountfor thenew objectto run in; dependingon the
credentialsin the creationrequestand its local configu-
ration, it may choosea local useraccountor one of the
genericaccounts.Theaccountsaresubjectto scheduling
andresourcecontrol just like CPU time, memoryusage,
and so on; an object’s leaseon an account,especiallya
genericaccount,is usuallylimited.

All Legion objectsareassociatedwith somepersistent
storage,typically in theform of adirectoryin thelocalfile
systemmanagedby the ObjectVault. Beforestartingan
actualprocessfor thenew objectin theallocatedaccount,
thehostneedsto changetheownershipof theobject’s di-
rectoryfrom thevault user-id to thenewly allocateduser-
id. Thelocationof thedirectorythatwill containthenew
object’s persistentstateis passedto thehostaspartof the
activation request(this location was obtainedthrougha
methodon the local vault performedby the object’s cre-
ator, likely its class).Ownershipof this directorymustbe
changedboth to protectthe object’s statefrom accessby
otherobjects(whichwill rununderdifferentuser-ids),and
to make thestateaccessibleto thenew object.

Finally, thehostneedsto spawn theactualprocessthat
will executethe object on the appropriateaccount. To
carryout thisstep,andto changeownershipof theobject’s
persistentstate,thehostrequiresaccessto someprivileged
operations.However, thehostdoesnot executewith root
permissions.Accessto theserequiredprivilegedopera-
tions is encapsulatedin a processcontrol daemon(PCD)
that executeson the host,providing servicesto the Host
Objectin a controlledfashion.ThePCDis a small,easily
vettedprogramthat runswith root permissions.It is con-
figuredonly to allow accessby thehostaccount.Two of
its key functionsareto permit changingdirectoryowner-
shipandto createnew processeson a designatedaccount.
ThePCDlimits theaccountsfor which thiscanbedoneto
asetconfiguredby thelocalsystemadministrator. Theset
includesthe genericLegion accountsandpotentially the
accountsof localLegionusers.

A simplifiedexampleof this operationis shown in Fig-

ure3. In this example,Object12, which is executingon
Fred’s accounton somemachinein the metasystem,and
hasaccessto Fred’sLegioncredentials,wantsto createan
objectonthehostElmer.virginia.edu. To dothis,Object12
askstheHostObjectexecutingonElmerto starta process
for thenew object.First,theHostObjectconfirmsthatOb-
ject12 is actingonFred’sbehalfby lookingat thecreden-
tialscontainedin therequest.Then,theHostObjectmaps
a requestby Fredto a genericaccount(Legion-generic-1)
onElmer.virginia.eduthathasbeenestablishedat thetime
that Legion was installedon Elmer.virginia.edu. Finally,
theHostObjectasksthePCDto spawn a new processas
Legion-generic-1for thenew object.

As thePCDstartstheobjectrunning,thehostlogsanau-
dit trail usingtheX.509 ID certificatefor the userwhose
credentialsaccompaniedthe request.The audit trail pro-
videsessentialinformationif thenew objectmisuseslocal
resources.If the objecthasexceededits useof local re-
sources,thehostcanrequestthat thePCDkill it directly.
Whenanobjectlosesor relinquishesits useof anaccount,
theHostObjectusesthePCDto changetheownershipof
its persistentstatebackto the Vault Object. If the object
is reactivatedlateronadifferentaccount,ownershipof the
statecanbechangedto theappropriatelocaluser-id. After
anaccountis reclaimed,thePCDterminatesall processes
runningon it andgenerallycleansit up.

Security Analysis. In acceptingthis approach,a sysad-
min at a local site is trusting the Legion software to le-
gitimately mapLegion identitiesto local accounts(if the
PCDis configuredto mapto non-genericlocal accounts).
If the Legion credentialsfor a particularuserarestolen,
therisk to thesystemis lesswhenconfiguredfor generic
accountsthanwith non-genericaccounts(by their nature,
whena useris finishedwith a genericaccount,no persis-
tentstateremains).A negative aspectof this approachis
that a site must install the PCD as privilegedcode,cre-
ating a potentialpoint of attackfor intruders. However,
this codehasbeenvettedby numerousexperts,increas-
ing the confidenceon the part of local site regardingthe
safetyof this code. Of course,if the Legion Host Object
account(“Legion-Account”in Figure3) is cracked,thein-
trudercancreateprocessesundertheaccountsof any local
Legionusers.

Overall. The PCD-basedimplementationis sufficient
for many local systemadministrators. Legion authenti-
cationis usedto determinewho gainsaccessto local re-
sources,and the resourcesmadeavailable are also con-
strainedto thoseusablefrom a limited set of accounts.
Detailedlogging provides accountability. The safetyof
credentialsis a chief designgoal in the securityarchitec-

5
4

Object 12

"Fred"

CreateObject(.)

Elmer.virginia.edu

Authenticate

Map "Fred" to
"Legion-generic-1"

Change ownership to
"Legion-generic-1"

Spawn process as
"Legion-generic-1"

2

3
1

Host Object: Elmer
"Legion-Account"

PCD: Elmer

Figure 3. Object Creation on a Standard UNIX Access Control Host

ture and mechanismsof Legion. An alternative, simple
approachis to have all Legion objectsexecuteunderthe
“Legion-Account” account. In general,we have found
that sysadminsdo not like this approachbecauseof lim-
ited accountability—asfar asthey see,only oneaccount
“doesanything” with regardto Legion.We(theLegionde-
signers)donotadvocatethisapproach,becauseit doesnot
provide the necessaryisolation,asall files andprocesses
areownedby oneonerid (meaningthat oneLegion user
canuseUNIX mechanismsto destroy or subvert another
Legionuseron thesamehost).

4 Legion integration with a Kerberized host

Increasedsecurityconcernshave causedmany sitesto
switch from standardUNIX accesscontrol to the useof
Kerberos[11]. Kerberosis a trustedthird-partyauthenti-
cation,in which usersandservicesregistertheir keys. In
this paper, familiarity with the basicKerberosprotocols
areassumed.Legion hasbeenintegratedwith a Kerber-
ized host,andis discussedin this paper, becausecertain
siteshave wantedto run Legion andmandatedthe useof
Kerberos.

It is importantto understandthatthe“K erberizedHost”
in this sectionrefersto a host that is executingthe MIT
sourcecodedistribution [9]. This paperdoesnot discuss
efforts to integrateKerberosdirectlywith publickey cryp-
tography[14], becausethis paperfocuseson integration
with widely-deployedKerberossystems.Similarly, theuse
of Proxiableticketsin Kerberosis not discussed,because
their usageis not widely supported.While its supportis
not directly discussed,muchof the discussionis applica-
ble to AFS.

In this section,assumethat a simpleLegion metacom-

puter is beingconstructed.Thereareonly two machines
involved: Khost, which is the KerberizedHost machine,
andNKhost, whichis amachinethatdoesnotrequireKer-
berosauthentication(instead,it usesonly password-based
authentication).Additionally, it is usefulto definethefol-
lowing entities:

L-creds credentialsthat arenecessaryto function in the
Legion virtual computer;thesecredentialsreflect a
metasystemuser’s identity

K-creds Kerberos credentials; obtained via Kerberos
kinit eitherexplicitly or implicitly

L-admin a particularmetasystemuserwith someadmin-
istrative duties for the metasystem;Note that the
“L-admin” identity meansnothingdirectly on either
Khost or NKhost (it must be mappedonto an ac-
counton eachmachine);by definition,L-admin has
L-creds; in order to authenticateto the metasystem
layer, theL-adminusermusthave first authenticated
to the underlyingphysicalmachine:if L-adminfirst
loggedinto Khost, then the userassociatedwith L-
adminhasK-credsaswell.

Legion-Khost an accounton Khost that is usedsolely
for executingprocessesrelatedto the metasystem;
“Legion-Khost” is not an identity recognizedat the
metasystemlevel (“Legion-Khost”hasK-credsasso-
ciatedwith it but doesnotautomaticallyhaveL-creds
associatedwith it)

Alice-KL a personwho has an accounton Khost and
wishesto participatein Legion virtual machineex-
ecutingon Khost; hasK-creds;hasL-creds;hasan
accountonNKhost

Bob-L� a personwho has an “account” on the Legion
virtual machinebut no accounton Khost; has L-
creds;doesnot have K-creds;hasa UNIX account
onNKhost

4.1 Kerberos background: .k5login and .k5users

In Kerberos,thereis thecapabilitytoallow oneprincipal
to grantaccessto anotherprincipal(aftertheotherprinci-
pal hasauthenticated).The file .k5login allows oneuser
to unconditionallygrantanotherusertheability to spawn
processesasthe first user. For example,if

�
Bob/.k5login

contained”Jim”, userJim could “ksu Bob” and have a
runningshell whereasnew processesaretaggedasbeing
ownedby Bob. Note that in this case,Jim doesnot ac-
quireBob’scredentials;rather, in thiscase,Jim,executing
asUID Bob, hasa copy of the KerberoscredentialsJim
hadimmediatelyprior to executingksu. .k5users is more
restrictive than .k5login; .k5users lets Bob allow Jim to
executeonly certainbinariesasBob,for instance“/bin/ls”.
Theentryin

�
Bob/.k5usersin this caseis “Jim /bin/ls”. In

this case,Jim cannotexecutea shell as Bob; Jim could
only “ksu Bob-e /bin/ls”.

4.2 Kerberos solution #1: k5login

A simplesolutionto allow ausersuchasAlice-KL with
an accounton Khost to accessthe metasystemis to add
“Legion-Khost”to her.k5login file. Thisapproachallows
Legion-Khostto execute“binary1” asAlice-KL by invok-
ing “ksu Alice-KL -e full-path-to-binary1”.For Alice-KL
to starta processon Khost, essentiallythe samestepsas
in Figure3 are taken. The differencein this situationis
that the PCD doesnot exist, as the Host Objectcancre-
ateprocessesdirectly asAlice-KL via invocationsof ksu.
In this configuration,Legion mechanismswill ensurethat
Bob-L will not be able to startnew processeson Khost.
However, Bob-L will be able to useservices(processes)
of Alice-KL, but only if Alice-KL hasconfiguredLegion
authorizationmechanismsto let Bob-L.

Security Analysis. Theanalysisconsistsof a numberof
cases:

If the Legion-Khost account is compromised (i.e., an
attacker obtains Legion-Khost Kerberoscredential
cache, or breaks into the Host Object and, for
example,causestheHostObjectto executea binary
that allows the credentialcacheto be read), then
all Legion userson Khost, even if they have never
usedLegion, have beencompromised.The attacker
cannotget their K-creds,but canstartprocesseson
theiraccounts1. Thereis a variationof thisapproach,

1Theattacker cangettheirK-credsif theuseris loggedin.

beyond the scopeof this paper, that uses.k5users
insteadof .k5login in order to reducethe scopeof
attackif theLegion-Khostis compromised.However,
this approachis substantiallymore complicatedto
implementandanalyze.

If Alice-KL’s K-creds are stolen (i.e.,eitherby someac-
tivity irrespectiveof Legion,or if Alice-KL givesher
K-credsto a Legion “con-artist” object), then only
Alice-KL’s accountis compromised.In this case,an
attackercanreplacelegitimateAlice-KL servicewith
corruptedservice,thustrickingBob-L if Bob-Lwants
to usetheservice.However, thescopeof this attack
may include several machines,as Kerberoscreden-
tials are typically valid at a potentially large set of
machines.

If Alice-KL’s L-creds are stolen Alice-KL’s account is
compromisedbecausethe Host Objectcanbe asked
to startjobsonheraccount.

If L-admin’s L-creds are stolen an attacker can effec-
tively shut down the Host Object but not breakse-
curity. Note:adminhasnospecialprivilegeswith re-
gardto theHostObject,beyondbeingableto change
theACLson theHostObject.

Overall. The fact that Alice-KL canstarta processon
the Khost without directly obtaining and presentingK-
credsis bothpositive andnegative: Theuseof theLegion
virtual machineby Alice-KL is easierandperhapsmore
securebecauseshedoesnot needto directly acquireKer-
beroscredentials.A potentialproblemis that theLegion-
Khosthasunlimitedaccessto theKhostaccountof Alice-
KL. For this reason,Alice-KL and/or the sysadminsof
Khostmight requirethatAlice-KL geta separateaccount
on Khost for usewith the Legion virtual machine. For
many installations,this approachis sufficient, satisfying
the requirementof Kerberosauthenticationbeforeuseof
thephysicalresources(theauthenticationin thiscaseis by
the Legion-Khostprincipal). Securityis providedby the
Legion mechanismsbasedon L-credsthathave timeouts,
recovery mechanisms,andpotentiallyvery specificscope
andprivilege.It is alsoveryeasyto implement.

4.3 Kerberos solution #2: KProxy object

In general,a problemof the k5login approachis that
a usermustgrantunlimited accessto her accountby the
Legion-Khostprincipal. A secondproblemis that a user
suchasAlice-KL (or morepreciselya personimperson-
atingAlice-KL) doesnothave to authenticateto theKDC
of the Khost Kerberosrealmin orderto usethe physical

resources.� A secondapproacheliminatestheseproblems,
but at thecostof simplicity.

The essentialcomponentof the design is a Legion
KProxyObjectfor eachuser. ThisKProxyObjectsecurely
holdstheLegionuser’sKerberoscredentials.TheKProxy
Objectfor userFredexecutesunderFred’s UID on a ma-
chineuponwhich Fredhasanaccount.Whenever a Host
Objectanywherein themetasystemwantsto createanob-
ject on Fred’s behalfon its associatedphysicalmachine,
the Host Objectperformsa call backto the KProxy Ob-
ject for Fredto obtainavalid ticket for thatparticularhost.
Fred’sKProxyObjectwill only issueFred’sKerberoscre-
dentialsif Fred’s valid Legion credentialsare presented
in the request(moregenerally, the accesscontrol mech-
anismsof Fred’s KProxy Objectcanbe configuredto is-
sueFred’sKerberoscredentialsto any objectthatpresents
validcredentialsonbehalfof any userwith whomFredhas
previousestablisheda trustrelationship).TheHostObject
createsthenew objectvia a call to ksu, without requiring
theuseof the.k5login file.

Note that all communicationof secretinformation is
either done via Kerberosmechanisms(DES) or Legion
mechanisms(RSAREF).Cross-realmauthenticationis im-
mediatelyandtransparentlysupportedin thisdesign:kinit
only hasto beperformedoncefor eachgroupof Kerberos
realmsthat supportcross-realmauthenticationwith each
other. The Legion KProxy objectwill automaticallyob-
tain Ticket GrantingTickets(TGTs) for the otherrealms
basedon theexistenceof a valid TGT for a givenhost.

The stepsthat Alice-KL must take in order to create
her KProxy object are shown in Figure 4. First, Alice-
KL obtain her K-creds from machineNKhost (this can
alsobe performedon Khost, althoughit doesn’t have to
be). By default, theseK-creds are tied to the IP ad-
dressof NKhost. On NKhost,Alice-KL thenexecutesle-
gion create kproxy, whichaskstheHostObjectonKhost
to createaninstanceof KProxy classonKhost.As partof
this (not shown), Alice-KL interactswith theKDC to ob-
tain a ticket that is usablefrom Khost. TheseK-credsare
thenusedby theHostObjectin aninvocationof ksu to ac-
tually createthe KProxy objectthat will hold Alice-KL’s
K-creds.ThisKProxyobjectwill executeon thismachine
underAlice-KL’s account. Note that neitherAlice-KL’s
.k5login nor .k5users containsan entry that directly al-
lows Legion-Khostto executethis ksu; instead,ksu is in-
vokedwith anexplicit copy of Alice-KL’s K-creds.Now,
anytime in thefuturethattheHostObjecton Khostwants
to createanobjecton Alice-KL’s behalf,it interactswith
this KProxy object to obtaina valid ticket for usein the
ksu invocation.Additionally, any HostObjectin therealm
will interactwith Alice-KL’sKProxyobjectwhencreating
objects.

Why can’t the Legion user obtain K-creds for a par-
ticular computationbefore startingthe computation,thus
eliminating the needfor the KProxy object? Legion is
an object-basedsystemin which the necessaryfunction-
ality to startandcoordinatelarge-scalecomputationmay
be spreadacrosshundredor thousandsof objects. When
a user originates computation,the user has no idea on
whatmachinesprocessesultimatelywill bestartedeither
directlyor indirectlyonbehalfof thisuserrequest.For ex-
ample,theusermayattemptto “run discreet-simulation-1
1000times”. At this point, the userhasno idea(he may
not care)which machinesarethenselectedby scheduler
objects. Thus,whenthe useroriginatescomputation,he
cannotobtaintickets(which aretied to IP addresses)for
all of themachinesonwhichprocesseswill bestarted.Our
approachusesa call backto theKProxy objectto get the
appropriateticket for eachmachine.

A second,related note is that the user may not be
present(i.e, loggedontoamachinein theKerberosrealm)
whentheLegionsoftwareattemptsto spawn processeson
his behalf. For example, assumethat the user startsa
long-runningactivity on onemachine,andthen logs off.
TheLegion softwaremight thenneedto spawn a process
on anothermachine(if, for example,the computationis
pipelined,whereeachelementof the pipeline is a suffi-
ciently long computation). Again, we needa call back
to something(the KProxy object in our approach)in or-
der to obtain the necessaryticket. One approachmight
be to somehow get a ticket from the processthat already
exists that is performingthe active part of the pipelined
computation(becausethecredentialscacheis presentfor
this process,andpresumablyit containsa TGT). This is
essentiallytheapproachof theKProxyobject.

Thekey limitation that this approachovercomesis that
aprocesscanonly bestartedonKhostasuserAlice-KL if
Alice-KL haspreviouslyauthenticatedherselfto theKDC
of theKerberosrealm.In addition,atany point,Alice-KL
cancontrolthecreationof processesunderheraccountby
eitherlimiting thelifetime of theticketheldby herKProxy
Object,or eliminateherKProxy objectcompletely. How-
ever, it is still thecasethat theLegion usermusttrust the
Legionsoftwareto createprocessesonly thatsheintended.

Security Analysis. Theanalysisconsistsof a numberof
cases:

If the Legion-Khost account is compromised If Alice-
KL usesthesubvertedKhost,theHostObjectcanuse
her L-credsto obtain the K-credsfrom the KProxy.
The K-credscan then be misusedby the Host Ob-
ject, for example,to spawn arbitraryprocessesunder
Alice-KL’s userid (suchas “rm *”). Note that un-
like the k5login approach,wherea subvertedKhost

2b

2a

1

3

NKhost Khost

legion_create_kproxy

K-creds valid
Obtain K-creds on Khost

Alice-KL
KProxy Object:

ksu

Host Object: Khost
"Legion-Khost"

"Alice-KL"

Figure 4. Object Creation on Kerberos-Controlled Host

Legion accountcanimmediatelyabuseall local Le-
gion useraccounts,this approachlimits the attacker
to misusingthe accountsof userscurrently starting
objectson theKhost. This allows intrusiondetection
asanapproachfor limiting thedamagecausedby an
attacker.

If Alice-KL’s K-creds are stolen If the K-creds are
stolenin someactivity irrespective of the metasys-
tem, the same ramificationsexist as the k5login
approach. If Alice-KL’s K-creds are stolen by
attacking her KProxy object, the duration of the
compromiseis limited by thedirector indirectscope
of theK-credsheldby theKProxy object,which can
becontrolledby Alice-KL.

If Alice-KL’s L-creds are stolen Thesameramifications
asthek5login approach.

If admin’s L-creds are stolen Thesameramificationsas
thek5login approach.

Overall. This approachtradesoff someadditionalcom-
plexity in termsof the systemsstructureandsomeextra
effort onthepartof users(whoperiodicallyneedto upload
refreshedKerberoscredentialsto their respective KProxy
object)for anaddedmeasureof attackcontainment.This
approachmeetsthe requirementthat theuseractively au-
thenticatethroughthe Kerberosmechanismbeforeusing
the local resources(unlike Kerberosk5login approach).
Thisapproachincursaddedoverheaddueto thecall-backs
to theKProxyobject;however, thesecall-backsonly occur
at thetime of objectcreation,sotheimpactshouldnot be
significant.Notethat,asopposedto thekrlogin approach,
the durationandscopeof an attacker’s compromiseis in
generallimited by theK-credsbeingheldby the KProxy
objects,whichcanbeeasilycontrolled.

5 Related work

Thereare several projectsbeing conductedto support
inter-operabilitybetweena particularsecurityinfrastruc-
ture andKerberos,for examplesupportinga singlelogin
for NetWare and Kerberos[1]. This project hassimilar
goalsto Legion’s integrationwith Kerberos—inparticu-
lar, nochangesto Kerberosandnoreductionin securityin
eithersecurityrealmdueto thesinglelogin. A significant
differencebetweentheLegionprojectandtheseprojectsis
thatLegionattemptsto build securitymechanismsthecan
be viewed asbeingon top of underlyingsecuritymech-
anismsof hostsystems,whereastheseprojectsgenerally
attemptto supportsinglesign-onof co-existingrealms.In
a metasystem,it cannotbe expectedthat every realm or
administrative domaindirectly acknowledgeandsupport
eachother’sexistence.

Minsky andUngureanuaddresstheneedof unifyinghet-
erogeneoussecuritypoliciesin distributedsystemsby in-
troducinga formalismthatdescribesvarioussecuritypoli-
cies[10]. A unifiedmechanismis usedto enforcethesecu-
rity schemes.This work is importantfor theconstruction
and analysisof securitypolicies in metasystems,in that
themetasystemmechanismmustsupportawidevarietyof
local policies. However, in metasystems,the approachis
that the local sitescanhave whatever securitypolicy they
want,andit is very likely that it will not bespecifiedfor-
mally. Requiringevery local site to specifytheir security
policiesin asingleformalismis difficult if not impossible,
severelyimpedinga metasystem’sdeployment.

Yialelis andSlomandescribea securityframework for
object-baseddistributedsystems[17]. This project is re-
latedto thework in Legion,becauseit attemptstoallow the
developmentof securedistributedapplicationson operat-
ing systemswith varyingdegreesof securitymechanisms
built in. While this work is similar to the Legion mech-
anismsdescribedin Section2, the work of Yialelis and
Slomanis CORBA-basedanddoesnotaddressthegeneral

metasystems� requirements,suchashardwareheterogene-
ity andmultipleadministrativedomains.

Globus [6] is anothermetasystemresearchproject,and
assuchis addressingmany of thesameissuesasLegion.
In many instances,convergentevolution hasled to simi-
lar solutionsto theseproblems.For example,Globushas
a small,easily-verifiedmodulecalledtheGatekeeperthat
runsasrootandis responsiblefor remoteprocessmanage-
ment,in muchthesamemannerasthePCD.Themanner
in whichGlobusintegrateswith Kerberosis throughuseof
the GenericSecurityServicesAPI (GSS-API[15]). The
level of granularityof the GSS-APIand the Legion ob-
ject modelarefundamentallydifferent: In GSS-API,two
applicationssuchas FTP and FTPD establisha security
context andthencommunicatebasedon thesecuritycon-
text. In Legion,objectsaresignificantlymorefine-grained
thanapplicationssuchasFTPandFTPD—theoverheadto
establishcontexts establishinganddeletingsecuritycon-
texts for eachpair of communicatingobjectsis intuitively
tooexpensive,asthenumberof object-objectcommunica-
tionsis potentiallyquitelargein thelife of a computation.

CRISIS[2] is the securityarchitecturefor the WebOS
projectatUC Berkeley. TheWebOSprovidesmany of the
samehigh-level servicesasLegion. WebOSis fundamen-
tally different than Legion in that while WebOSfocuses
on system-level supportfor building and running wide-
areaapplications,Legion’sgoalsareto provideanobject-
basedprogrammingmodelsuitablefor sucha wide-area
application.Theprinciplegoalsof CRISISaresimilar to
thegoalsof thesecurityarchitecturein Legion: to usere-
dundancy to reducethelikelihoodof systemcompromise,
cachewheneverpossibleto improveperformance,support
fine-grainedcontrolover delegatedrights,make extensive
useof logging, supportlocal autonomy, andto make the
designassimpleaspossible.A differencebetweenthetwo
systemsis aresultof Legion’ssupportfor autonomywhich
is not a focus of WebOS:Legion supportsdynamically-
configuredlocal securitymechanisms,and CRISIS sup-
ports uniform mechanismacrossall of the nodesof the
wide-areasystem(althoughpolicy within eachnodemay
beseparatelydefined).

6 Conclusions

While a goal of a metasystemcan be to provide an
abstractionof a single virtual machinefrom large, dis-
tributed, heterogeneousresources,ultimately a metasys-
temcomputationis comprisedof activitiesonphysicalma-
chinesat differentsiteswith differentgoals. Theseactiv-
ities includeprocesscreation,file creationandmodifica-
tion, “native” IPC mechanisms,“native” schedulerssuch
asCodineandLoadLeveler, etc. This paperdescribedthe
issuesinvolvedin supportingthenotionof identity at the

level of the metasystem,specificallywith regard to pro-
cesscreation.It wasshown how ametasystemidentitycan
be securelymappedto a physicalaccountboth for stan-
dardUNIX accesscontrolandfor Kerberos-basedaccess
control. In thefuture,otherauthenticationsystemswill be
integratedwith currentLegion authenticationsupport. A
particularsystemthatis currentlybeingdevelopedis inte-
grationwith SSL/TLSvia OpenSSL[12].

On a practicallevel, theseapproachesareimportantbe-
causethey arein activeuseatvariouslocalsiteswithin de-
ployedLegionnetworks. Many times,a singleconcurrent
computationcanconsistof many processesspreadacross
hoststhat requiredifferentauthenticationandaccesscon-
trol. Therefore,the securityimplicationsof eachare of
greatinterestto systemadministratorsand usersat such
sites.On a moregenerallevel, thesedesignsdemonstrate
thedegreeto whichtheLegionarchitecturecanaccommo-
dateandadaptto site-localrequirements.

The Legion systemis currently widely deployed, in-
corporatingdiverse resourcesat SupercomputingCen-
ters, Labs, and Universities. For more information
about the current status of the Legion system, see
http://legion.virginia.edu. The power of the environment
increaseswith thescaleandscopeof thesystem.We con-
tinue to actively integratenew sitesinto Legion. A nat-
ural part of the evolution requiresus to adaptthe Legion
securityarchitectureto new site-localpoliciesandmech-
anisms. The work presentedheredescribesour current
dominantsite configurations.In the future we expect to
seethissetexpandasLegiondeploymentincreases.

References

[1] William A. Adamson,Jim Rees,and PeterHoney-
man.Joiningsecurityrealms:A singlelogin for Net-
WareandKerberos.In Fifth USENIXSecuritySym-
posium, June1995.

[2] E. Belani, A. Vahdat,T. Anderson,andM. Dahlin.
CRISIS:A wide areasecurityarchitecture. In Sev-
enthUSENIXSecuritySymposium, January1998.

[3] ITU-T RecommendationX.509 (1997E). Informa-
tion technology- opensystemsinterconnection- the
directory:Authenticationframework.

[4] C. Ellison, B. Frantz, B. Lampson, R. Rivest,
B. Thomas,andT. Ylonen. SPKI certificatetheory.
RFC2693,September1999.

[5] Adam Ferrari, FrederickKnabe,Marty Humphrey,
SteveChapin,andAndrew Grimshaw. A flexible se-
curity systemfor metacomputingenvironments. In
7th InternationalConferenceon High Performance

Computingand NetworkingEurope(HPCN Europe
99), pages370–380,April 1999.

[6] IanFoster, CarlKesselman,GeneTsudik,andSteven
Tuecke. A securityarchitecturefor computational
grids. In Fifth ACM Conferenceon Computers and
CommunicationsSecurity, November1998.

[7] Andrew S. Grimshaw, Adam Ferrari,FrederickKn-
abe, and Marty Humphrey. Wide-areacomput-
ing: Resourcesharingon a large scale. Computer,
32(5):29–37,May 1999.

[8] Andrew S.Grimshaw andWilliam A. Wulf. TheLe-
gion vision of a worldwide virtual computer. Com-
municationsof theACM, 40(1):39–45,January1997.

[9] Massachusetts Institute of Technology Ker-
beros Team. Kerberos 5 Release 1.0.6.
http://web.mit.edu/kerberos/www/.

[10] Naftaly H. Minsky andVictoria Ungureanu.Unified
supportfor heterogeneoussecurity policies in dis-
tributedsystems.In SeventhUSENIXSecuritySym-
posium, January1998.

[11] B. Clifford Neuman and TheodoreTs’o. Ker-
beros: An authenticationservicefor computernet-
works. IEEE CommunicationsMagazine, 32(9):33–
38,September1994.

[12] OpenSSL Project. OpenSSL 0.9.4.
http://www.openssl.org.

[13] TatyanaRyutov andClifford Neuman.Accesscon-
trol framework for distributedapplications.Internet-
draft, draft-ietf-cat-acc-cntrl-frmw-02, expires Jan
2000.

[14] M.A. Sirbu andJ.C.-I.Chuang.Distributedauthen-
tication in Kerberosusingpublic key cryptography.
In 1997SymposiumonNetworkandDistributedSys-
temsSecurity(SNDSS’97), February1997.

[15] J. Wray. Genericsecurityserviceapplicationpro-
graminterface,version2. RFC2078,January1997.

[16] ANSI X9.57-199x. Publickey cryptographyfor the
financialservicesindustry: Certificatemanagement
(workingdraft).

[17] N. Yialelis and M. Sloman. A security frame-
work supportingdomain-basedaccesscontrolin dis-
tributed systems. In 1996 Symposiumon Net-
work andDistributedSystemsSecurity(SNDSS’96),
February1996.

