
Addressing the Problem of Undetected Signature Key Compromise

Mike Just
�y

Paul C. van Oorschot
�

Abstract

Suppose that messages have been signed using a
user's signature private key during the period of time
after a key compromise but before the compromise is
detected. This is a period of undetected key compro-
mise. Various techniques for detecting a compromise
and preventing forged signature acceptance are pre-
sented.

Attack protection is achieved by requiring a second
level of authentication for the acceptance of signatures,
based on information shared with a trusted authority,
independent of the signature private key and signing
algorithm. Alternatively, attack detection is achieved
with an independent sychronization with the authority,
using a second factor/adaptive (non-secret) parame-
ter. Preventing forged signature acceptance subsequent
to the detection is achieved by the use of a cooling-o�
or latency period, combined with periodic resynchro-
nization.
Keywords: digital signatures, key compromise detec-
tion, second level authentication, timestamping.

1 Introduction

The digital signature is the digital counterpart to
the physical, handwritten signature. Each permits au-
thorization in the name of the corresponding identity.
A handwritten signature permits authorizations corre-
sponding to the particular name that is being signed.
A digital signature private key may be used, together
with additional controls, to allow authorizations in the
name of the identi�er associated with the correspond-
ing public key certi�cate. The compromise of the pri-
vate key results in a loss of the exclusive control over
associated privileges, and allows impersonation.

Once it is known that a key has been compromised,
suitable recovery actions may be taken to prevent fur-
ther damage. For example, various means for key re-
vocation may provide some recourse. However, even if
all practical systems in use today contained e�ective

�Entrust Technologies, 750 Heron Road, Suite E08, Ottawa,
ON, K1V 1A7, Canada.

yThis work was completed while the �rst author was with
the School of Computer Science, Carleton University, Ottawa,
ON, K1S 5B6, Canada, and partially supported by a NSERC
grant. Contact author: mike.just@entrust.com

revocation means (which, by the way, is not the case),
such revocation requires knowledge that a compromise
has occurred. Therefore, it is not surprising that to
date, the problem of protecting against the forgery of
signatures resulting from an undetected compromise of
a user's signature private key has not, to our knowl-
edge, even been considered in the open literature, let
alone solved in any way.

Consequently, one of the major contributions of
this paper is to introduce, and present a �rst study
of the problem of undetected key compromise. More-
over, and perhaps counter-intuitively, we are able to
provide solutions which prevent even an attacker who
has obtained or deduced (by any means, for any sig-
nature algorithm) a user's signature private key, from
being able to have fraudulently produced signatures
accepted by an unsuspecting recipient. It is our hope
that this paper will cause others to consider this prob-
lem as a new challenge, leading to further proposals
of practical interest.

1.1 Overview and Summary of Results

In Section 2, we more precisely de�ne the events rel-
evant to a signature key compromise and elaborate on
various types of attacks that result in such a compro-
mise. Section 3 �rst reviews some previous solutions
and techniques useful for reducing the damage result-
ing from a signature key compromise. Subsequently,
we proceed to overview new solutions in which inde-
pendent means are used to authenticate the signing
user. The signing private key remains necessary for
the production of digital signatures, but is no longer
su�cient for signature acceptance.

In Section 5, we elaborate on a �rst solution
in which a secondary (independent) authentication
mechanism is used for enhanced protection against an
undetected key compromise. This method requires a
second factor secret key. In Section 6 stronger tech-
niques are presented which use a secondary (indepen-
dent) synchronization method to allow the legitimate
signer to detect when forged signatures have been pro-
duced. This method uses a second factor adaptive pa-
rameter, of which only the authenticity need be main-
tained (vs. the privacy). Combining a periodic check-
in by the legitimate user with a cooling-o� period for

the acceptance of signatures allows for the detection
to be enhanced so that forged signatures will not be
accepted by a recipient. In Section 8, we conclude
with some discussion clarifying the usefulness of our
solutions.

2 De�nitions, Assumptions and Moti-

vation

Consider a user u who owns a private key su used
only for signing messages, and public key pu used for
signature veri�cation, under a suitably secure digital
signature algorithm such as RSA [21] or DSA [7]. pu is
certi�ed by a Certi�cation Authority (CA), resulting
in a CA-signed public-key certi�cate containing the
user's name (subject name), pu, and a validity period.

Key compromise has occurred when knowledge of
su is possessed by an individual other than the le-
gitimate user u, and there exists a potential for the
misuse of su by this other entity (i.e., the forging of
signatures). If a private key compromise is reported by
a user, the corresponding public key certi�cate can be
revoked, and a new key pair can then be introduced.

Let us consider more closely the timeline of actions
related to a signature key compromise, as given in
Figure 1. The compromise of u's key takes place at
time t0. The compromise may be suspected at time
t1 (the time of detection of the key compromise; u
may or may not be aware of the precise time of its
occurrence).1 u reports the compromise at time t2
and this information is received by the CA at time
t3. Knowledge of the information is made available to
users at time t4 (e.g., by the creation of a certi�cate
revocation list CRL [11] or an on-line check [17]). Note
that some time may elapse between t3 and t4, e.g.,
if protocol dictates that compromises are published
within 12 hours. Knowledge of the key compromise is
obtained by users as early as time t5; di�erent users
may obtain this information at di�erent times. We
have t0 � t1 < t2 � t3 < t4 � t5.

Even if existing certi�cate revocation techniques
were used in response to a key compromise, they were
not intended to handle the situation of an undetected
compromise (since they rely on the compromise be-
ing reported, and hence detected). Consider that dur-
ing the period [t0; t1) of undetected key compromise, a
number of messages may be signed. In the worst case,
the compromise might not be detected at all, thereby
allowing signatures to be forged at least until the date

1A realization of the compromise may come to u based on
local access control records. It may even be the case though
that u is not made aware of a compromise until some party v

presents an inquiry with regard to a signed message.

t report received

received or obtained by users

3 by CA

t compromise reported2

t compromise suspected

4t compromise published

5t public notification

1

t key compromise0

t t t t t t0 1 2 3 4 5

time

Figure 1: Timeline of events related to a key com-
promise. From time t0 to t1 is a period of undetected
key compromise.

of expiry of the corresponding public key certi�cate.
Using current techniques, it is di�cult to distinguish
whether, for the case of disputed signatures,

1. u did not actually sign the messages (i.e., an at-
tacker did), or

2. u is attempting to repudiate signed messages, by
either claiming a signature private key compro-
mise at a time before the actual compromise or
claiming a compromise when in fact there was no
actual key compromise.

Note that the revocation information may be the only
evidence available to an adjudicator asked to resolve
if and when a key compromise may have occurred.2

However, this may place an unexpected burden or un-
fair penalty on the user in cases where a user's private
signature key is indeed compromised without his/her
knowledge. Indeed, u may not even be able to pin-
point the exact time of the compromise. However,
allowing u to repudiate signatures that may have al-
ready been accepted is equally unfair to the recipients
of the signatures.

2.1 Timestamping is Necessary but not
Su�cient

To distinguish when messages were signed rela-
tive to various events, signed messages may be times-
tamped [9]. The determination of whether a signed
message is valid depends on the current condition of
both the private and public keys of the signing user.
The time of a key revocation (or expiry) of the public
key certi�cate can be compared to the time of signing
of messages to allow determination of whether a mes-
sage was signed before or after a revocation. Such a

2In some cases, additional information may be available, for
example physical evidence. However, we would like to focus on
solutions that do not rely on such evidence.

procedure may not be su�cient in the case of unde-
tected key compromise. Given that the signed message
was timestamped at time ts, a discrepancy (honest or
otherwise) between the detected or reported times of
compromise and the time of actual compromise leaves
room for potential abuse by the legitimate signer as
well as unfair treatment in the case the legitimate
signer was honestly not aware of a compromise for
some period of time. (Keep in mind that even the
legitimate signer may not be aware of the exact time
t0.) These arguments motivate the need for a method
for dealing with the problems of undetected key com-
promise.

2.2 Compromising Signature Private
Keys

We identify here potential attacks whose outcome
is the compromise of a signature private key. Al-
though access controls are necessary in many cases,
they might not be su�cient. It is important to rec-
ognize that despite various controls and protections,
some keying material may eventually be compromised.

One can identify the following attacks which make
the private signature key vulnerable.

1. Algorithmic Attack. The signature algorithm it-
self has succumbed to mathematical or cryptana-
lytic attack, e.g., the Ong-Schnorr-Shamir signa-
ture scheme [18] as broken by Pollard [19].

2. Implementation Failure. A particular signature
algorithm has been poorly implemented. We in-
clude here the possibility of weak keys being cho-
sen, a poor random number generator being used,
or the private key not being adequately protected.
As a speci�c example, note the attack on ElGa-
mal signatures [2].

3. Insider Attack. This includes attacks whereby the
private key is read from temporary memory (in
which it is stored while being used). As well, an
attacker might read as a user enters a password
that is used by the user to compute their private
key or to decrypt keying information. This can
also include a social engineering attack whereby
a user may be fooled into giving up a password
or key, or a system administrator may be bribed
into revealing it.

4. Brute-force attack. An attack whereby the pass-
word (used to encrypt your keying material) or
private key itself is guessed. Schemes with low-
entropy passwords are most susceptible to such
an attack.

Implemented correctly, a hardware token allows
compromise to be easily detected, i.e., the user would
recognize the missing token. However, it does not nec-
essarily protect against an algorithmic attack or im-
plementation failure (e.g., if a weak random number
generator were used), and care must be taken in their
use [3, 14]. The techniques presented herein provide
protection even in the case of signature key compro-
mise due to these failures.

3 Dealing with Signature Key Com-

promise

In this section, we review and discuss techniques
that can be used to deal with a signature key compro-
mise by using either of the following general methods:

1. Providing redundancy. A single key compromise
is rendered insu�cient to allow the forgery of
signatures by requiring multiple keys for signa-
ture production. For example, requiring a private
key to be compromised from each of a group of
users, thereby requiring multiple, subsequent at-
tacks against di�erent users in order to success-
fully forge a signature;

2. Limiting exposure. Limiting the number or type
of signatures that may be forged or the amount
of time that undetected forgery can persist may
limit the quantity of forged signatures resulting
from a key compromise.

Threshold signature schemes. Threshold signa-
ture schemes (e.g., [5]) are protocols in which n

shares or pieces of a secret signing key are distributed
amongst n users (one share per user). To produce a
signature (veri�able with a single veri�cation key), at
least t � n users must cooperate, each producing par-
tial signatures that are thereafter combined to produce
a resultant signature.

Redundancy (against one class of attacks) is pro-
vided since compromise of a single user's share does
not allow one to forge a signature (unless cooperation
is obtained from t�1 other users). Exposure is limited
so long as compromises are detected and subsequent
regeneration of signature keys is performed. However,
there exists the possibility that over a period of time,
t signature shares may be compromised.

Proactive signatures. In anticipation of the possi-
bility of a long-term attack in which multiple shares of
a signature key are eventually compromised (without
detection), a proactive approach has been proposed

[10] whereby the shares corresponding to a single sig-
nature key (where as above, a threshold of signature
key pieces are required to produce a signature ver-
i�able by the single veri�cation key) are periodically
renewed so that an attacker would be required to com-
promise a threshold of the shares all within a given
time period in order to successfully forge a signature.
One advantage is that despite the refreshment of the
shares, the underlying private/public key pair can re-
main �xed for a long time, e.g. several years. This
renewal of shares can be performed periodically or can
be triggered by the detection of a share compromise.
A second advantage is that if one of n parties hold-
ing a key share leaves an organization or is dismissed,
even without explicit revocation of his key share, the
periodic update will cause his key share to be invali-
dated.

Though suitable for some applications, for protect-
ing individual users against key compromise a disad-
vantage of using threshold schemes (proactive or oth-
erwise) is the requirement of involving a number of
users to produce a single, veri�able signature. Fur-
thermore, it is important to note that such threshold
and proactive schemes do not preclude an algorithmic
or brute force attack that would discover the single
signing equivalent key.

Proactive certi�cation. To remove the require-
ment of multiple users for the production of a veri-
�able signature, Canetti, Halevi and Herzberg [4] use
the same proactive, distributed concept (as described
above for `Proactive signatures') to allow for a proac-
tive distributed certi�cation of an individual user's sig-
nature key, whereby a single signature key is su�cient
for the production of a signature, as opposed to a dis-
tributed signature construction. Their proactive solu-
tion requires periodic refreshment phases in which new
signing key pairs are generated by each user. Users
additionally store shares of a global, private signature
(certi�cation) key, corresponding to a global, public
veri�cation key. These shares are used in process (sim-
ilar to the proactive signature scheme described above)
to certify the new signature keys (just as would be
done in a centralized scheme by a certi�cation author-
ity). The shares are also periodically refreshed (in
addition to the signature key pairs).

A weakness of this approach is that, although sign-
ing key pairs are refreshed at regular intervals, there
is no protection in the case that a single user's signing
key is compromised (without detection by the private
key owner) and used to produce a signature within
a given time unit. This technique therefore provides

some protection against malicious certi�cation of pub-
lic keys (by providing for a decentralized certi�cation
process in which the shares corresponding to the pri-
vate certi�cation key are periodically renewed) and
simultaneously limits the number of (as opposed to
preventing) forged signatures that can be produced
for a user by imposing periodic renewal of the user's
personal signature keys.

Restricted signature privileges. An alternative
technique for limiting the e�ects of key compromise
(e.g., forgery of signatures) is related to the idea of
attribute certi�cates. These are certi�cates that allow
for additional information, other than a public-key,
to be conveyed in an authentic manner [11]. For ex-
ample, the additional information may be privileges
which can be certi�ed by an attribute authority in
separate certi�cates, or included as an optional �eld
directly in a user's certi�cate. Suppose, for exam-
ple, that di�erent privileges were assigned to di�erent
users so that only certain classes of messages can be
signed by particular users. For example, only users
with \signing o�cer" privileges might be able to sign
cheques in the name of their company. An attacker
with such a goal in mind, now has a smaller number
of users that can be attacked since the compromise
of a particular signature key may not allow for the
production of forged cheques. This technique can be
combined with threshold signatures or proactive signa-
tures (see above) whereby combinations of users with
di�erent attributes are required to produce a signa-
ture.

Limiting the number of signatures. While such
a solution above limits the types of signatures that can
be produced (and hence forged), one might also try to
bound the number of signatures that can be produced
for a given certi�cate. This idea can be implemented
by using an intermediate trusted third party to decre-
ment the remaining signature count after the produc-
tion of each signature. Such a technique is used in the
Lamport variation of Section 5.1.

Signature insurance. Related to the reduction of
risk for a particular user or group of users is the pro-
tection against liability in the case of undetected key
compromise. Paralleling the paper world, insurance
might be useful for protection in such situations, i.e.,
each user pays insurance premiums for each certi�-
cate, protecting against the results of a key compro-
mise. For example, comparing a system where single
user signatures are required with one where threshold

signatures are required, the former might require for
higher insurance premiums.

4 Overview of New Approach

The new solution makes use of a second level of au-
thentication, the result of which allows the recipient
v of a signed message to con�rm (with a higher de-
gree of assureness than with the original (�rst level)
digital signature protocol) that u did indeed sign m

despite a malicious attacker's possible possession of
su (or equivalent key). It di�ers from the schemes
discussed in Section 3 in that two `independent' fac-
tors (necessary for producing an acceptable signature)
are maintained by the signing user as opposed to, say,
distributed among a number of users. More detailed
descriptions of our particular solutions are given in
Section 5 and Section 6.

4.1 A Second Level Authentication for
Signature Production

The secondary method can be thought of as a multi-
factor method (in this case, two-factor; one for the
original signature scheme and one for the secondary
authentication). It is an authentication made between
the signing user and a trusted register (TR). The func-
tion of the TR will be to validate an authentic proto-
col between itself and the originator of the signature,
and subsequently produce some information (the pur-
pose of which is to enhance the acceptability of a mes-
sage signed with su) that is bound to the signature
in question. Throughout this paper, we consider the
technique whereby the TR produces a signature over
(at least) the signed message from the user, should
the second level authentication be successful. Option-
ally, one might record user signatures in an integrity-
protected database at the TR.

The secondary authentication mechanism has the
following properties.

1. Any secret information or algorithms upon which
the secondary authentication mechanism relies
(or more generally, things that may be vulnerable
to the attacks of Section 2.2) should be indepen-
dent of the signing private key or algorithm used
for the signature production itself, i.e., compro-
mise of one doesn't reveal information about the
other.

2. The secondary authentication is cryptographi-
cally bound or associated with the current sig-
nature in question, i.e., is computed as a crypto-
graphic function of the signature.

3. The method permits a suitable authentication to
the TR, i.e., allows the TR to verify that only u

could have produced a particular signature.

Multiple factors are advantageous in that compromises
subsequent to a compromise of the signing private key
(or equivalent attack), increase the likelihood of de-
tection (of an attack). This property relies on the in-
dependence of the secondary authentication from the
�rst level signing private key and algorithm. This in-
dependence increases the likelihood that a second at-
tack would be required subsequent to compromise of
the �rst level signing key. In this way, the indepen-
dence from the �rst level allows one to better survive
attacks that may only succeed against the �rst level.

Specifying the general attacks described in Sec-
tion 2.2, this includes attacks such as factoring [20],
timing analysis [13], quantum computing [8, 22], and
di�erential power analysis [14]. The second level can
be a signature algorithm but not necessarily. Though
if it were, and the second level used DSA signatures
while the �rst used RSA, the second level would be re-
sistant to attacks that existed only against RSA. Even
further, the second level need not be cryptographic,
e.g., it may involve a phone call from the signature
originator to the TR, acknowledging the production
of a signature.

The authentication to the TR may be viewed as
a form of identi�cation. Identi�cation of a user can
be based on, something known (e.g. a password),
something possessed (e.g. a smartcard), something
inherent (e.g. a �ngerprint). Isolating on `something
known', we observe that the known token can be ei-
ther static (e.g., mother's maiden name, birthdate) or
dynamic (e.g., a periodically changed password). We
can also identify non-secret parameters (adaptive to-
kens) which we speci�cally use for a synchronization
scheme with the TR (see paragraph on `Attack Detec-
tion' below). A lack of synchronization allows for the
detection of forged signatures. Only the authenticity
of this parameter need be maintained.

4.2 Overview of Secondary Authentica-
tion Schemes

Below, we overview two general solutions allowing
the originator of a signed message to obtain a second
level authentication from the TR. The �rst makes use
of a secret key while the second uses an adaptively
changing (non-secret) parameter. A successful second-
level authentication results in a signature (produced
by the TR) over the signed message to be returned to
the originating user. After successful veri�cation by
the originating user, the original signature and mes-
sage can be sent to other users, accompanied by the

TR-signature over the original signature.

Attack Protection A more complete description is
given in Section 5. The basic idea is that u maintains
a secondary secret key K. u might have several sig-
nature keys (corresponding to several public keys) but
need only keep a single secondary key. The location
and algorithm used with K are independent of the
location of the signing private key and signature algo-
rithm. After signing a message m, u sends a message
authentication code (MAC) over the signature to the
TR. Given possession of K (or some function of it) al-
lows the TR to verify that K was used to produce the
MAC in question. A second authentication factor is
returned to the originator of the signed message. The
independence of K and the MAC, from the original
signature algorithm and key, ensure that possession of
su is not su�cient to produce a signed message that
would be acceptable by a recipient. As well, their inde-
pendence increases the likelihood that an alternative
attack would be required to compromise K. Beyond
o�ering a second level of protection, a second attack
increases the likelihood of compromise detection by
the legitimate owner of the keys.

Attack Detection A more complete description is
given in Section 6. Detection involves the discovery
of a lack of synchronization between the signing user
and the TR. This involves the use of a time-variant or
signature-dependent parameter, e.g., a counter (adap-
tive token). Only the authenticity of this counter need
be maintained, not its privacy. For every message
signed by a user (even if a message is signed by an
attacker in possession of the legitimate user's signa-
ture private key), the counter is updated. The key to
detection is that the legitimate signer will not be syn-
chronized with the TR at a given message signing, if
an attacker has forged signatures since the last mes-
sage signed by the legitimate signing user. Prevent-
ing acceptance of signatures that were not signed by
the legitimate user is achieved by imposing a cooling-
o� period (COPE) (of, say, t time units), for which
signed messages are not accepted until t time units
have expired and by requiring the legitimate signer
to check-in (e.g., by signing a message) every t time
units. Since a user is required to check-in over a time
interval equal in length to the period of latency before
a recipient accepts a signed message, the burden of
detecting forged signatures is placed on the legitimate
signing user. Besides detecting and preventing forged
signature acceptance, this technique also prevents a
user from later repudiating a signature that has been

accepted by a recipient, since if the message were actu-
ally forged, the legitimate user would have noted (and
be required to note this because of the check-in) a lack
of synchronization with the TR.

4.3 Temporal Functions of the Trusted
Register

While the solutions presented here are positioned
primarily for the purpose of providing a second level
authentication to protect against the case when an
undetected signature key compromise (or equivalent
attack) has occurred, they are intimately related to
the temporal requirements associated with a digital
signature. Although time stamping is not su�cient
in the case of an undetected key compromise (see Sec-
tion 2.1) it is necessary. One way to accomplish this is
for the second level authentication requester to obtain
a time stamp for a signature, independent of the re-
quest made to the TR. The request for a time stamp
and a second level authentication can be made in par-
allel. Alternatively, the TR may simultaneously pro-
vide the functionality of a time stamp authority and
time stamp the signature as sent as part of the sec-
ondary authentication request. Such a time stamp is
incidently provided by the scheme of Figure 3. The
latter appears to be more su�cient since the partic-
ipation of only a single trusted third party would be
maintained for the implementation of our second level
solutions.

5 Preventing Successful Attacks

In this section, we elaborate on a particular scheme
useful for the prevention of a successful attack in the
event of a signature private key compromise. A suc-
cessful attack would involve the attainment of a forged
signature and second level authentication that would
be accepted by a recipient.

User u privately shares a symmetric key K with
a Trusted Register (TR). The scheme prevents an at-
tacker from succeeding at having forged signatures ac-
cepted so long as he/she is not able to recover K, in
addition to the private signature key.3 The particular
scheme is shown in Figure 2. Suppose that u wants to
send a signed message to user v. To provide a second
level of authentication, u sends c and EK(c) to the
TR where c = sigA(m) and E is a MAC algorithm.
Given possession of K, the TR veri�es z by recom-
puting z = EK(c), and returns a signature r over c to
u. Upon receipt of r, u veri�es the TR signature over

3As indicated in Section 4.2, the independence of K from
the private signature key increases the likelihood of a secondary
attack being required to compromise K, subsequent to the pos-
sible compromise of the signing private key.

c (given possession of the TR's public key certi�cate
). u can now forward fm; c; rg to another user v who
would verify the signature c over m (given u's pub-
lic key certi�cate) and the signature r over c (given
TR's public key certi�cate). If the veri�cation is suc-
cessful, v would accept the signature c. Note that an
attacker, in possession of only the signature private
key su, would not be able to obtain, nor compute r

for a forged signature.

5.1 A Variation Using Lamport Keys

A variation in which the TR need not maintain the
secrecy of any information for u uses Lamport keys
[15]. u can �rst share f100(s) with the TR where s is
a random, secret seed and f is a one-way function (100
is used only for illustrative purposes here; any positive
integer would su�ce). For the signature ci, u can send
zi = EKi

(ci;Ki+1)
4 (where `,' denotes concatenation)

to the TR where Ki = f100�i(s). Given possession
of f100�i(s), the TR veri�es zi by recovering Ki+1

and computing f(Ki+1) and ensuring that it equals
Ki. The TR subsequently stores Ki+1 in place of Ki.
Note that E must be invertible in this case to allow
recovery of Ki+1. An advantage of this scheme is that
a di�erent, pseudo-independent key is used to produce
zi, for each i. As well, compromise of s limits an
attacker to a �xed number of signatures. (A variation
of this scheme whereby the secrecy of s is not required,
is given in Section 6.)

Notice here that the TR can also act as a
timestamp authority and provide absolute tempo-
ral authentication (see [12]) for c by returning r =
sigTR(c; current time).

5.2 Prevention of Forged Signature Ac-
ceptance

The use of two keys and algorithms that are in-
dependent in the sense that the compromise (allow-
ing the production of forged signatures) of one does
not imply the compromise of the other, provides pro-
tection in the case of cryptanalytic attacks. This of-
fers increased protection against such attacks, versus
a scheme in which the user might apply secret sharing
or proactive techniques independently to obtain mul-
tiple pieces of a single signature key. If the �rst and
second level keys happen to be stored in the same lo-
cation, then no protection is o�ered against physical
attacks that compromise a key.

However, if the keys are independently stored
as well, then additional protection can be achieved
against such physical attacks. For example, if the �rst

4Some form of integrity (e.g., a MDC) for (ci;Ki+1) should
be appended prior to encryption and veri�ed by TR upon re-
ceipt of zi.

level signature key is stored on the legitimate user's
local computer and the secondary key is stored on a
hardware token, additional protection can be achieved
versus a single physical attack; two physical attacks
would typically be required to compromise both keys.
Should a �rst attack (key compromise) be detected
prior to a successful second key compromise, then the
veri�cation certi�cate of the legitimate user can be
revoked and both keys can be renewed.

6 Detecting Attacks

Attack detection involves the detection of the pro-
duction of a forged signature. Detection alone does
not prevent an attacker (in possession of a user's sign-
ing private key) from forging signatures which would
normally be accepted by a recipient. However, it does
allow detection, and action can be taken to prevent
continued forgeries. Section 6.3 uses the concept of
a cooling-o� period to extend the detection methods
described in Section 6.1 and Section 6.2, to allow for
the prevention of forged signature acceptance.

6.1 Attack Detection Using Synchroniza-
tion

The detection of an attack, using the schemes pro-
posed below and in Section 6.2, involves the detection
of a lack of synchronization between the signing user
u and the TR, and occurs at points when a legitimate
signer produces signatures. This synchronization is
implemented using time-variant parameters (see [16,
Chapter 10], [6, Chapter 5]) as an adaptive token that
is shared between u and the TR. The key distinguish-
ing feature with these values is that they need not be
kept private; only the authenticity of the values need
be maintained. Protection is provided by using syn-
chronization to detect forgeries. Each signature for
which a second factor authentication is obtained re-
sults in an update to this parameter by both the sig-
nature originator and the TR. If the signature orig-
inator is not the legitimate private key owner, then
during a subsequent attempt by the legitimate owner
to receive a secondary authentication of a signature,
the legitimate owner will not be synchronized with the
TR.

We identify two types of values that can be used
for this synchronization parameter:

1. the output of a function that is monotonically in-
creasing with time or

2. the output of a collision-resistant function that is
dependent upon all previously constructed signa-
tures.

v u TR

msg m
c = sigu(m); z = EK(c)
�����������������! verify z

verify r
r = sigTR(c)

 �����������������

verify c; r
fm; c; rg

 �����������������

Figure 2: Prevention Using a Shared Key. K is shared between the signature originator u and the TR. v is the
signature recipient.

Using an explicit time itself satis�es Item 1, and is
described in Section 6.2. An alternative technique in-
volves using a counter or sequence number. Item 2 can
consist of the concatenation or recursive hash of all
previously produced signatures. Introducing cooling-
o� and check-in periods in Section 6.3 weakens this
condition so that not all previously constructed signa-
tures are necessary.

Using Lamport Keys for Detection A modi�-
cation of the variation using Lamport keys given in
Section 5 is helpful for illustrative purposes to demon-
strate the basic idea of detection. User u initially
choses a random seed s and gives Ki = f100(s) to the
TR (100 is used for illustrative purposes here only;
other positive integers can be used), where f is a one-
way function. Rather than using a private key K,
various functions of s are used here as the second level
parameter (the privacy of s need not be maintained
though it can be, for enhanced protection). During
round i, for message mi, u sends ci = sigu(mi) and
zi = Ki+1 to the TR who computes f(Ki+1) to en-
sure that it is equal to the stored value Ki.

5 If it is,
the TR storesKi+1 in anticipation of the next request,
and returns ri = sigTR(ci;Ki+1) to the signature orig-
inator. If it is not, then the TR is alerted of a problem,
and possibly contacts u or initiates a revocation of u's
public key, e.g., by contacting the issuing CA.

One potential problem is that an attacker (possess-
ing the signature private key) can simply intercept and
recoverKi+1 and obtain a second-level authentication
on a di�erent messagem0

i by computing c0i = sigu(m
0

i).
However, either u will detect that ri = sigTR(c

0

i
;Ki+1)

has been incorrectly computed for c0
i
as opposed to ci,

or that no response has been received from the TR

at all (if the attacker were to \block" the return from
the TR). This detection signals u that his signing
private key may have been compromised. If attacked

5One might prefer sending zi = sigu(ci;Ki+1) instead of
simply Ki+1 to prevent possible denial of service attacks.

independent of a signature sent by u (given that pri-
vacy of s need not necessarily be maintained), the at-
tacker can obtain a second level authentication for a
forged signature. However, a lack of synchronization
will be detected by u when attempting to obtain a sec-
ondary authentication for a subsequent signature. In
Section 6.3 we see how a recipient is prevented from
accepting such forged signatures.

6.2 Detection Using the Time of Last Sig-
nature for Synchronization

In this section, we present a scheme in which we
make use of the time at which signatures are produced,
as an adaptive parameter used to synchronize u with
the TR. The use of the time here is advantageous in
that beyond the usefulness of allowing a synchroniza-
tion, it can provide a timestamp for the submitted sig-
nature as well as possessing su�cient information for
the implementation of the cooling-o� period described
in Section 6.3.

Referring to Figure 3, u initializes (\synchronizes")
with the TR by the exchange of c1 and z1. Subse-
quently, the TR stores the time of the last signature
associated with u (in this case, t1). To obtain a sec-
ond level authentication for a message mi, u sends
the signature ci as well as ti�1, which represents the
time returned to u during the second level authentica-
tion of ci�1 (i.e., u, or more correctly, the originator of
ci�1, would have had zi�1 = sigTR(ci�1; ti�2; ti�1) re-
turned) to the TR. The TR veri�es that ti�1 matches
the stored value corresponding to u. If the veri�ca-
tion of ti�1 is successful, then the TR stores the cur-
rent time ti for u and returns zi = sigTR(ci; ti�1; ti).
ui veri�es that zi is the correct signature of the TR

(given a priori possession of the TR's signature veri�-
cation public key) over ci, that ti�1 is the time of last
signature and that ti is the current time.

Detecting a Lack of Synchronization

If there is a discrepancy between the time sent and the
time stored at the TR for u, then the TR has noticed

v u TR

msg m1

c1 = sigu(m1)
�����������������! stores fu; t1g

veri�es z1
z1 = sigTR(c1; t1)

 �����������������
stores t1

verify c1; z1
fm1; c1; z1g

 �����������������
...

...

msg mi

ci = sigu(mi); ti�1
�����������������! verify ti�1

verify zi
zi = sigTR(ci; ti�1; ti)
 ����������������� store fu; tig

stores ti

verify ci; zi
fmi; ci; zig

 �����������������

Figure 3: Detection using the time of the last signature. u is the signature originator and v is the signature
recipient. One might prefer to send sigu(ci; ti�1) instead of simply ti�1 to prevent possible denial of service
attacks.

a lack of synchronization. Now, either the TR has de-
tected that messages have recently been forged in u's
name, or u is attempting to repudiate some signatures
by purposely causing a lack of synchronization. For
example, if u were to send ti�2 instead of ti�1, then
this would indicate to the TR that the second level
authentication obtained for ci�1, might have been ob-
tained by an attacker (and may have already been sent
to and accepted by a recipient). Though it may also
be that u is attempting to falsely repudiate a message
(mi�1) that he may have indeed signed.

It is possible as well, that in the case that there is
a lack of synchronization because of a forged message,
and u sends the time ti�1 when the TR expects the
time ti, that an attacker can simply replace ti�1 by
ti in the message from u to the TR. However, in the
returned response from the TR, zi, u will notice the
modi�cation and be alerted to the problem.

In the following section, we make novel use of a
cooling-o� period, so that signatures with a second
level authentication, are not accepted by recipients un-
til the legitimate signer u has veri�ed that they were
indeed legitimately constructed.

6.3 Prevention of Forged Signature Ac-
ceptance Using a Cooling-O� Period

Notice that for the detection schemes described in
Section 6.1 and Section 6.2, the legitimate signer or
the TR is able to detect when a signature has been
(potentially) forged in u's name. However, this still
does not prevent the possibility that u may repudiate
a legitimately signed message which a recipient has

accepted as valid. As well, it does not prevent a recip-
ient of a signed message from potentially accepting a
signed message that has been forged by an attacker.

However, suppose that signed messages are not ac-
cepted as being valid until some period of time has
elapsed, i.e., a cooling-o� period (COPE). The pur-
pose of this COPE is to allow for \late" forgery detec-
tions or revocations, possibly resulting from a com-
promise, i.e., in the case a forged message has been
detected. For example, if a message is signed on Fri-
day, it may be part of policy to not accept the sig-
nature until Saturday. (Finer or coarser granularities
may also be used.) This allows a day of grace for the
owner of the private signature key to claim the possi-
ble compromise of his key.

However, on its own, this COPE does not preclude
the possibility that a compromise is not detected until
after the COPE has expired (and hence some forged
messages may have been accepted). As well, even if
the compromise is detected on time, there is typically
a delay before the corresponding certi�cate is revoked
(see Figure 1). To facilitate the detection of forged
signatures, we incorporate into the COPE with a so-
called Check-In Period (CHIP) giving CHIP/COPE.

De�nition 1 A CHIP/COPE refers to a check-in pe-
riod (CHIP) during which time the legitimate owner of
the signing private key is required to (at least once dur-
ing the period) ensure synchronization with the trusted
register (TR) (e.g., by obtaining a second level au-
thentication for a signature),6 and a cooling-o� pe-

6Certain scalability and denial of service issues would have

riod (COPE) during which time, received signatures
are still considered to be potentially forged.

For example, if the length of the COPE is a single
day, then the legitimate user can wait no longer than
24 hours after a legitimate signing, before performing
a check-in. (To allow for other tasks to be performed
subsequent to the detection of a compromise (cf. Fig-
ure 1), in practice the length of the COPE will be
bu�ered slightly so that it exceeds the length of the
CHIP.)

Notice that since the legitimate owner of the sign-
ing private key is responsible for checking-in (i.e., syn-
chronizing) during a given time period, he is not able
to repudiate a message that was legitimately signed.
This is because for signatures that have been accepted
by the recipient (i.e., signature has been received and
the COPE has expired), the latency period must have
passed and the loss of synchronization would have
been detected for the time period in which the signa-
ture was sent. This idea is captured by the following
proposition.

Proposition 1 Let the length of the CHIP and
COPE be t time units. Given that u must check-in
(i.e., verify synchronization) every t time units and
that signatures (accompanied by second level authen-
tication) are not accepted until t time units after re-
ceipt, u detects when any forged signatures have been
produced and cannot successfully repudiate signatures
accepted by recipients (given that the COPE has ex-
pired).

Proof (Outline) Assume that u has initially syn-
chronized with the TR. Consider a message m, signed
at time s. Now, the legitimate signer must check-in
every t time units. Therefore, a legitimate check-in
occurred during the time interval [s � t; s) and an-
other will occur during the interval (s; s + t]. Given
the COPE, the signature on m will not be accepted
until time s + t. However, a check-in, and hence a
lack of synchronization will have been detected by u

as of this time. Therefore, forgery is detected as well
(and hence, appropriate action has been performed
(e.g., revocation of the public key certi�cate), so that
a recipient of the signature will be aware that it is a
forgery. For the same reason, u could not successfully
repudiate the signature on m if it were legitimately
signed since a legitimate check-in is performed (veri-
fying the maintenance of synchronization and hence,
verifying that no signatures have been forged) prior to
signature acceptance.

to be considered in practice, related to the potential inability of
a user to check in because of an overwhelmed TR.

In this way, once a recipient of a message has waited
a length of time equal to the length of the COPE (plus
additional time allowing for revocation etc.), and sub-
sequent to a check of the revocation status of u's pub-
lic key, she can be sure that the signature was legiti-
mately constructed. The signatures are committed at
this time, in the sense that the CHIP/COPE is similar
to an atomic transaction or protocol. The legitimate
signer must have legitimately signed a message sub-
sequent to the signing of the message for the afore-
mentioned user, yet before the CHIP expiry for the
recipient. By designing a protocol in such a way that
the legitimate user con�rms that the messages signed
during the last CHIP were indeed signed by him, the
signing user is limited in his ability to later deny hav-
ing signed any of the messages in question.

6.3.1 Combining a Cooling-O� Period with
Detection

How does this alter the scheme shown in Figure 3? Let
the length of the CHIP/COPE (see De�nition 1) be t
time units. Beyond requiring u to check-in with the
TR at least every t units, the TR would also perform
a check that ti � ti�1 < t. So long as a recipient
waits t time units before accepting a signature, forged
messages can be detected by the TR. As well, t may
be di�erent for each user. Allowing the recipient of a
signed message to determine the length of the COPE
for a particular message can be achieved by having
the TR return zi = sigTR(ci; ti�1; ti; ti + t). If t is
not so dynamic for users though, it may well be that
it be included as a parameter in the user's public key
certi�cate.

6.3.2 Implementation and Practicality

Coordinating the CHIP with an actual user may re-
quire, for example, that temporary revocations [1] are
allowed in the case of long-term absences by a user.
Also related to the practical implementation of such
a scheme is that once a lack of synchronization is de-
tected by the TR, additional time will be required
before revocation information can be obtained by sig-
nature recipients. Therefore, in practice, the length of
the COPE should be t + � for a suitable �, where the
CHIP is t time units.

With regard to the practicality of using a
CHIP/COPE, imposing such restrictions on both
the signer and recipient may appear unreasonable.
Though there already exists examples of its use in
current society (e.g., depositing a cheque normally re-
quires a waiting period before the amount is included

in the account), it is certainly not practical for all sit-
uations. Yet there are situations in which it can be
very helpful, i.e., schemes for which undetected key
compromise is intolerable yet can tolerate a time delay
before the acceptance of a signature. Such high val-
ued transactions include major business deals, mergers
and acquisitions, and real estate deeds; transactions
that want to use digital signatures for their conve-
nience, but are so costly that they require an extra
level of assurance.

Compared to alternative solutions to the key com-
promise problem (see Section 3), note that threshold
or proactive schemes do not provide protection against
cryptanalytic attacks that would recover the single sig-
nature key from which shares of the key are created.
Also note that the solution presented here allows sig-
natures to be constructed by a single individual as
compared to the cooperation between more than one
user required for signatures produced with threshold
or proactive schemes.

7 Summary and Future Work

This paper has proposed the use of a second level
authentication for dealing with the problem of un-
detected key compromise. Techniques have been de-
scribed that use two alternative approaches for imple-
menting this second level.

1. In Section 5, schemes were presented in which
a secret key is shared between a user and the
trusted register. A function of this key and the
signature for which a second level authentication
was being requested was used as an identi�cation
to the TR.

2. In Section 6, schemes were presented in which
a non-secret key is used to synchronize a user
with the TR so that forged signatures can be
detected at the next legitimate request by a
user, through the lack of synchronization with
the TR. The combination of these synchroniza-
tion schemes with a check-in-period (CHIP) and
cooling-o� period (COPE) allows for the detec-
tion and rollback of forged signatures.

For Item 1, the independence of the two keys (and
algorithms) is important. For example, algorithms
must be chosen such that the compromise of one does
not necessarily imply the compromise of the other.
With regard to physical attacks, it is therefore impor-
tant that the storage of these two keys also be indepen-
dent. One option is for one key to be stored on the
user's local computer with the other on a hardware
token. It would be of interest to provide some form

of key management for the user's multiple keys that
maintains their independence, yet limits the inconve-
nience to users. Related to the independence, each
system should weigh the likelihood of compromise pos-
sibilities when choosing to implement a second level
authentication. For example, if a system has suitable
access controls, e�ectively minimizing the possibility
of a successful physical attack, it may be unnecessary
to select a second level authentication scheme in which
the key is stored independently of the primary signa-
ture key.

For Item 2, although secrecy of the synchronization
parameter is not necessary, in cases where its value is
not computationally feasible to predict (e.g., the varia-
tion using Lamport keys in Section 5), maintaining the
secrecy of the parameter can only improve the security
of the scheme. It would be helpful for the practical im-
plementation of the CHIP/COPE, to minimize delays
between and during the events identi�ed in Figure 1
so as to improve the e�ciency of this CHIP/COPE.
Di�ering lengths for the CHIP/COPE are likely de-
sireable from one system to the next. It would be
bene�cial to study what period lengths would be op-
timal for varying schemes, balancing the requirements
of the signing users as well as signature veri�ers.

8 Concluding Remarks

Protecting against signatures forged during a pe-
riod of undetected key compromise is not a trivial
task. In this paper, we have provided several solu-
tions which, beyond allowing one to protect or detect
such forgeries, require the use of an on-line trusted
third party (TTP). In this �nal section, we address
some concerns regarding the use of a TTP .

Consider the concern that the TTP adds unnec-
essary complexity to the process of sending a digital
signature. However, as observed in Section 2.1, the
time relationship between the signing of a message and
the revocation of keying material necessitates a times-
tamped, signed message. Although there exists dis-
tributed methods for achieving a timestamp (e.g. [9]),
they are not e�cient in practice. Therefore, the use of
a third party (i.e., timestamp authority) is necessary
in any case (for schemes requiring non-repudiation),
even without the use of our schemes.

Also notice that while the solutions described here
were positioned primarily for the purpose of providing
a second factor authentication to protect against the
case when an undetected private key compromise has
occurred, the TR may simultaneously act as a times-
tamp authority and timestamp the submitted signa-
ture (this was an incidental result for the scheme of

Section 6.2 for example).
How do the new solutions di�er from those that

would simply use a TTP without digital signatures,
i.e., symmetric key signatures? The proposed schemes
still maintain the provision of non-repudiation while
symmetric key signatures with a TTP do not. The
original �rst level authentication provides for a digital
signature while the second level authentication aids in
the prevention and detection of forged signature ac-
ceptance, forged as the result of a key compromise (or
equivalent attack). Unlike symmetric key signatures
though, the trusted register (TR) used for our second
level authentication, does not necessarily maintain the
privacy of any information related to users (see the
variation described in Section 5 and both techniques
described in Section 6).

Acknowledgements

Thanks to Michael Wiener for suggesting that a
solution to the problem of undetected signature key
compromise might exist. Thanks also to Pat Morin
and Evangelos Kranakis for several helpful comments
and to the anonymous referees for helping to improve
the clarity of several of our results.

References

1. ANSI X9.57, \Public Key Cryptography for the Fi-
nancial Services Industry: Certi�cate Management",
American National Standard for Financial Services,
February, 1997.

2. Daniel Bleichenbacher, \Generating ElGamal Signa-
tures Without Knowing the Secret Key", Advances
in Cryptology: Eurocrypt '96, Springer-Verlag, pp.
10-18, 1996.

3. Dan Boneh, Richard A. Demillo, Richard J. Lipton,
\On the Importance of Checking Cryptographic Pro-
tocols for Faults", Advances in Cryptology: Eurocrypt
'97, pp. 37{51, 1997.

4. R. Canetti, S. Halevi, A. Herzberg, \Maintaining Au-
thenticated Communication in the Presence of Break-
ins", in Proceedings of the 16th Annual ACM Sympo-
sium on Principles of Distributed Computing, 1997.

5. Y. Desmedt, \Threshold Cryptography", European
Transactions on Telecommunications, Vol. 5, No. 4,
pp. 449-457, July, 1994.

6. D. Davies, W. Price, Security for Computer Net-
works, John Wiley & Sons, 2nd edition, 1989.

7. FIPS 186, \Digital Signature Standard", Federal
Information Processing Standards Publication 185,
U.S. Department of Commerce/N.I.S.T., National
Technical Information Service, Spring�eld, Virginia,
1994.

8. N. Gershenfeld, I. Chuang, \Quantum Computing
with Molecules", Scienti�c American, June, 1998.

9. S. Haber, W.S. Stornetta, \How to Time-Stamp a
Digital Document", Journal of Cryptology, Vol. 3,
No. 2, pp. 99-111, 1991.

10. A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk,
\Proactive Public Key and Signature Systems", in
Proceedings of the 4th ACM Conference on Computer
and Communications Security, 1997.

11. ITU-T Recommendation X.509, \The Directory -
Authentication Framework" International Telecom-
munication Union, Geneva, Switzerland, November,
1993. (equivalent to ISO/IEC 9594-8:1990&1995)

12. Mike Just, \Some Timestamping Protocol Failures",
Proceedings of the 1998 Symposium on Network and
Distributed System Security, pp. 89-96, March 1998.

13. Paul Kocher, \Timing Attacks on Implementations
of Di�e-Hellman, RSA, DSS, and Other Systems",
Advances in Cryptology: Crypto '96, pp. 104{113,
Springer-Verlag.

14. Paul Kocher, J. Ja�e, B. Jun, \Di�erential Power
Analysis", available from
http://www.cryptography.com/dpa/.

15. L. Lamport, \Password Authentication with Insecure
Communication", Communications of the ACM, 24,
pp. 770-772, 1981.

16. A. Menezes, P. van Oorschot, S. Vanstone, Handbook
of Applied Cryptography, CRC Press, 1997.

17. M. Myers, R. Ankney, \Internet Public Key Infras-
tructure Online Certi�cate Status Protocol - OCSP",
IETF PKIXWorking Group Internet Draft, February
1998 (work in progress).

18. H. Ong, C.P. Schnorr, A. Shamir, \An E�cient Sig-
nature Scheme Based on Quadratic Equations", Pro-
ceedings of the 16th Annual ACM Symposium on
Theory of Computing, pp. 208-216, 1984.

19. J.M. Pollard, C.P. Schnorr, \An E�cient Solution
of the Congruence x2 � ky2 = m (mod n)", IEEE
Transactions on Information Theory, Vol. 33, pp.
702-709, 1987.

20. Carl Pomerance, \Factoring", in Cryptology and
Computational Number Theory, American Mathe-
matical Society, ed. Carl Pomerance, pp. 27{47, 1990.

21. R. Rivest, A. Shamir, L. Adleman, \A Method for
Obtaining Digital Signatures and Public-Key Cryp-
tosystems", Communications of the ACM, 21, pp.
120-126, 1978.

22. Peter W. Shor, \Algorithms for Quantum Computa-
tion: Discrete Logarithms and Factoring", Proceed-
ings of the 26th Symposium on Theory of Computing
(STOC), Montreal, Canada. pp. 124{134, 1994.

