
2/9/2009

An Efficient Black-box Technique for
Defeating Web Application Attacks

R. Sekar
Stony Brook University

(Research supported by DARPA, NSF and ONR)

2/9/2009 2

Attack: use maliciously
crafted input to exert
unintended control over
output operations
Detect “exertion of
control”

Based on “taint:” degree to
which output depends on
input

Detect if control is
intended:

Requires policies
Application-independent
policies are preferable

Example: SquirrelMail Command Injection

Incoming
Request

(Untrusted input)

$command=“gpg –r
nobody; rm –rf *
2>&1”

popen($command)
Attack: Removes files

sendto=“nobody; rm –
rf *”

Program

popen($command)

$send_to_list =
$_GET[‘sendto’]

$command = “gpg
-r $send_to_list
2>&1”

Outgoing Request/Response
(Security-sensitive operations)

(To databases, backend servers,
command interpreters, files, …)

2/9/2009 3

Attack Space of Interest (CVE 2006-07)

Others
24%

Format string
1%

Memory
errors
10%

Input
validation/

DoS
9%

Directory
traversal

4%

Cross-site
scripting

19%

Command
injection

18%

SQL injection
14%

Config/Race
errors

1%

Generalized Injection
Attacks

2/9/2009 4

Drawbacks of Taint-Tracking and
Motivation for Our Approach
Intrusive instrumentation

Transform every statement in target application
Can potentially impact stability and robustness

High performance overheads
Often slow down programs by 2x or more

Language dependence
E.g., they apply either to Java or C/C++

2/9/2009 5

Approach Overview

Efficient, language-neutral, and non-intrusive
Consists of

Taint-inference: Black-box technique to infer taint by
observing inputs and outputs of protected apps
Syntax- and Taint-aware policies for detecting unintended use
of tainted data

Interceptors

Web
Server

(IIS/
Apache)

Web
App

(PHP, Java,
C, C++,…)

Database/
Backend

server

System Libraries

Protected System

Taint Inference
• Based on approximate

substring matching

Syntax Analysis
•Decode HTTP
parameters, cookies, …

•Construct parse trees
for SQL, HTML, …

In
te

rn
et

Attack Detection
• Syntax and taint-aware

policy enforcement

2/9/2009 6

Syntax Analysis: Input Parsing
Inputs:

Parse into components
Request type, URL, form parameters, cookies, …
Exposes more of protocol semantics to other phases
All information mapped to (name, value) pairs

Normalize formats to avoid effect of various
encoding schemes

To cope with evasion techniques
To ensure accuracy of taint-inference

Our implementation uses ModSecurity code

2/9/2009 7

Syntax Tree Construction
Outputs:

Pluggable architecture to parse different output
languages

HTML, SQL, Shell scripts, …

Use “rough” parsing, since accurate parsers are:
time-consuming to write
may not gracefully handle:

errors (especially common in HTML), or
language extensions and variations (different shells,

different flavors of SQL)

Map to a language-neutral representation
Implemented using standard tools (Flex/Bison)

2/9/2009 8

Taint Inference
Infer taint by observing inputs and outputs
Allow for simple transformations that are common
in web applications

Space removal (or replacement with “_”)
Upper-to-lower case transformation, quoting or
unescaping, …
Other application-specific changes

SquirrelMail, when given the “to” field value
“alice, bob; touch /tmp/a” produces an output
“-r alice@ -r bob; touch /tmp/a”

Solution: use approximate substring matching

2/9/2009 9

Taint Inference Algorithm
Standard approximate substring matching algorithms
have quadratic time and space complexity

Too high, since inputs and outputs can be quite large

Our contribution
A linear-time “coarse-filtering” algorithm

More expensive edit-distance algorithm invoked on
substrings selected by coarse-filtering algorithm
The combination is effectively linear-time

Ensures taint identification if distance between two
strings is below a user-specified threshold d

Contrast with biological computing tools that provide
speed up heuristics, but no such guarantee

2/9/2009 10

Coarse-filtering to speed up Taint Inference
Definition of taint:

A substring u of t is tainted if ED(s, u) < d
Here, ED denotes the edit-distance

Key idea for coarse-filtering:
Approximate ED by ED#, defined on length |s| substrings of t
Let U (and V) denote a multiset of characters in u (resp., v)
ED#(u, v) = min(|U-V|, |V-U|)

Slide a window of size |s| over t, compute ED# incrementally

Prove: ED(s, r) < d ⇒ ED#(s, r) < d for all substrings r of t

Result:
O(|s|2) space in worst-case
performs like a linear-time algorithm in practice

2/9/2009 11

Leverage structure+taint to simplify/generalize policy
Policy structure mirrors that of syntax trees

And-Or “trees” (possibly with cycles)

Can specify constraints on values (using regular expressions)
and taint associated with a parse tree node

Overview of Syntax+Taint-aware Policies

ELEMENT

NAME = “script” OR

PARAM ELEM_BODY

PARAM_NAME=“src” PARAM_VALUE

1. Policy for detecting XSS

2/9/2009 12

Injection attacks and Syntax-aware policies

(2) SpanNodes policy: captures “lexical confinement”
tainted data to be contained within a single tree node

(3) StraddleTrees policy: captures “overflows”
Both are “default deny” policies

Tainted data begins in the middle of one syntactic
structure (subtree), then flows into next subtree

root

cmd

name param param

gpg -r sekar@
abc.com

root

cmd

name param param

gpg -r nobody

cmd

separator

;

name param param

rm -rf *

2/9/2009 13

Further Optimization: Pruning Policies

Most inputs are benign, and cannot lead to
violation of policies

Policies constrain tainted content, which comes
from input
Thus, policies implicitly constrain inputs

Approach:
Define “pruning policies” that make these implicit
constraints explicit
Pruning policies identify subset of inputs that can
possibly lead to policy violation
For other inputs, we can skip taint inference as well
as policy checking algorithms

Evaluation: Applications and Policies

We used the 3 policies described earlier in the talk

Application Language LOC (Size) Environment Attacks Notes

phpBB PHP/C 34K Apache or IIS
w/MySQL SQL inj

Popular real-
world apps.
Exploits from
the wild.

SquirrelMail PHP/C 35K/42K Apache or IIS Shell command
inj, XSS

XMLRPC
(library) PHP/C 2K Apache or IIS PHP command

inj

Apps from
gotocode.com Java/C 30K Apache+Tomcat w/

MySQL

SQL inj
(21K attacks.
4K legitimate)

Attacks by
[Halfond et al]

WebGoat Java/C Tomcat
command inj,
HTTP response
splitting

DARPA
RedTeam App PHP 2K Apache SQL inj

App
developed by
Red Team

2/9/2009 15

False Negatives (and Detection Results)
Occur due to

Complex application-specific data transformations
Protocol/language-specific transformations handled

Second-order attacks (data written into persistent store, read
back subsequently, and used in security-sensitive operations)

A limitation common to taint-based approaches

Experimental results:
Detected all attacks in experiments with the exception of a
single second-order injection attack in Red Team evaluation

Shell and PHP command injections and XSS on
~21K SQL injection attacks on 5 moderate-size JSP applications
(AMNESIA [Halfond et al] dataset)
HTTP response splitting on WebGoat

2/9/2009 16

False Positives
Result of coincidental matches (in taint-inference)

Can be controlled by setting the distance threshold d based on the
desired false positive probability
Likelihood small even for short strings
No false positives reported in experiments

Implication
Can use large distances for moderate-size strings (len > 10), thus
tolerating significant input transformations

1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00

0 10 20 30 40 50 60 70 d=0, a=40

d=0.3, a=40

d=0.7,a=70

d=0.7,a=40

2/9/2009 17

Taint inference overhead
Coarse filtering optimization

10x to 20x improvement in speed in experiments
50x to 1000x reduction in space
time spent in coarse filtering (linear-time algorithm)
exceeds time spent inside edit-distance algorithm
performance decreases with large values of distance

When coincidental probability increases beyond 10-6

2/9/2009 18

Overhead of different phases
60% spent in taint inference

After coarse-filtering optimization

20% in parsing
20% in policy checking
Overhead of interposition not measured

but assumed to be relatively small because of
reliance on library interposition

2/9/2009 19

End-to-end Performance Overhead
Measured using AMNESIA [Halfond et al] dataset on utility
applications from gotocode.com
Performance measured with pruning filters deployed

~5x performance improvement due to pruning

Application Size
(LOC)

of
Requests

Response
time (sec) Overhead

Bookstore 9552 605 20.7 1.7%
Empldir 3028 660 17.3 3.4%
Portal 8775 1080 31.7 5.1%
Classifieds 5726 576 18.0 4.3%
Events 3805 900 23.0 3.1%

Total 30886 3821 110.7 3.5%

2/9/2009 20

Related Work
Su and Wasserman [2006]

Focus on formal characterization of SQL injection
Our contributions

A robust, application-independent technique to infer taint
propagation
Policies decoupled from grammar

Applicable to many languages

Dataflow anomaly detection [Bhatkar et al 2006]
Flow inference algorithms tuned for simpler data (file names,
file descriptors, …)

Program transformations for taint-tracking
And related approaches (AMNESIA, CANDID, …)
Require deep analysis/instrumentation of applications

2/9/2009 21

Summary
A black-box alternative for taint-tracking on web
applications
A simple, language-neutral policy framework
Ability to detect a wide range of exploits across
different languages (Java, C, PHP, …) and
platforms (Apache, Tomcat, IIS, …)
with just a few general policies
Low performance overheads (below 5%)

	An Efficient Black-box Technique for Defeating Web Application Attacks
	Example: SquirrelMail Command Injection
	Attack Space of Interest (CVE 2006-07)
	Drawbacks of Taint-Tracking and Motivation for Our Approach
	Approach Overview
	Syntax Analysis: Input Parsing
	Syntax Tree Construction
	Taint Inference
	Taint Inference Algorithm
	Coarse-filtering to speed up Taint Inference
	Overview of Syntax+Taint-aware Policies
	Injection attacks and Syntax-aware policies
	Further Optimization: Pruning Policies
	Evaluation: Applications and Policies
	False Negatives (and Detection Results)
	False Positives
	Taint inference overhead
	Overhead of different phases
	End-to-end Performance Overhead
	Related Work
	Summary

