
An IPSec–basedHost Ar chitecturefor SecureInter net Multicast

RanCanetti,Pau–ChenCheng,FrederiqueGiraud,Dimitrios Pendarakis
JosyulaR. RaoandPankajRohatgi

IBM ThomasJ.WatsonResearchCenter
P.O.Box 704

Yorktown Heights,NY 10598
email:

�
canetti,pau,dimitris� @watson.ibm.com,

�
giraud,jrrao,rohatgi� @us.ibm.com

DebanjanSaha
Bell Labs,LucentTechnologies

101Crawford CornerRoad
Holmdel,NJ07733

email:
�
debanjan@dnrc.bell-labs.com�

Abstract

We proposea host architecture for secure IP multi-
cast. We identify the basic componentsof the archi-
tecture, describetheir functionalitiesand how they in-
teract with oneanother. Thefundamentaldesigntenets
of the proposedarchitecture are simplicity, modularity,
and compatibilitywith existing protocolsand systems.
More specifically, wetry to re-useexisting IPSecmech-
anismsasfar aspossible,andextendthemwhenneces-
sary. We alsodiscussour experienceswith implement-
ing theproposedarchitecture onLinux.

1 Intr oduction
The Internet today supportsa basic form of multi-

castservicewherea multicastgroupis identifiedby a
ClassD IP address[H95]. A receiver canjoin andleave
the groupby sendingIGMP (InternetGroupManage-
mentProtocol)[RFC1112, D91] messagesto their lo-
cal routers. To senddatagramsto a multicastgroup,a
senderneednotbeamemberof thegroup.It cansimply
addressthedatagramsto thegroupaddress.It is there-
sponsibilityof themulticastcapableroutersto commu-
nicatewith eachotherusingmulticastroutingprotocols
anddeliver thedatagramsto all receiverswhoaremem-
bersof thegroup.Themulticastgroupis anopengroup
andsendersdonotnecessarilyknow theidentitiesof the
receiversin the group. Likewise,receiversdo not have
any mechanismsavailableto authenticatetheidentityof
thesendersor to verify theintegrity of thereceiveddata.

Supportfor groupmembershipcontrolandfor sender

anddataauthenticationis essentialfor many multicast
applications. Maintaining confidentialityof the trans-
mitted datais alsorequiredby someapplications.Ex-
amplesrangefrom one-to-many scenariossuchasnews
anddatafeeds(say, quotesof stockprices),audioand
videobroadcasts,or file andsoftwareupdates,to more
interactive scenariossuchas electroniclectures,town-
hall meetingsandconferences.(See[Q98, CP99] for
surveys of multicastapplicationsandtheirsecuritycon-
cerns.)

A lot of work hasbeendonein designingsecure mul-
ticast protocols(seethe survey in [CP99]). Recently,
the InternetArchitectureBoard (IAB) haschartereda
working groupwithin theInternetResearchTaskForce
(IRTF) tostudyanddevelopstandardizableprotocolsfor
securemulticast[SMuG].

Existing work on securing group communication
concentrateson the task of group managementand
accesscontrol (see, for instance,[HM97a, HM97b,
M97, STW98, WHA97, WGL98, HCD98, HCM98,
BMS99]). Morespecifically, thefocusis ondistributing
andmaintaininga groupkey that is known to all legiti-
matemembers,but remainsunknown to non-members.
Thisgroupkey is distributedby oneor moregroupcon-
trollers, accordingto somepre-specifiedpolicy, andis
thenusedto encryptthegroupcommunication.Lessat-
tentionisgivento theinternaldesignof agroupmember.

The focusof this paperis on the hostarchitectureof
a memberof a securemulticastgroup.Themembercan
beeitherasender, or areceiver, or both. In therestof the
paper, we identify basiccomponentsof thearchitecture,
outlinetheir functionalities,anddescribetheinteraction
amongthem.Thearchitectureis basedontheIPSecpro-

1 of 17

tocolsuite[KA98] andre-usesIPSeccomponents(such
as� IKE andESP).We have extendedtheIPSecarchitec-
ture in several waysto accommodatethe requirements
of securegroupcommunication.

Someof the main featuresof the proposedarchitec-
ture are: simplicity, modularityandcompatibilitywith
existing systemsand protocols. We identify the key
componentsof thearchitectureanddefinetheinterfaces
betweenthem.Thismodularapproachallowsthedevel-
opmentof alternative implementationsof variouscom-
ponents. In addition, our architecturecan accommo-
dateknown proposalsfor groupandkey management.
It is compatiblewith the secureIP multicast frame-
work that is being developedby the SecureMulticast
working group(SMuG) of the InternetResearchTask
Force[SMuG]. It is simpleto incorporatewithin IPSec-
compliantsystems,with eithersmall or no changesto
theoperatingsystemkernels.

Weareimplementingtheproposedarchitecturewithin
the Linux kernel using the FreeSwanIPSecdistribu-
tion [FSWAN] asthebase.We describethis effort and
ourexperience.

A preliminaryversionof thisarchitectureappearedas
an InternetDraft, draft-irtf-smug-sec-mcast-arch-00.txt
at the SecureMulticast UsersGroupIRTF. This paper
describesfurther internaldetailsof thearchitectureand
experienceswith implementingits components.

Organization Therestof thepaperisorganizedasfol-
lows. Section2 reviews somesalientsecurityrequire-
mentsof multicastapplications,anddescribeshow our
work fits within the larger context of a comprehensive
securemulticastsolution. Section3 presentsour main
designtenets.Sections4, 5 and6 describethearchitec-
ture. Section7 discussescompatibility issuesbetween
securemulticastandIPSecandSection8 describesex-
perimentsto validatethe basicdesigndecisionto use
IPSecandresultsof preliminaryperformancetestsdone
aspartof anongoingimplementationof thearchitecture.
We concludewith someremarksin Section9.

2 Background

2.1 Security requirements of multicast com-
munication

We outline the salientsecurityrequirementsof mul-
ticastcommunication.A moredetaileddiscussionap-
pearsin [CP99, CG� 99].

� Group membershipcontrol and confidentiality:
The goal is to ensurethat the groupcommunica-
tion is accessibleonly to legitimate group mem-
bers.Groupmembershipcontrol is usuallyimple-
mentedby having a groupkey sharedby all group

members.All groupcommunicationis encrypted
via symmetricencryptionusingthis key. The ar-
chitectureproposedherefollowsthisapproach.

For many applications,groupmembershipis likely
to varyover time. It is oftenrequiredthatmembers
leaving agrouploseaccessto futuregroupcommu-
nication,andthatmembersjoining a groupdo not
gainaccessto groupcommunicationthatoccurred
beforethey joined.

Note that in order to implementaccesscontrol it
mustbepossibleto authenticatetheidentity of po-
tential group members. This can be doneusing
public-key certificatesof potentialmembers.A de-
cisiononwhetherto acceptrequeststo join agroup
is usuallymadeaccordingto somepredefinedpol-
icy.

� Group authentication: This refersto theability of
a groupmemberto verify that the received group
communicationoriginatedfrom asourcewithin the
group. Note that any group membercan imper-
sonatethesenderor maliciouslymodify the trans-
mitted data. To achieve this, we follow the usual
approachof implementinggroupdataauthentica-
tion usinga dedicatedkey sharedamongall group
members.All the communicateddatais authenti-
catedvia MessageAuthenticationCodes(MACs)
usingthesharedkey.

� Individual source and data authentication: This
refers to the ability of group membersto verify
the authenticityof the data, and identity of the
senderof data,even if the other group members
arenot trusted. This problemis inherentlydiffer-
ent from group authenticationand from authenti-
cation of point-to-point connections,sincesingle
MAC basedsolutions(suchasthoseusedin IPSec
[KBC97]) arenot applicablehere.

Other security concerns,like non-repudiabilityand
anonymity, mayalsoberelevantto someapplications.

2.2 On the structure of secure multicast solu-
tions

In orderto placeour work in context, we outline the
generalstructureof securemulticastsolutions.

Very roughly, a securemulticastsolutioninvolvesthe
following entities. In addition to the group members
(andwould-bemembers)thereareoneor moregroup
controlentities.Theseconsistof thegroupinitiator and
owner, andoneor morepolicy andkey servers.A solu-
tion canbeviewedasconsistingof two mainparts:

2 of 17

� Group control: This part dealswith the task of
group managementand accesscontrol, in partic-
ular, with distributing andupdatingthe group key
and other data that is relevant to securinggroup
communication.Typically this part includesonly
communicationbetweenthecontrolentitiesof the
groupandpotentialgroupmembers(andpossibly
somecommunicationamongthecontrolentities).

� Data handling: This partdealswith thecommuni-
cateddataitself. This includesthe processingof
dataat theendhosts,datapacketrouting,andpos-
sibly en-routetransformations.Typically thegroup
controlentitiesdonot participatein thispartat all.

This work handlesbothparts,from thepoint of view
of a group member. It doesnot addressthe designof
thegroupcontrolentities;it is compliantwith any such
design.

3 DesignTenets

We describethe main designprinciplesset forth in
thiswork.

� Independencefrom multicast routing: The archi-
tecturedoesnot interferewith the routingmecha-
nismof datapackets.Datapacketsmayberouted
via any multicastor unicastrouting. For sakeof
simplicity and modularity of design,we recom-
mendthatthekey managementmechanismassume
reliablecommunication. Yet, no specificmecha-
nismfor obtainingreliability is specified.Any re-
liable multicastor unicastmechanism(e.g.,TCP)
canbeused.

� Mimic IPSecarchitecture: As in IPSec,weseparate
the modulesthathandledatafrom thosethat han-
dlekey management.Functionssuchasthegenera-
tion, distributionandupdateof cryptographickeys
areencapsulatedin akey managementmodule,that
is placedin the“applicationlayer” of thecommu-
nication,andoutsidetheOSkernel.Thisfacilitates
applicationspecificoperations,suchasmultiplex-
ing of datafor differentusersandcertificateverifi-
cation.Thedatahandlingpartliesmostlyin theIP
layer, usingIPSecmodules.Yet, we introducean
additionallevel of datahandling,in the interestof
sourceauthentication.

� Use existing components: We use existing com-
ponentswherever possible. Specifically, we use
IPSec’sEncapsulatingSecurityPayload(ESP)pro-
tocol for encryptingandauthenticatingdata. The

ESPprotocol [KA98] is usedfor exchangingen-
cryptedandauthenticatedmulticastdata. If confi-
dentialityis notanissueor if additionalauthentica-
tion beyondwhatis providedby theESPauthenti-
cationmechanismis required(suchasauthentica-
tion of theIP header)thentheAH protocolcanalso
beused.

SinceIPSecwasmostlydesignedfor unicast,there
areafew issuesthatarisewhentheESP/AHproto-
cols areusedfor multicastdata. We discusssome
of theseissuesin Section 7. Multicast-specific
packettransformationsmaybeintroducedin thefu-
ture.

We alsorecommendusingInternetKey Exchange
protocol (IKE) as a componentwithin the multi-
castkey managementmodule,for securingpoint–
to–point communicationbetweengroupmembers
andthecontrolentities.

� Minimizemodificationsof the OSkernel: The ar-
chitectureis structuredsothatthenew multicastse-
curity specificcomponentsarekept in theapplica-
tion spaceandthe IPSeccomponentsthatarecur-
rently in the OS kernelcanbe usedfor multicast
securitywithout modification. It is expectedthat
with time, someof the multicastspecificcompo-
nentsmaybemovedto thekernelandIPSeccom-
ponentsalreadyin thekernelwouldbemodifiedto
bettersupportmulticast.

� Flexibility in the choice of cryptographic algo-
rithms: By re–usingthe IPSec design for data
transport,weretaintheflexibility of usingany data
encryptionandauthenticationalgorithmwhichcan
besupportedby IPSec.

Thenew componentsintroducedin this document,
namelytheMulticastInternetKey ExchangeMod-
ule (MIKE) and the SourceAuthenticationMod-
ule (SAM) provide frameworkswhich areflexible
enoughtosupportmostgroupkey managementand
sourceauthenticationschemes.

4 SystemAr chitecture

4.1 Motivation

We presenta bird’s eye view of the architecture,its
components,andthedataflow. We begin by motivating
thedecisionto basethearchitectureontheIPSecdesign.

The IPSecarchitecture. In a nutshell,theIPSecpro-
tocol suite consistsof the following components:The
InternetKey Exchange(IKE) protocolis anapplication
layer protocol for agreeingon a security association

3 of 17

(SA)betweenthe communicatingpeers. Among other
data,
�

theSA includessharedsessionkeysfor authentica-
tion andencryptionof data.TheAuthenticationHeader
(AH) andEncapsulatingSecurityPayload(ESP)aretwo
protocolsfor authenticatingandencryptingdatapackets,
usingtheinformationin theSA for therelevantsession.
BothAH andESPareIP–layerprotocolsandoperateon
a packetby packetbasis.Thecommunicationbetween
theapplication–layerIKE andtheIP–layerAH andESP
is donevia a securityassociationdatabase.

Why IPSec–baseddesign? In contrastto previous
designsof securemulticast host architectures(e.g.,
[CE� 99]), that remainedexclusively in the application
layerof the communication,we have basedour design
on theIPSecprotocolsuite.

Onemainreasonfor usingIPSecis that it providesa
setof protocolsthatwill shortlybeavailableon practi-
cally every security–conscioushoston theInternet.We
seegreatbenefitin usingexisting protocolsfor secure
multicast,bothfrom thepointof view of thesystemde-
signer(whodoesnotneedto designsuchprotocolsfrom
scratch)and from the point of view of the user(who
doesnotneedto haveduplicatecodeandcanhaveauni-
fied standardsecuritymechanismfor unicastandmulti-
cast). Another reasonfor using IPSecis its enhanced
efficiency in processingdata,beingan IP–layerproto-
col.

On the down side,usingIPSecties thedesignto ex-
istingprotocolsandforcesusto dealwith compatibility
problemswith existing implementations.We elaborate
on suchproblemsin Section7. However, even in light
of theseproblems,weregardtheIPSec–baseddesignas
a viableandpreferableoption.

4.2 Architecture

4.2.1 Overview Wepresentahighleveloverview of
the architecture. As in IPSec,we partition the “con-
trol plane” functions(i.e., key managementandpolicy
mechanisms)from the “data–plane” transformations.
The“control plane”functionsareplacedin theapplica-
tion layer. Themaincomponenthereis calledMulticast
InternetKey Exchange(MIKE). This is a genericname
for thecomponentthatis responsiblefor communicating
with thegroupcontroller(s),bothonjoining andleaving
the group,andfor periodicupdatesof the groupsecu-
rity data(suchaskey updates).TheMIKE component
generatesandupdatesa multicastsecurityassociation
(MSA)database.This databasecontainsthe necessary
datafor membersin the relevant group. In particular,
for multi–userhoststhe GSA specifieswhich usersare
membersof thegroup.

In contrastwith IPSec,where the data transforma-
tions aredoneexclusively in the IP layer, we partition
the data–handlingmechanisminto two separatecom-
ponents.The first component,calledSource Authenti-
cation Module(SAM), sits in the applicationlayer and
dealswith transformationsfor authenticatingthesource
andcontentsof the data. (Recall that the AH or ESP
transformsdo not guaranteeindividual sourceanddata
authenticationfor groupcommunication.)Onebenefit
of placingSAM in theapplicationlayer is avoiding the
needto modify the operating–systemkernel. In addi-
tion, transformsfor sourceauthenticationmay benefit
form theability to processthedatain largerframes,be-
fore it is partitionedinto IP packetsby the sender, and
aftertheframeshavebeenre–assembledby thereceiver.
(This additionaloption may be mostviable when reli-
abletransmissionis guaranteed.)

The secondstage for data processingis the ESP
transform at the IP layer. Here data may be en-
crypted/decryptedusingthegroupkey. Possiblythedata
is alsoauthenticatedusingthegroupkey; thisguarantees
groupauthentication.

Both SAM andESPtakethe informationneededfor
handlingthedatafrom theMSA database.(We remark
thatasimilarnotionof securityassociationfor multicast
is proposedin [HM99]. Thetwo notionsmayindeedbe
unified.)

4.2.2 Architectural Details We now describethe
architectureof a memberof a securemulticastgroup.
The membercould eitherbe a datarecipientor a data
senderor both. From the application’s perspective, the
securemulticastframework providesa simpleAPI for
usingsecuremulticast.ThisAPI is logically partitioned
into theDataAPI which dealswith sendingandreceiv-
ing multicastdatasecurelyandthe ControlAPI which
dealswith the processof joining and leaving a secure
multicastgroup and the associatedaccesscontrol and
key updatefunctions. The block diagramof a secure
multicastframework ona hostis shown in Figure1.

� MIKE – Multicast Internet Key Exchange: This
moduleis responsiblefor key managementandim-
plementsthe Control API which permitsapplica-
tions to join and leave securemulticast groups.
This moduleresidesin the applicationlayer, out-
side the OS kernel. It interactswith the MIKE
modulesof the groupcontroller(s),andgenerates
and maintainsa Multicast Security Association
(MSA) thatcontains:

– Groupkeysfor encryption/decryptionandau-
thenticationof data (via the AH/ESP mod-
ules).

4 of 17

 (MSA)

SENDER AUTHEN.
 MODULE
 (SAM) ASSOCIATION

CLIENT APPLICATION

 IPSec
(AH + ESP)

MULTICAST SECURITY

���
	��
�
�

MULTICAST INTERNET
KEY EXCHANGE MODULE
 (MIKE)

Control
 API

join/leave Data
 API send/receive

Secure Multicast
Data Flow

Secure Multicast
Key Management Flows

Control Plane Data Plane

���
��	��
�
�����

Figure 1. Bloc k diagram of secure multicast host architecture .

– Signing/Verificationkeys for sourceauthenti-
cationof databy theSAM module,described
below.

– Other informationregardingthe connection,
asin anIPSecSA.

– A list of applicationsthataremembersof the
group(relevantfor multi–userhostsonly).

In order to makea MIKE specificationcomplete,
the MIKE moduleswithin the groupcontroller(s)
needto be specified. Seemorediscussionon the
designof MIKE in section5.

An additional functionality of MIKE is periodic
updatesof theMSA, whenever groupkeys or keys
usedby SAM arechanged.

� IPSecmodules:AH/ESP:

Thesearethe IPSecmodulesthatresidein theOS
kernelanddealwith encryption/decryptionandau-
thenticationof datapackets. Thesemodulespro-
vide encryption/decryption and group authentica-
tion of incomingor outgoingmulticastdata. Data

is encryptedwith the group key by the sender(s)
anddecryptedusingthesamekey by receivers.The
ESPheaderremainsasdefinedin theunicastcase;
theprotocolheaderprecedingtheESPheaderwill
containthevalue50 in its Protocol(IPv4) or Next
Header(IPv6, Extension)field andits destination
IP addresswill betheIP multicastgroupaddress,a
classD address.Thus,thepacketwill beforwarded
to all membersof the groupby routerssupporting
multicastdelivery. ESPcanbeusedin conjunction
with the ESPauthenticationoption. In principle,
ESPfor multicasttraffic canbeusedeitherin trans-
port or tunnel mode, althoughtransportmodeis
clearlymoreappropriatein anenvironmentwhere
mostparticipatingmembersareendhosts.

For multicast data authenticationdifferent tech-
niquescan be useddependingon whethergroup
or individual senderauthenticationis desired.For
group authentication,the protocol designedfor
unicastIP security, namelythe IP Authentication
Header(AH) [KA98] and/ortheauthenticationop-
tion within ESParesufficient. All membersshare

5 of 17

a common,symmetricauthenticationkey which is
administeredby thegroupcontrollerandwhich is
usedto generatethe messageauthenticationcode
(MAC). The AH headerremainsasdefinedin the
unicastcase;theprotocolheaderprecedingtheESP
headerwill contain the value 51 in its Protocol
(IPv4) or Next Header(IPv6, Extension)field and
its destinationIP addresswill be the IP multicast
groupaddress,a classD address.TheSPIvalueis
selected,asfor ESP, by thegroupcontroller. (See
more discussionon the assignmentof the SPI in
Section7.)

� SAM– Source AuthenticationModule: This mod-
ule is responsiblefor the transformationsthat en-
ableauthenticatingthesourceof receiveddataand
possiblyfor replayprotection.Scalablesourceau-
thenticationmayinvolveoperationsthatspanmore
thana singlepacket,bothfor outgoingandincom-
ing data. SinceUDP framesaregoodcandidates
for a basicunit for authentication,it seemsreason-
able to placethis componentin a higher layer in
theprotocolstack,i.e., above UDP. It couldeither
be part of the kernelor kept in applicationspace.
If thekernelwereto bemodified,thenthis module
shouldbepartof a “SecureMulticastUDP” layer
which could replaceUDP. This “SecureMulticast
UDP” layer could also implementthe mult–user
accesscontrol functionalitywhich we will discuss
laterin Section7.1.Apartfrom thedisadvantageof
requiringkernelmodifications,placingSAM in the
kernelwill makeit inflexible in the choiceof au-
thenticationschemesandwill alsoresultin theker-
nel beingentrustedwith the user’s signaturekeys.
Ontheotherhand,if theSAM moduleis keptin the
applicationspacethen sourceauthenticationwill
notbetransparentto applicationsandexistingmul-
ticastapplicationswill needto bere–writtento in-
voke the relevant functionsof the SAM module.
But if a SAM moduleis well designed,then this
burdenshouldbecomparableto moving from reg-
ularsocketsto SSLin thecaseof unicast,andsuch
a changeshouldbeequallyacceptableto theappli-
cationdevelopercommunity. Thereforeit is advan-
tageousto keeptheSAM modulein theuserspace
for now.

The internal structureof the SAM dependsto a
large extent on the sourceauthenticationmecha-
nism used. Several sourceauthenticationmecha-
nismsexist, somearebasedon public key signa-
tureswhich may be appliedon a group of pack-
ets via a variety of mechanisms,and othersare
basedon symmetricauthenticationwith multiple

keys. (Seethe survey of [CP99].) In particular
the sourceauthenticationmechanismproposedin
[M99], basedon a schemeof [WL98] or a scheme
describedin [R99] areoptionsfor realizingSAM.

An additionalpotentialfunctionalityof SAM is to
provide replayprotectionfor data,in casethat the
IPSECreplayprotectionmechanismis turnedoff
becauseof multiplesenderproblems.

We shalldiscusstheSAM modulein greaterdetail
in Section6.

4.3 Data and Control Flows

Typical operationof the systemis as follows.1 The
memberinitiates a securemulticastsessionby invok-
ing the join operationin the Control API which is im-
plementedby MIKE. This enablesthe memberto reg-
ister in the group as a senderor a receiver or both.
Subsequently, the member is able to send and re-
ceive datagramssecurely to the multicast group us-
ing the send/receive functions of the Data API. All
groupkey management,dataencryption/decryptionand
group/sourceauthenticationfunctionsaremanagedby
the securemulticastframework andare transparentto
the member. If at somelater point in time the mem-
berdecidesto leave thesecuremulticastgroupthenthis
is doneby invoking the leave operationin the Control
API. This actioneventuallyresultsin theterminationof
themember’s ability to securelysend/receive messages
to thegroup.

We now outline the dataand control flows in more
detail.

� Control Flows:

– Client Join: The applicationinvokesMIKE
to join a multicastgroup. At a minimum,
the applicationmust identify the group that
it wishesto join andprovide informationas
to the authenticationrequired(e.g., whether
or notsourceauthenticationis requiredandif
so,thesourcesit will trust).
MIKE then performs the processof regis-
tering with the group controller(s),setsup
a MulticastSecurityAssociation(MSA), in-
vokesa standardregistrationmechanismfor
theunderlyingIP multicastgroupandenables
the ESP/AHandSAM modulesto startpro-
cessingdata. (In multi–userhostsit may be
that an MSA for this group alreadyexists,

1Hereweassumethatthedatais sent/receivedvia eitherreliableor
unreliableIP multicast. It is noted,however, that the securitymech-
anismdescribedherecanbeusedevenwhenthedatais beingrouted
via point–to–pointconnections,suchasTCP.

6 of 17

with anotherapplicationlisteningto it. In this
casetheMSA is updatedto includethe join-
ing application.)
The registration processwill inevitably in-
clude communicationwith the group con-
troller(s)andthiscommunicationwill require
mechanismsfor authenticationof the parties
as well asconfidentialityof the information
exchanged.This communication,its authen-
tication and encryptionmechanismsshould
bedealtwith within theMIKE module.
At the endof the join process,the Multicast
SecurityAssociation(MSA) databaseneeds
to beupdated.Therelevantinformationfrom
the MSA is thenpulled by the ESP/AHand
SAM modules.

– Key update: Key updatesmessagesare in-
ternal MIKE messagesand are not part of
the high–level architecture.Thesemessages
areauthenticatedandencryptedseparately, as
specifiedin MIKE. A specialclass of key
updatemessagesconsistof memberexpul-
sionmessagesin which thecontrollerexpels
the memberfrom the group. The expulsion
processis dependenton the specificsof the
Key ManagementProtocol,but shouldresult
in thememberbeingcryptographicallyinca-
pableof sending/receivingmessagesfrom the
securemulticastgroup. In this caseMIKE
module should treat an expulsion message
like a memberleave requestwithout theneed
to contactthecontroller(s).

– Client Leave: First MIKE is invokedto de–
register with the group controller(s). Next
the Multicast SecurityAssociationdatabase
is modified to reflect the fact that the client
leaves.(If therearenomoreapplicationsthat
are listeningon the samegroupthenthe en-
try maybedeletedor markedstale).Finally,
the hostexecutesthe standardprocedurefor
leaving theunderlyingIP multicastgroup.

� DataFlows:

– Sendingof data: If sourceauthenticationis
not needed,thendatais transmitteddirectly
via UDP(or areliablemulticastlayer)andthe
IPSecmodulein theIP layer, with theIP mul-
ticastgroupin thedestinationaddress.
If sourceauthenticationis neededthen the
datais first transferredto theSAM. Therethe
datais processedfor sourceverification.(The

keys for performingtheseoperationsareob-
tainedfrom the MSA.) Next, the datais di-
rectedto the AH/ESPtransformationsin the
kernel. Thesetransformationsare executed
with thegroupkeys thatappearin the MSA.
Finally thedatapacketsaresenton thechan-
nel in thestandardway.

– Receiptof data: Incoming datapacketsare
first processedby IPSec’s AH/ESPtransfor-
mationsin the kernel. Therethe datais de-
cryptedandgroupauthenticationis verified.
Next, the data streamis processedby the
SAM andsourceidentity is authenticated,if
needed. Finally, the data is handedto the
calling application. (In a multi–userhost it
shouldalsobedecided,basedon information
in theMSA, whethertheapplicationis eligi-
bleto receivethecomunicationof therelevant
group.)

5 MIKE: DesignGuidelines

Although the designof MIKE deserves a separate
document,wesuggestsomerequirementsfor MIKE, de-
scribearchitecturalprinciplesthat will allow MIKE to
meettheserequirementsandyet be flexible enoughto
accommodatea varietyof groupkey managementtech-
niques. This providesan interfacefor pluggingin dif-
ferentgroupkey managementmodulesinto MIKE.

It is stressedthat the discussionbelow doesnot at-
temptto addresstheinternaldesignof thegroupcontrol
entities.Instead,it is focusedon therequirementsfrom
thepointof view of a groupmember.

5.1 Functionality of MIKE

Welist salientrequirementsfor theMIKE module.

1. MIKE shouldsupportthe simple scenariowhere
there is only a single group controller that com-
municateswith all groupmembers.More complex
environmentswhereintermediateserversfacilitate
thecommunicationmayalsobesupported.

2. MIKE shouldsupportmaintainingasetof keys(for
symmetricencryptionand authentication)shared
amongall groupmembers.In addition,MIKE will
help in forwardingthe public verificationkeys of
thegroupcontrollerandof sendersin thegroup,to
supportsourceauthenticationby groupmembers.
(Note that theseverificationkeys maybedifferent
from the long–termcertificatesof theseparties.)
MIKE could obtain thesekeys directly from the
groupcontroller(s)or from someother repository
usingaprotocolsuchasLDAP [LDAP].

7 of 17

GROUP KEY AND MSA
MANAGEMENT FRAMEWORK

GROUP
KEY MGMT
MODULE #1

GROUP
KEY MGMT
MODULE #N

Secure Multicast
Key Management Flows

GROUP
KEY MGMT
MODULE #2

Join/leave

Group Key Mgmt Module

initiated MSA Control Flows

KEY MANAGEMENT TECHNIQUE

MULTICAST INTERNET KEY EXCHANGE MODULE

MSA

 SELECTOR

Control API

Figure 2. Bloc k diagram of MIKE.

3. MIKE will beplacedin theapplicationlayerof the
communication,andoutsidetheOSkernel.

4. MIKE shouldbeflexible enoughto accommodate
any reasonablemulticastgroup key management
solution.

5. MIKE shouldbeableto dealwith multi–userhosts.
In particular, theMSA will containinformationon
which usersaremembersof eachsecuremulticast
group.

An architecturalblock diagramof MIKE is shown in
Figure2.

5.2 Somedesignguidelinesfor MIKE

This sectionsuggestssomedesignguidelinesfor a
group key managementmodule to be plugged into
MIKE. We stresssimplicity andre–useof existing pro-
tocolsandstandardssuchasIPSecandIKE wherepos-
sible. In particular, we proposeusing IPSecto set–up
securechannelsfor all point–to–point communication
betweenthehostandthecontroller(s).Of course,other

solutionsthatprovidesecurechannels(e.g.,SSLor pro-
prietarycommunicationprotocols)canbeusedinstead.

1. Point–to–pointcommunicationbetweena group
memberandthecontroller(say, for groupregistra-
tion andde–registration)will besecuredvia astan-
dard IPSecconnectionestablishedby IKE. This
connectionwill provide confidentialityas well as
authenticationof the information exchanged. In
particular, the groupkeys andadditionalinforma-
tion will be transmittedasdata in the securecon-
nection. The IPSecSA betweena groupmember
andacontrollerwill beshort–lived,andwill gener-
ally not lastthroughoutthelifetime of themulticast
group.

2. Key updatemessageswill be transmittedfrom the
groupcontrollerto the membersusingan abstract
transportationmechanism,called”ReliableMulti-
castShim” (RMS). This abstractmechanismpro-
videsreliablemulticast,in thesensethatany mes-
sage transmittedvia the RMS is guaranteedto
reachall groupmembers.

8 of 17

MANAGEMENT FRAMEWORK

MSA

Group Key Mgmt Module

initiated MSA Control Flows

 Flows
 Multicast Key Management

Point-to-Point Flows Required
for Secure Multicast Key Management
(e.g., between a member and the controller)

Reliable Multicast
Emulation Using
RMT or PGM or
Home-Grown Rel. MCast or
Point-to-Point TCP

GROUP KEY AND MSA

Reliable Multicast Shim

 IPSec
 AH + ESP

MULTICAST INTERNET KEY EXCHANGE MODULE

User Space

Kernel

Key Management Module
 GROUP

Figure 3. Suggested design of MIKE.

TheRMSabstractioncanthenbeimplementedvia
any available reliablemulticastmechanism(such
as thosedevelopedin [RM]), or alternatively via
point–to–point reliablecommunication(TCP).

3. Key updatemessagessentby the controller will
have a specialformat. In particular, they will be
authenticatedusingpublic–key signaturesthat are
verifiableusinga public key that is handedto the
membersat registration time. MIKE will imple-
mentits own signatureverificationmechanism.

The suggesteddesign guidelines for MIKE are
sketchedin Figure3.

5.3 An example

In thepreceedingsectionswe outlinedsomerequire-
mentsandguidelinesfor theMIKE module,withoutex-
plicitly describinghow existing groupkey management
techniquesandimplementationscouldbemodifiedto fit
within theMIKE framework in conformancewith these
requirementsand guidelines. In this sectionwe give
an exampleof onepossiblemulticastkey management

modulewhichconformsto theMIKE requirements.
The example module is basedon a few modifica-

tionsto themulticastkey managementmodulein IBM’ s
Toolkit for SecureInternet Multicast [CE� 99]. The
original toolkit employeda schemeby Wallner et al,
[WHA97] for groupkey managementandSSLfor uni-
castconnectionsbetweenthe client’s key management
moduleandthe groupcontroller. In the examplemod-
ule, theSSLinteractionsbetweentheclient’s key man-
agementmodule(MIKE) andthegroupcontrollerwould
be replacedby IPSec connections. In the original
toolkit, signedkey updatemessagesweremulticastby
the groupcontroller over a reliablemulticastchannel.
In theexample,thesesignedmessageswould be trans-
portedover the “Reliable Multicast Shim”. Theseto-
getherwith otherminor changeswould besufficient to
makethetoolkit complywith theMIKE guidelines.

6 Interfacesof SAM

In this section,we briefly describethe interfacesof
SAM, to theapplicationandto thecommunicationlayer.
We do not describeanimplementationof SAM; imple-

9 of 17

mentationsmay vary widely and are to a large extent
independent
�

of theoverall architecture.We believe that
theseinterfacesaregeneralenoughto accomodatea va-
riety of mulitcastauthenticationschemesand applica-
tions, andthuscould serve asa basisfor the standard-
ization. From Figure1, it is clear that the interfaceto
SAM consistsof a SAM DataAPI that is presentedto
securemulticastapplicationsanda specificationof the
formatof datablockswhich aresentor receivedby the
SAM layerto thecommunicationlayersbelow.

6.1 SAM Data Format

DataflowingbetweentheSAM moduleandtheunder-
lying communicationmodulesis organizedinto blocks
or frames.Thebasicideais thatonthesendingend,out-
going datasuppliedby the applicationis packagedto-
getherwith authenticationdatainto oneor severalSAM
frameswhich arepassedto the communicationlayers
below. On thereceiving end,SAM framesaredelivered
by thecommunicationlayersto theSAM modulewhich
verifiestheauthenticationinformationcontainedwithin
theSAM framesandprovidestheraw authenticateddata
backto thereceiving application,togetherwith theiden-
tity of thesource.

EachSAM frameconsistsof several fieldsasshown
in Figure 4. Theseinclude the SessionIdentifier, the
SourceIdentifier, theSequenceNumber, the DataPay-
loadandtheAuthenticatorfields. We now describethe
functionalityof eachof thesefieldsin moredetail.

6.1.1 SessionIdentifier Field The SessionIdenti-
fier is a numericfield which uniquelyidentifiesthe se-
cure multicastsession.The purposeof this field is to
bind the Data Payloadwith a particularsecuremulti-
castsession.It is expectedthat for someapplications,
sendersmay usethe samelong term signaturekey for
signingpacketsfor several differentmulticastsessions
andthis binding is necessaryto preventout–of–context
substitutionattacks.Ourprotoypecurrentlyimplements
this as 32–bit numericfield chosenby the groupcon-
troller, but a more robust structure(possibly includ-
ing a combinationof groupcontrollerid anda group–
controller assignedsessionid) would be requiredfor
largerscaledeploymentandfor standardization.

6.1.2 Source Identifier In scenarioswith multiple
senders,the sourceidentifier field providesa succinct
way to identify the purportedsenderof the packet,so
that theauthenticationmechanismcorrespondingto the
purportedsenderis used to verify the sourceof the
packet. In our prototypethis is currently implemented
as a sourceIP–address/port–numbertuple. Again, for
standardizationpurposes,thisneedsto begeneralizedto
handleothertypesof SourceIdentifiers.

6.1.3 Frame Sequence Number The frame se-
quencenumberfield is a numericfield containingthe
sequencenumberof theSAM framewith respectto the
flow of SAM framessentoutby thesender(asidentified
by thesourceidentifier)for thecurrentsession(asiden-
tified by the sessionidentifier). Eachsendermaintains
thesequencenumberfor its own own flow by pickinga
startingsequencenumberfor its frameandthensubse-
quentlyincrementingthesequencenumberoneachsuc-
cessive outgoingframe. The SAM moduleon the re-
ceiver sidecanoptionally usethesesequencenumbers
to implementreplayprotectionand re–orderingof re-
ceivedSAM frames(if requiredby thesourceauthenti-
cationscheme)by employingwell known sliding win-
dow basedtechniques.

6.1.4 Data Payload This field holdstheactualdata
payloadthatthesenderneedsto sendin anauthenticated
manner.

6.1.5 Authentication Information This field holds
theauthenticationinformationwhich is requiredby the
receiver to authenticatethe sourceandcontentsof the
Data Payload, SessionIdentifier, SourceAuthentifier
and FrameSequenceNumber fields in SAM frames
within the flow from the sender. To allow maximum
flexibility in thechoiceof authenticationschemes,there
is no requirementthat the authenticationinformation
carriedwithin a SAM frame be either sufficient to or
restrictedto authenticatethe contentsof that frame, it
could even carry authenticationinformation relatedto
other frames. All that is requiredis that SAM layer
shouldhave authenticatatedeachof the requiredfields
within a SAM framebeforepassingtheDataPayloadto
theapplicationlayer. Therefore,in caseswhereauthen-
tication information carriedwithin a SAM frame and
all previous framesis not sufficient to authenticatethe
frame,thendependingontheauthenticationscheme,the
SAM modulemayneedto buffer this frametill theau-
thenticationinformationarrivesor droptheframeasthe
frameis no longerwithin thesequencenumberwindow.

6.2 SAM Data API

The SAM Data API draws heavily from Netscape’s
SSL API [SSLRef]. This is becausein the network-
ing stack,theplacementof SAM is quitesimilar to the
placementof SSL.TheNetscape’s API wasselectedas
a model for the SAM Data API becauseof its clean
modulardesignthatabstractsawaymostnetworkingand
memorymanagementdetails.Usingasimilardesignfor
SAM permitsus to createa SAM modulethat focusses
only on its designatedtask, i.e., sourceauthentication,
without having to handleextraneousissuessuchasnet-
working,heapmanagementetc. Anotherbenefitof this

10of 17

SESSION
 ID

SOURCE
 ID

FRAME
SEQ
NUMBER

DATA
PAYLOAD

AUTH
INFO

Figure 4. SAM Data Format

appraochis thatthesameSAM modulecanwork with a
varietyof differentunderlyingtransportmechanisms.

At the core of the SAM DataAPI is the conceptof
a SAM context, a datastructurewhich holdsall infor-
mationrevelantto sourceauthentication(includingcur-
rentstate)for a particularsecuremulticastsession.The
SAM DataAPI providesAPIs for intializing andmain-
taining componentsof the SAM context as well asan
API for sendingandreceiving authenticateddatafrom
thesecuremulticastsessionidentifiedby theSAM con-
text. We now describethesetwo typesof APIs in more
detail.

6.2.1 SAM context component management For
modularity, the SAM context consistsof an I/O con-
text, a memorycontext, a usercontext anda groupcon-
text. TheI/O context dealswith themulticastdatainput
andoutputfunctions,thememorycontext dealswith the
platform and/orapplicationspecificmemorymanage-
mentfunctions,theusercontext dealswith information
specificto the applicationas a senderand/or receiver
within the multicastgroupandthe groupcontext deals
with informationrelatedto the entiregroup. We now
describeeachof thesecontextsandtheirmanagementin
greaterdetail.

� SAM I/O context: TheSAM library providespro-
totypesfor functionsto readandwrite datablocks
to the underlying communicationlayer. These
functionsare read, readfrom andwrite. The read
functionreadsdatafrom the communicationlayer
into a suppliedbuffer. The readfrom function is
similar but in addition to receiving data into a
buffer, the readfrom call alsoprovidesa hint asto
the identity of the sender(e.g., IP–address/port–
numberof sender). The write function sendsa
buffer of datadown to the communicationlayer.
SAM assumesthat pointersto the readandwrite
functions are blocking and internally SAM uses
only thesefunctionsfor communciations.Theac-
tual read, readfrom and write functionsare pro-
videdbytheapplicationandregistered to theSAM
context. This modularapproachallows the SAM
layertobeobliviousto thespecificsandinternalsof

the communicationmechanismbeingusedfor the
groupcommunication.Accordingly, theSAM con-
text managementAPI providesa set of functions
to registerthe applicationsuppliedread,readfrom
andwrite functionswith a SAM context.

� SAM memory context As with the I/O context,
the SAM library providesprototypesfor standard
memorymangementfunctionssuchas alloc, free
and realloc andprovidesan API to register these
applicationsuppliedfunctionswith aSAM context.

� SAM user context The SAM user context data
structurecontainsuserspecificinformationrelative
to the securemulticastgroup. This includesthe
useridentifier, thecurrentoutgoingsequencenum-
berandtheuser’sauthenticationinformationwhich
includesahandleto thesourceauthenticationalgo-
rithm andkey to be usedfor computingauthenti-
cationinformationfor outboundSAM frames.The
usercontext API alsoprovidesfor functionsto in-
tializeandmaintainthis information.It is expected
that the MIKE modulewould invoke thesefunc-
tionsto managethis information.

� SAM group context This data structure holds
groupspecificinformationsuchasasessionidenti-
fier anda list (or ahashtable)of registeredsenders
andtheir algorithms,replaywindows andkeys to
beusedto authenticateSAM framesfrom eachof
theregisteredsenders.Again,theSAM groupcon-
text API provides for functions to initialize and
maintainthis information. It is expectedthat the
SAM groupcontext will bemanagedby MIKE ei-
thervia directcommunicationwith theGroupcon-
trollers or via somesort of LDAP [LDAP] access
to a repositoryof authenticationkeys.

6.2.2 SAM context data flow API Oncethe SAM
context componentsareinitialized, a SAM context can
beusedby anapplicationto sendandreceive authenti-
cateddataon thecorrespondingmulticastsession.The
maindatacommunicationfunctionsavailableto theap-
plicationare

11of 17

� sam readfrom: This functionis to beusedby ap-
plicationsto receivesourceauthenticateddatafrom
the securemulticastgroup. When provided with
a valid SAM context, a databuffer and a source
identifierplaceholder, thisfunctionreadsincoming
datafrom the securemulticastgroupidentifiedby
the SAM context, authenticatesit andplacesraw
authenticateddatainto thesupplieddatabuffer and
the identity of thesourceinto thesourceidentifier
placeholder. Thisfunctionblockstill authenticdata
is received.

� sam write : This functionis to beusedby applica-
tionsto postauthenticateddatato thesecuremulti-
castgroup.Whenprovidedby avalidSAM context
anda databuffer, this functionpoststhedatacon-
tainedin thedatabuffer togetherwith userauthen-
ticationinformationto thesecuremulticastgroup.

7 Compatibility with IPSec& IKE

This sectiondiscussessomecompatibility issuesof
securemulticastwith the designof the IPSecprotocol
suite.

7.1 Granularity of AccessControl: Host vs.
Application

By design,IPSecis ideally suitedfor securingtraf-
fic betweentwo hosts. Securingtraffic betweenappli-
cationsrequireshoststo implementadditionalcontrol
mechanismsto createandmaintainSA’s at the granu-
larity of applications,i.e., to createandmaintainproper
associationsbetweenSA’s andapplications’� protocol,
port� tuples [KA98, CGHK98]. Similarly, multicast
over IPSecworks bestwhen the granularityof access
control or group membershipis at the level of hosts.
However, if the granularityof accesscontrol is at the
level of userapplications,then IPSecby itself is not
sufficient. This is not a problemfor mosthostson the
Internet which are single–usersystems. However in
multi–usersystemswheremultiple userscould belong
to the samesecuremulticastgroup, additionalmech-
anismsneedto be implementedby the host to ensure
that IPSecprotectedmulticasttraffic flows areinitiated
anddeliveredto only thoseapplicationswhich belong
to themulticastgroup. This requiresclosecooperation
betweenMIKE andthesystem.

An idealsolutioninvolvesmakingchangesto thehost
kernelsothat:

1. ThemulticastSA’s for themulticastgroupareonly
associatedwith the specificUDP port usedby the
group.

2. Only applications which are current members
of the multicast group can send/receive packets
throughthegroup’sUDPport.

This impliesanew controlmechanismin theUDPlayer
which controlsaccessto the port on thebasisof multi-
castmembershipinformationreceivedfrom MIKE.

A lessintrusive, but inferior solutionwhich doesnot
requirekernelmodificationswouldbeput thesamecon-
trol mechanismin a systemdaemonprocess.This pro-
cessjoins a securemulticastgroup onceon behalf of
userapplicationsandperformmultiplexing andaccess
control on outgoingand inbounddata. By binding to
the group’s UDP port exclusively the daemoncan en-
surethatno otherapplicationcansubvert thedaemon’s
controlon thedataflow.

7.2 Identification of Multicast SecurityAssoci-
ationsand SPI assignment

In the InternetProtocol,a SecurityAssociation(SA)
is uniquely identifiedby the combinationof the desti-
nationaddress,SecurityParameterIndex (SPI)andthe
protocolused(e.g., AH, ESP).As statedin the IPSec
architecturedocument[KA98], the destinationaddress
can be eitherunicastor multicast; the definition of an
SA remainsthesame.

In unicastSAs,in orderto avoid potentialconflictsof
SPI values,receiversareresponsiblefor assignmentof
the SPI. Sincein the multicastcasetherearemultiple
destinations,all within the samemulticastdestination
address,suchanapproachis impracticalsinceit would
requirecoordinationby all receivers. Selectionby the
senderwouldalsobeproblematic,especiallyin thecase
of multiplegroupsenders.

Within our framework, a reasonablesolution to the
problemis to utilize thebenefitsof thecentralizedcon-
troller by requiring that the group controller selects
the SPI for eachmulticastgroupandcommunicatesit
to members,sendersandreceivers,during registration.
Selectionby the controller guaranteesthat the SA is
uniquelyidentifiedby thecombinationof theSPIvalue,
themulticastgroupaddressandtheprotocol.(A similar
solutionis suggestedin [HM99].)

As statedin [KA98], multiple sendersto a multi-
castgroupMAY usea singleSecurityAssociation(and
henceSecurityParameterIndex) for all traffic to that
group. In that case,the receiver only knows that the
messagecamefrom a systemknowing the securityas-
sociationdatafor that multicastgroup. Multicast traf-
fic MAY alsousea separateSecurityAssociation(and
henceSPI) for eachsender. Theassignmentof SA’s to
senderscanbedoneby thegroupcontroller.

12of 17

7.3 SequenceNumber Handling and Replay–
Prevention

Both ESP and AH headerscontain a mandatory,
monotonically increasing,sequencenumber field in-
tendedto provide anti–replayprotection.Processingof
thesequencenumberis at thediscretionof thereceiver,
but the senderMUST alwaystransmitit. The sender’s
andreceiver’s countershave to beinitialized to 0 when
theSA is establishedandthefirst packetof thatSA will
have a sequencenumberof 1.

In thecaseof multiplesendersusingthesamesecurity
association(andhencethesameSPIvalue)consistency
and monotonicity of the sequencenumbercannotbe
guaranteed.Hence,anti–replayserviceSHOULD NOT
be usedin a multi–senderenvironmentthat employsa
single SA. Multicast security implementationsshould
thusensurethatreceiversdonotperformsequencenum-
berprocessingandverification.

We seetwo possiblesolutionsto provide anti–replay
protection:

(1) Using multiple SAs, one for eachsender. (All
theseSAs may be part of a single MSA.) This can
provide a weakform of replayprotection(againstout-
siders).

(2) Putting anti–replay protection in some higher
level module such as SAM. This solution requires
application–layerframingof multicastmessages.

Thesealternative solutionsmay bettersuit different
applications.

7.4 Allowing IPSec processing of multicast
packets

Some current implementationsof the IP protocol
stackwill discardany IP packetwith a classD desti-
nationaddressand a “protocol” field that is not UDP.
Suchimplementationsneedto bechangedtosupportIP–
multicastpacketsprotectedby IPSec.

8 Validation of Ar chitecture

A prototypeof theproposedsecureIP multicastarchi-
tectureis currentlyunderdevelopment.Componentson
the datapathsuchasSAM andUDP over IPSechave
beenimplementedand tested. Componentsalong the
controlpathsuchasMIKE arestill beingdeveloped.

Evenat this earlystageof developmentwe wereable
to testthe feasibility of usingIPSecto securemulticast
traffic. We alsowereableto evaluatethe performance
impactof addingsourceauthentication,groupauthenti-
cationandconfidentialityto ourarchitecture.

In this section,we describethesefeasibility andper-
formancetestsandpresentpreliminaryresults.

8.1 Feasibility Tests

Our test bedconsistsof IBM PCsrunning RedHat
Linux 5.1with kernelversion2.0.35andwith Freeswan
version0.91 implementationof IPSec. Freeswancon-
sistsof two daemons,klips andpluto, whicharestarted
at boottime.

Klips, in the kernel, encrypts/encapsulatesoutgoing
packetsanddecrypts/decapsulatesincomingpackets.It
is implementedasavirtual networkinterfaceandis con-
figuredasany othernetworkinterface.Thisvirtual inter-
faceis attachedto aphysicalinterfacewhichhandlesthe
traffic flow to/from the network. In the networkstack,
the IPSecpackethandleris piggy–backedonto the as-
sociatedphysical interfacepackethandler. Klips also
providesanAPI to setup thesecurityassociationsthat
mapdestinationaddresseswith the properIPSecsecu-
rity association.

Theotherdaemon,pluto,runsin userspaceandman-
agesthekeys andtheir updates.Referto theFreeswan
documentation[FSWAN] for additionaldetails. Pluto
wasnot usedin our testsincewe configuredthe IPSec
SAsmanually.

8.1.1 System set up and configuration Figure 5
shows thesystemsetupfor testingtheLinux FreeSwan
IPSecpackage.

We first testedthe properconfigurationof IPSec,by
testing the 2 modesof IPSecencapsulation,transport
andtunnel,asdescribedin theklips installationfiles.

We connectedtwo securitygateways A andB, run-
ning Linux with Freeswan,via anEthernetlink, config-
uredas network interfaceeth0 on both machines,and
representingthepublic Internet.Eachgatewaywasalso
connectedvia a tokenring networkto aLAN represent-
ing a private Intranet,designatedas C and D, respec-
tively. A snoopingbox E runningSolaris5.1 observed
all Ethernettraffic.

The IPSecvirtual interface ipsec0was attachedto
eth0andconfiguredSothatall networktraffic between
C to D wouldbesecuredacrossthepublicEthernet.We
ran the testscenariosof the Freeswansamplefiles and
verified thatpacketsbetweenC to D wereproperlyen-
cryptedby A andB.

8.1.2 TestSetup Wethenproceededto testthemul-
ticast supportof Freeswan. For this set of testswe
did not changeour previous configurationand ipsec0
wasstill boundto eth0andtraffic throughtheEthernet
wasstill encrypted.But we disconnectedthe2 subnets,
which werenot needed.We installed,on gatewaysA
andB, a simplemulticastclient/server applicationthat
openedaUDPsocket,joinedagivenmulticastgroupon
theeth0interfaceandthenloopedon sendingmulticast

13of 17

Gateway A

ipsec0
net interface

ipsec0
net interface

Linux/FreeSwan
Gateway B

C

Linux/FreeSwan

tr0

snoop E

eth0

D

tr1

Figure 5. System Setup for testing FreeSwan/IPSec on Linux.

messagesandlisteningfor messages.Again,asnooping
box on the Etherneteavesdroppedon the traffic across
thewire.

8.1.3 Feasibility TestResults Wemadethefollow-
ing observations:

� Handling of multicastaddressesby Linux Multi-
castaddressesareClassD addressesidentifiedby
first 4 bits equal to 1110 with the remaining28
bits specifyinga multicastgroup id. This trans-
lates to addressesin the rangefrom 224.0.0.0to
239.255.255.255.

In the processof configuringthe Linux routesto
run our tests,we noticed that Linux treatsmul-
ticastaddressesin the 224.0.0.0rangedifferently
from others.In theory, all multicastaddressroutes
shouldusethe samenetwork maskof 240.0.0.0,
sincethey arenot real networkaddresses.But in
practice,this is only true of the 224.0.0.0range.
Othermulticastranges,suchas235.0.0.0,cannot
usethenetmask240.0.0.0whentheroutesareset,
or elsethe“routeadd”commandfails; weusedthe
netmask255.0.0.0.

� Handling of receivedmulticast IPSecpacketsby
Linux Linux successfullyprocessedanddelivered
received multicastIPSecpacketsintendedfor the
all–hostmulticastgroupat address224.0.0.1.But
it droppedpacketsintendedfor other multicast
groups.

Theflow–of–controlin Linux andFreeSwancode
is asfollows:

1. ��� ���! #"
$ in ��� �&%#�#')(+* � : This function re-
trieves an IP packetfrom the systeminput
queue;theIPpacketis in akernelbuffer (skb)
containinga device id representingthephys-
ical network interfaceon which the packet

wasreceived; in our testthe id is eth0. The
function massagesthe skb and passesit to
thenext protocollayerfor furtherprocessing.
If the packetis an IPSecpacket,it is passed
to the ���-,+./� ���0 #"1$ function, which will call
./,2� ���! #"
$ in �3�4,/.+� ./,2�5* � (or 687 ���!)"1$ in
�3�4,/.+� 6879*:� .).

2. ./,2� ���! #"
$ in ���-,+./� .+,;�9*:� : This functionpro-
cessestheskbfurther, andreplacesthedevice
id (eth0)in theskbbuffer with thevirtual in-
terfaceidentifier (ipsec0).The skb packetis
then decapsulatedand decryptedas needed.
Finally, theresultingskbis placedbackonthe
systeminputqueueandcontrol is returnedto
�3� ���!)"1$ in �3� �&%#�#')(+* �

3. �3� ���!)"1$ in �3� �&%#�#')(+* � : This function re-
trievesthe skb from the systeminput queue
again;notethatthedeviceid in theskbnow is
ipsec0.Thefunctionexaminesthedestination
addressof thepacket.If theaddressbelongs
toamulticastgroup,thefunctionchecksif the
networkinterfaceidentifiedby the device id
in theskbhasregisteredinterestin thatgroup
(via a multicastjoin on thatinterface).If not,
thepacketis dropped.Otherwise,processing
continuesandthe the resultingskb packetis
passedto thenext protocollayer, in this case
UDP, for further processingand delivery to
theapplication.
One problem that we encounteredhere is
that in the Linux socketAPI for IPv4, mul-
ticast join requestscan only be associated
with physical interfaces,such as eth0, but
not with virtual interfaces,such as ipsec0.
Thiscauses�3� ���!)"1$ to dropthedecapsulated
ipsec packetsince the packet is associated
with an interface(ipsec0)which is not reg-

14of 17

isteredwith themulticastgroup.
We developeda temporarywork–aroundfor
this problem:

– in the ./,2� ���! #"
$ functionof ���-,+./� ./,;�9*:� :
We patchedthe klips codeto simply re-
storetheskbdevice field id in theskbto
thephysicaldevice id beforeplacingthe
skbbackon thesysteminputqueue.

– in 687 ���0 #"1$ functionof ���-,+./� 6875*:� : The
samepatch(asabove) canbeused,since
the 687 ���! #"
$ processingis nearlyidenti-
cal to thatof ./,;� ���0 #"1$.

� Sharing of UDP ports UDP delivers decrypted
multicastpacketsto any processlistening on the
sameinterfaceandport astheregisteredmulticast
application,even if the processhasnot joined the
multicastgroup. This happenswhenthemulticast
applicationsetsthesocketSO REUSEADDR op-
tion beforebinding to the port. This is routinely
done in applicationcode. Since multicast only
works with UDP sockets,care must be takento
control accessto the port. This is an instanceof
theaccesscontrolgranularityproblemdiscussedin
section7.1.

A temporary work–around is to have the se-
cure multicast group <>=/�&% operationnot set the
SO REUSEADDR socketoption. This way after
thefirst groupmemberjoins,no otherapplications
will be ableto bind to the multicastgroup’s UDP
port. This limits thegranularityof multicastgroup
membershipto oneapplicationperhost.Betterso-
lutions which do not have this restrictionare de-
scribedin section7.1but have not yet beenimple-
mented.

� Packetsin the clear If a plain UDP packetis sent
to themulticastaddress,it shouldbedroppedby the
receiver. The FreeSwan–0.91codedoesnot drop
the packet. This is a known bug to the FreeSwan
developersandit is mentionedin theFreeSwandis-
tribution.

In general,animplementationof IPSecmustcheck
anddrop any received packetthat is not properly
protected[CGHK98].

� Conclusion from Feasibility Test Results
Freeswan0.91 was cumbersometo install, con-
figure and test. Documentationwas basic but
adequate.So far, testsof secureIP multicastwith
our patchedFreeswan–0.91seemto work within
thelimits of thepreviousremarks.

8.2 PerformanceTests

We performeda seriesof teststo evaluatetheperfor-
mancecostof addingsecurityto groupmulticastin our
architecture.Sinceonly thedataflow sideof ourdesign
is implemented,wefocussedonthecostof addinggroup
authentication,sourceauthenticationandencryptionto
themulticastdataflows within ourarchitecture.We did
not addressperformanceissuesrelatingto key manage-
ment. We performedour testson a 400 Mhz Pentium
II machinerunningRedHat Linux 5.1 with kernelver-
sion 2.0.35compiledwith the Freeswan–0.91package
[FSWAN] IPSec. Our SAM user library was imple-
mentedasdescribedin Section6 usingtheHybrid Sig-
natureschemefor sourceauthenticationasdescribedin
[R99]. Thetestmachineswereconnectedvia a 10Mbps
ethernetLAN. In the absenceof a MIKE module,all
keys usedfor thesetestswereenteredmanually.

8.3 Description of Tests
� BaselineTest: MulticastoverUDP: In orderto es-

tablisha performancebaseline,we first testedthe
speedof plain multicastover UDP, i.e., thepacket
processingtime requiredto senda UDP packet
down to the communicationhardware. This was
donefor two differentpacketlengthsbothof which
arelessthantheMTU size.

� UDP–Multicastover IPSEC: In this test,we mea-
suredpacketprocessingtime for UDP–Multicast
packetsover IPSECfor two packetsizes,usingthe
ESP protocol with the Triple DES and HMAC–
MD5–96transforms.

� SAMoverUDP–MulticastoverIPSEC: In this test
we measuredthepacketprocessingtime for pack-
ets sentthroughour SAM interfaceto the UDP–
Multicast/IPSEClayer. The IPSEClayerusedthe
ESP protocol with the Triple DES and HMAC–
MD5–96 transformsand the SAM layer usedthe
Hybrid Signatureschemeas describedin [R99].
This wasagaindonefor two differentpacketsizes.

8.4 PerformanceResults

We first tried to measurethe time to senda packet
by measuringthe time takenby an applicationto send
several packetsanddividing by the numberof packets.
This approachproducedsomestrangeresults: we ob-
servedthatanapplicationexecutinga loopto repeatedly
sendamulticastpacketoverUDPcouldtakelongerthan
a applicationtrying to sendthe samenumberof multi-
castUDP packetsover IPSEC!We wereable to trace
this anomalyto the networkingdevice’s buffer getting
filled upby thehighdatainput ratewhenplainmulticast

15of 17

UDP PayloadSize EthernetFrameSize Time (?9,)
464 506 15.5
1262 1304 19.4

Table 1. Baseline Test Results

UDP PayloadSize EthernetFrameSize Time (?9,)
464 542 349
1262 1334 823

Table 2. Multicast over UDP/IPSEC

packetsweresent. This would causea large OS over-
headsincethe processwould have to be swappedout
andplacedin the wait queueandrestartedonly when
networkingdevice buffer waslessthanhalf–full. This
overheadcouldsignificantlyskew theaveragetime cal-
culation. For example,whena loop to sendout 1262
bytemessagesover UDP wasexecuted,thefirst 41 iter-
ationsof the loop took 796 ?9, , or roughly19.4 ?9, per
packetbut the first 42 iterationstook 26468 ?9, or an
averageof 630 ?9, perpacket! So we decidedto mea-
sureonly thebesttiming weobtainedwhensendingfew
packets,whichin thiscasewouldbe19.4 ?9, perpacket.

� BaselineTest: Multicast over UDP
Table1 summarizestheresults.

� Multicast over UDP/IPSEC
Table2 summarizestheresults.

� SAM/UDP/IPSEC

Whenmeasuringthetime to sendonly a few pack-
ets (100 in this case),with the SAM moduleus-
ing thehybrid signatureschemeof [R99]i, we ob-
servedthatthepacketprocessingoverheadwasnot
substantiallyworsethanin thecasewithoutsource
authentication.This is becauseof theoff–line/on–
inlinenatureof thehybridsignaturescheme.When
sendingonly a smallnumberof packets,the aver-
agetimecalculationincludesonly theon–linecosts
of thehybrid scheme.Theresultsaresummarized
in Table3 below.

However, whenaverageswerecomputedby send-
ing much larger numberof packets(1000 in this
case),the averagecalculationsincludeda portion
of theoff–line costasshown in Table4

Eventually, we expectthat thefull off–line costof
around1500 ?9, per packetwould show up when
calculatingthe averagesbasedon sendinga very
largenumberof packets.

UDPPayloadSize EthernetFrameSize Time(?9,)
464 542 392
1262 1334 933

Table 3. Avg per–packet time (100 pkts)

UDPPayloadSize EthernetFrameSize Time(?9,)
464 542 576
1262 1334 1522

Table 4. Avg per–packet time (1000 pkts)

9 Conclusion

We have presenteda host architecturefor a mem-
ber in a securemulticast group. The architectureis
basedon the IPSechost architecturefor securepoint-
to-pointcommunication,andre-usesthe IPSeccompo-
nents(ESP, AH, IKE). In addition,thearchitectureiden-
tifies new modules:MIKE for key exchange,SAM for
sourceanddataauthentication,andtheMSA for bridg-
ing thecontrolpath(MIKE) andthedatapath(ESP/AH
andSAM). Wehavediscussedcompatibilityissueswith
IPSec,anddescribedanon-goingeffort to validatethe
architecturevia implementation.

Theproposedarchitecturecomplementsexisting pro-
posalsfor securemulticastkey andpolicy management,
thatconcentrateon thedesignof thegroupcontrolenti-
ties. We hopeit will becomean integral partof a com-
prehensive securemulticastsolution.

References

[BMS99] D. Balenson, D. McGrew, A. Sherman,
“Key Managementfor Large DynamicGroups:
One-Way Function Trees and Amortized
Initialization”, Internet Draft draft-balenson-
groupkeymgmt-oft-00.txt, February1999.

[CG� 99] R. Canetti, J. Garay, G. Itkis, D. Miccian-
cio, M. Naor, B. Pinkas,“Multicast Security:A
TaxonomyandEfficientAuthentication”,INFO-
COM ’99.

[CP99] R.Canetti,B. Pinkas,“A taxonomyof multicast
securityissues”,InternetDraft draft-irtf-smug-
taxonomy-01.txt,April 1999.

[CE� 99] I. Chang, R. Engel, D. Kandlur, D. Pen-
darakis,D. Saha,“A Toolkit for SecureInternet
Multicast”, INFOCOM99.

[CGHK98] P. C. Cheng,J. A. Garay, A. Herzberg, H.
Krawczyk, “A SecurityArchitecturefor the In-
ternetProtocol”, IBM SystemJournal,Vol. 37,
No. 1, Feb. 1998.

16of 17

[D91] Steve E. Deering,“Multicast Routing in Data-
gram Internetworks”, Ph.D. Thesis, Stanford
University, December1991.

[RFC1112] S.Deering,“Host Extensionsfor IP Multi-
casting”,IETFRequestfor CommentsNo.1112,
August1989.

[FSWAN] Code available at
http://www.xs4all.nl/ freeswan/download.html.

[HCD98] T. Hardjono, B. Cain, N. Doraswamy, “A
Framework for Group Key Managementfor
Multicast Security”, Internet Draft draft-ietf-
ipsec-gkmframework-00.txt,July1998.

[HCM98] T. Hardjono, B. Cain, N. Monga, “Intra-
Domain Group Key ManagementProtocol”,
Internet Draft, draft-ietf-ipsec-intragkm-00.txt,
November1998.

[HM99] T. Hardjono, N. Monga, “Group Security
Association (GSA) Definition for IP Mul-
ticast”, Internet Draft draft-irtf-smug-gsadef-
00.txt,February1999.

[HM97a] H. Harney, C.Muckenhirn,“GroupKey Man-
agementProtocol(GKMP) Specification”.IETF
Requestfor Comments2093,July1997.

[HM97b] H. Harney, C. Muckenhirn, “Group Key
ManagementProtocol (GKMP) Architecture”,
IETF Requestfor Comments2094,July1997.

[H95] C. Huitema,“Routing in the Internet”,Prentice
Hall, 1995.

[KA98] StephenKent,RandallAtkinson,“SecurityAr-
chitecturefor the InternetProtocol”, IETF Re-
questfor Comments2401,1998.

[KBC97] H. Krawczyk, M. Bellare, R. Canetti,
“HMA C: Keyed-Hashingfor MessageAuthen-
tication”, IETF Requestfor Comments2104,
February1997.

[LDAP] ”LightweightDirectoryAccessProtocol(v3)”,
IETF Requestfor Comments2251,1997.

[M99] L. Mccarthy, “RTP Profile for SourceAuthen-
tication and Non-Repudiation”,Internet Draft
raft-mccarthy-smug-rtp-profile-src-auth-00.txt,
May 1999.

[M97] S.Mittra, “Iolus: A Framework for ScalableSe-
cure Multicast”. In Proceedingsof ACM SIG-
COMM ’97, Cannes,France,September1997.

[Q98] Bob Quinn, ”IP Multicast Applications: Chal-
lenges and Solutions”, draft-quinn-multicast-
apps-00.txt,Nov 1998.

[RM] The Reliable Multicast working group
at the Internet Research Task Force,
http://www.irtf.org/charters/reliable-
multicast.htm.

[R99] Pankaj Rohatgi, ”A Compactand Fast Hybrid
SignatureSchemefor MulticastPacketAuthen-
tication”, To appearin the Proceedingsof 6th
ACM ComputerandCommunicationsSecurity
Conference,1999.

[SMuG] The Secure Multicast working group
at the Internet Research Task Force,
http://www.irtf.org/charters/secure-
multicast.htm and
http://www.ipmulticast.com/community/smug.

[SSLRef] SSLRef 3.0: Available from
http://www.netscape.com.

[STW98] M. Steiner, G. Tsudik, M. Waidner,
“CLIQUES: A new approach to group key
agreement”,IEEEICDCS’98,May 1998.

[WHA97] D.M. Wallner, E. J. Harder, R. C. Agee,
“Key Managementfor Multicast: Issuesand
Architectures”,InternetDraft draft-wallner-key-
arch-01.txt,September1998.(Preliminaryver-
sionin July 97.)

[WGL98] C. K. Wong,M. Gouda,S. S. Lam, “Secure
Group CommunicationUsing Key Graphs”,
SIGCOMM ’98. Also, University of Texas at
Austin, ComputerScienceTechnicalreportTR
97-23.

[WL98] C.K. Wong,S.S.Lam, “Digital Signaturesfor
FlowsandMulticasts”,IEEEICNP’98. Seealso
Universityof TexasatAustin,ComputerScience
TechnicalreportTR 98-15.

17of 17

