Analysis of
a Fair Exchange Protocol

Vitaly Shmatikov  John Mitchell

Stanford University



Agreement in Hostile Environment

Cannot trust the communication channel

Cannot trust the other party in the protocol

Trusted third party may exist

m Last resort: use only if something goes wrong



Contract Signing

V': W
Immunity l

L deal
b 4

o Both parties want to sign the contract
o Neither wants to commit first



Fairness

~ B

If A cannot obtain a contract,
then B should not be able to
obtain a contract, either
H E_D

(and vice versa)

Example (Alice buys a house from Bob)



Accountability

~

If trusted party T misbehaves,
then honest party should be
able to prove T's misbehavior

—

<
—

T
B

= -

Example (Alice buys a house from Bob)



Formal Protocol Analysis

4 ) 4 )

Formal Intruder

Protocol Model
" Y, " Y,

Gee whiz.
Looks OK
to me.




Mure [Dill et al.]

Describe finite-state system

m State variables with initial values

m Transition rules

m Communication by shared variables

m Scalable: choose system size parameters

Specify correctness condition

Automatic exhaustive state enumeration
m Hash table to avoid repeating states



Optimistic Contract Signing

[Asokan, Shoup, Waidner]

m,; = siga (PK,, PKg, T, text, hash(R,))

m, = sigg (Mmy, hash(Rg))

M3 = Rp




Several Forms of Contract

Contract from normal execution

> |MpRamy Ry <

Contract issued by third party
> Sigr (M4, M) <
Abort token issued by third party

> sigT (abort,l aq) <




Role of Trusted Third Party

T can issue an abort token

Promise not to resolve the protocol in the future

T can issue a replacement contract

Proof that both parties are committed

T decides whether to abort or resolve on
the first-come-first-serve basis

T only gets involved if requested by A or B



Abort Subprotocol

My = Sigpa (... hash(Ry))

> SiQT (my, mz)

B

Wt’ml>
\

<

OR

> sigt (abort, a,)

<

resolved?
Yes: a, = sigt(mq, m,)
No: aborted := true
a, = sigy (abort, a,)



Resolve Subprotocol

My = Sigp (... hash(Ry))

—

m, = sigg (... hash(Rg))

Net )\ = — =

—

Sigr (Mg, My)

M3 =Ry ?27?7?

< aborted?

OR

Yes: r, = sigy (abort, a,)

No:

sigy (abort, a,)

resolved := true
I, =sigt(mq, my)



Race Condition

m, = sigy (PK,, PKg, T, text, hash(Rg))

m, = sigg(Mm,, hash(Rg))
-—ee



Attack

M, = Sigpa (... hash(R,))

m, = sigg (M4, hash(Rg))

rl_ml m,

r = Sigy (ml

secret Qg, M,

Sing (Mg, mz) < > ml{ Ra m2’.QB <




Replay Attack

——Sigp (... hash(R,)) —
~— sigg (.- haSh(RB))— !iEE

Later ...

Siga (PKA, PKa, T, text, hash(Ra))
sigg (m4, hash(Qg))




Repairing the Protocol

m,; = sig, (PK,, PKg, T, text, hash(R,))

m, = sigg (M4, hash(Rg))

M, = Sig, (R, hash(Rg))

m, = Rg

> My, Ra My, Rp <




Another Property: Abuse-Freeness

~ N

No party should be able to prove
that it can solely determine
the outcome of the protocol

Example (Alice buys a house from Bob)



Conclusions

Fair exchange protocols are subtle

m Correctness conditions are hard to formalize
m Unusual constraints on communication channels

Several interdependent subprotocols
m Many cases and interleavings

Finite-state tools are useful for case analysis



