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Agreement in Hostile Environment

Cannot trust the communication channel

Cannot trust the other party in the protocol

Trusted third party may exist

m Last resort: use only if something goes wrong



Contract Signing
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o Both parties want to sign the contract
o Neither wants to commit first



Fairness
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If A cannot obtain a contract,
then B should not be able to
obtain a contract, either
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(and vice versa)

Example (Alice buys a house from Bob)



Accountability
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If trusted party T misbehaves,
then honest party should be
able to prove T's misbehavior
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Example (Alice buys a house from Bob)



Formal Protocol Analysis
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Gee whiz.
Looks OK
to me.




Mure [Dill et al.]

Describe finite-state system

m State variables with initial values

m Transition rules

m Communication by shared variables

m Scalable: choose system size parameters

Specify correctness condition

Automatic exhaustive state enumeration
m Hash table to avoid repeating states



Optimistic Contract Signing

[Asokan, Shoup, Waidner]

m,; = siga (PK,, PKg, T, text, hash(R,))

m, = sigg (Mmy, hash(Rg))

M3 = Rp




Several Forms of Contract

Contract from normal execution

> |MpRamy Ry <

Contract issued by third party
> Sigr (M4, M) <
Abort token issued by third party

> sigT (abort,l aq) <




Role of Trusted Third Party

T can issue an abort token

Promise not to resolve the protocol in the future

T can issue a replacement contract

Proof that both parties are committed

T decides whether to abort or resolve on
the first-come-first-serve basis

T only gets involved if requested by A or B



Abort Subprotocol

My = Sigpa (... hash(Ry))

> SiQT (my, mz)

B

Wt’ml>
\

<

OR

> sigt (abort, a,)

<

resolved?
Yes: a, = sigt(mq, m,)
No: aborted := true
a, = sigy (abort, a,)



Resolve Subprotocol

My = Sigp (... hash(Ry))

—

m, = sigg (... hash(Rg))

Net )\ = — =

—

Sigr (Mg, My)

M3 =Ry ?27?7?

< aborted?

OR

Yes: r, = sigy (abort, a,)

No:

sigy (abort, a,)

resolved := true
I, =sigt(mq, my)



Race Condition

m, = sigy (PK,, PKg, T, text, hash(Rg))

m, = sigg(Mm,, hash(Rg))
-—ee



Attack

M, = Sigpa (... hash(R,))

m, = sigg (M4, hash(Rg))

rl_ml m,

r = Sigy (ml

secret Qg, M,

Sing (Mg, mz) < > ml{ Ra m2’.QB <




Replay Attack

——Sigp (... hash(R,)) —
~— sigg (.- haSh(RB))— !iEE

Later ...

Siga (PKA, PKa, T, text, hash(Ra))
sigg (m4, hash(Qg))




Repairing the Protocol

m,; = sig, (PK,, PKg, T, text, hash(R,))

m, = sigg (M4, hash(Rg))

M, = Sig, (R, hash(Rg))

m, = Rg

> My, Ra My, Rp <




Another Property: Abuse-Freeness
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No party should be able to prove
that it can solely determine
the outcome of the protocol

Example (Alice buys a house from Bob)



Conclusions

Fair exchange protocols are subtle

m Correctness conditions are hard to formalize
m Unusual constraints on communication channels

Several interdependent subprotocols
m Many cases and interleavings

Finite-state tools are useful for case analysis



