
Bruno Ribeiro, Gerome Miklau, Don Towsley

UMass Amherst

Weifeng Chen
California University of Pennsylvania

Analyzing Privacy in Enterprise Packet Trace Anonymization

Motivation

- Packet header traces
 - Used for networking research
 - Many public repositories (UMass, CAIDA, LBNL, ...)
- Raw trace may violate user privacy
 - If enterprise IP addresses can be tied to individuals

src address	dest address	src port	dest port	
14.1.1.1	11.0.0.3	6738	80	
18.0.0.1	11.0.0.1	2434	22	
11.0.0.1	20.0.0.3	6913	80	

Motivation

- Trace repositories
 - Anonymize IP addresses
- Two most widely used schemes
 - Full prefix preservation (Xu et al., 2001)
 - Partial prefix preservation (Pang et al. 2006)

Original trace	src addr.	dest addr.	src port	dest port	
	14.1.1.1	11.0.0.3	6738	80	
anonymization	11.0.0.1	20.0.0.3	7913	22	
mapping					
Anonymized trace	src addr.	dest addr.	src port	dest port	
	200.0.1.2	128.0.64.2	6738	80	
	128.0.64.0	5.0.4.5	7913	22	

Adversary

- Adversarial model:
 - De-anonymize enterprise IP addresses in the trace
 - 1. Probes (scan) enterprise network
 - 2. Collects similar information from the trace
 - De-anonymizes trace IPs matching (1) with (2)

Outline

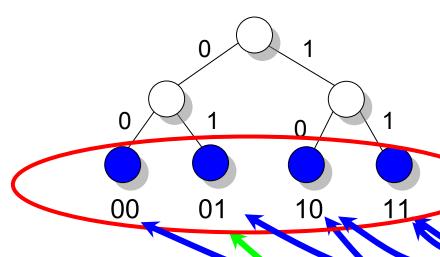
- Our contributions
 - New attack on IP anonymization:
 - Attack overview
 - Defined as a tree editing distance problem
 - Worst-case analysis:
 - From a set of trace labels (information)
 - Assesses worst-case attack
- Related work
- Conclusions

Proposed attack overview

- Adversary provides:
 - Labeled tree constructed using anonymized trace
 - Labeled tree constructed from probing enterprise
 - A cost (or distance) function (to deal with "mismatched" labels)
- Our algorithm finds:
 - All de-anonymizations that
 - comply with prefix preservation restrictions
 - and have minimum total cost
- An instance of the tree edit distance problem

Full prefix preserving anonymization

- Full prefix preservation
 - If two real addresses share first X bits, then
 - the same two anonymized addresses share first X bits
- It imposes restrictions on the real IP → Anonymized IP mapping

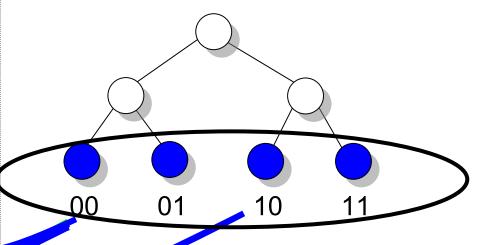

Labeled trees

Probed tree

Probed IP leaf labels

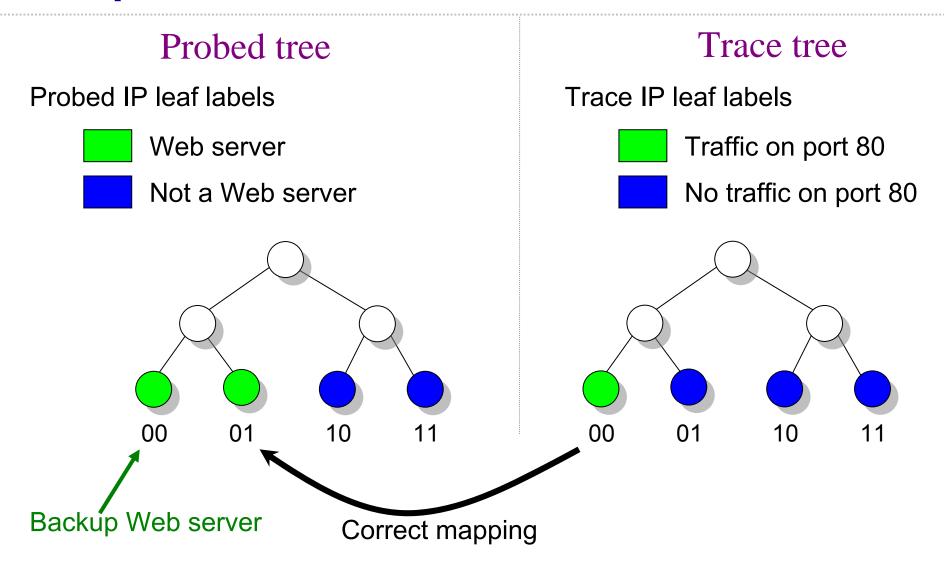
Web server

Not a Web server



Trace tree

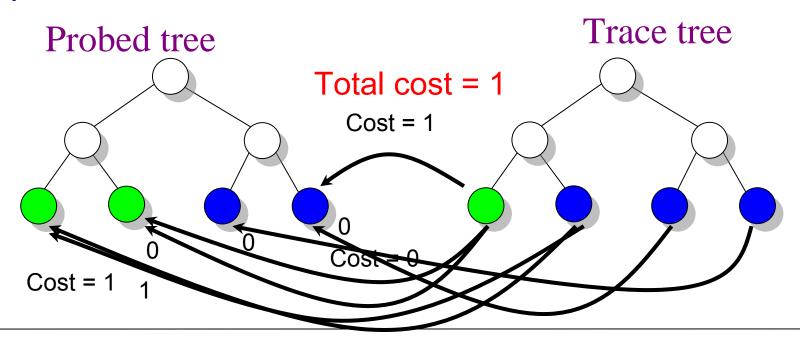
Trace IP leaf labels


Traffic on port 80

No traffic on port 80

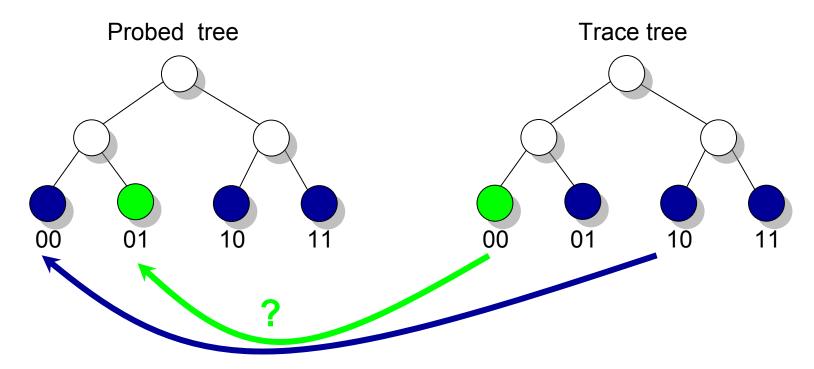
- Match sets:
 - 00 maps to {00}01, 10, 11}
 - 10 maps to {00, 01}10, 11}

Imperfect information



• Other sources of imperfect labels: Dynamic IP addresses, host shutdown, etc.

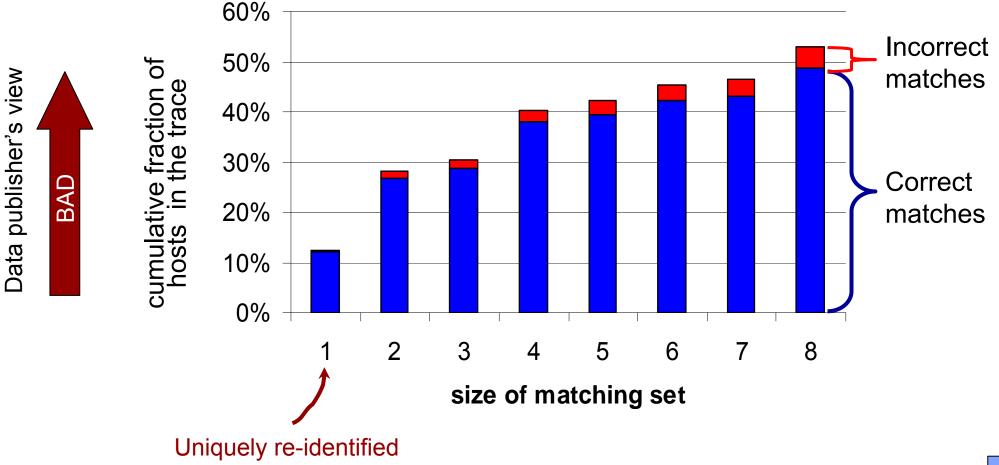
Mapping costs


- Assign a cost to map two IPs with different labels
 - Is zero if labels are equal
- Mapping cost
 - Sum of all individual costs

Example:

Proposed attack

- All minimum cost mappings (over the whole network)
 - Because it is prefix-preserving
 - Every de-anonymization limits future de-anonymizations


- And our algorithm is fast
 - 10 seconds (on this laptop) for all mappings of a network with 2¹⁶ addresses

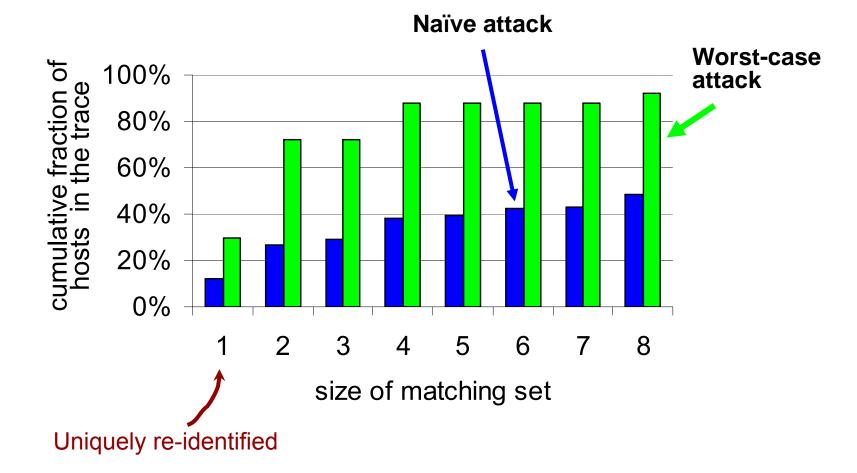
Experiment

- Network: class B (64K addresses)
- Labels
 - "Active host"
 - Active ports: FTP, SSH, Telnet, E-mail, Time, DNS, Web, POP3, SOCKS
- Trace IP labels
 - "Active host" label recorded any outgoing traffic
 - "Active ports" Recorded traffic from ports 80, 22,
- Probed IP labels
 - Probed over all network
 - "Active host" label PING
 - "Active ports" TCP SYN ACK reply from ports 80, 22, ...
- Naïve cost function: Zero is labels are equal, one otherwise

Experiment results

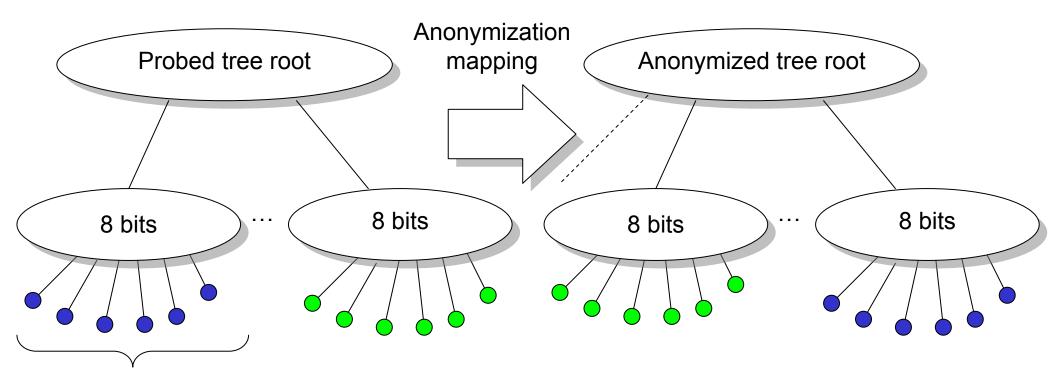
- Trace collected: 2007, June 18th (9097 active IPs)
- Network probed: 2007, June 18th

Worst-case analysis

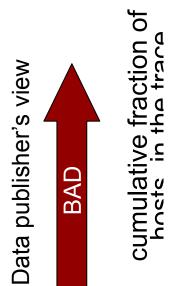

- Given a labeled trace tree
- Find best de-anonymization

- We provide an algorithm that
 - Obtains worst attack matching set size
 - For each IP address in the trace
 - For any label mismatch cost function
 - For any labeled probed tree

Worst-case experiment


- Full prefix preservation
- June 18th experiment

Partial prefix preservation


- Does not retain part of the address structure
- Used in Pang et al., 2006
- Solution also formulated as an instance of the tree edit distance problem

Up to **256** addresses

Partial vs. Full prefix preservation

Intuition: Partial is much safer than full prefix preservation
Worst case:

st case: prefix ervation

Worst-case analysis (II)

Uniquely re-identified

- Full prefix preservation: 2713 active IP addresses in the trace
- Partial prefix preservation: 113 active IP addresses in the trace

Partial prefix preservation is safer but not completely safe

Related work

- "Playing Devil's Advocate: Inferring Sensitive Information from Anonymized Traces", Scott Coull, Charles Wright, Fabian Monrose, Michael Collins and Michael Reiter, NDSS 2007
 - An attack on partial prefix preservation

- "Taming the Devil: Techniques for Evaluating Anonymized Network Data",
 Scott Coull, Charles Wright, Fabian Monrose, Angelos Keromytis and Michael Reiter,
 NDSS 2008
 - Comes right after this talk ©

Conclusions

- Attack
 - Include global mapping restrictions
 - An instance of the tree edit distance problem
 - Indicates that full prefix preservation has flaws
 - Impact of late probing on the de-anonymization
- Worst-case analysis
 - Can help future anonymization schemes
 - A tool for data publishers
 - Experiments indicate that:
 - Partial is much safer than full prefix preservation
 - But still not completely safe

Thanks

- Jim Kurose, UMass Amherst
- Edmundo de Souza e Silva, Federal University of Rio de Janeiro
- Kyoungwon Suh, Illinois State University
- Anonymous NDSS'08 reviewers
- Neils Provos, Google Inc.