
Authentication and Integrity in Outsourced Databases

Einar Mykletun, Maithili Narasimha, Gene Tsudik
Computer Science Department

School of Information and Computer Science
University of California, Irvine�

mykletun,mnarasim,gts � @ics.uci.edu

Abstract

In the Outsourced Database (ODB) model, organiza-
tions outsource their data management needs to an exter-
nal service provider. The service provider hosts clients’
databases and offers seamless mechanisms to create, store,
update and access (query) their databases. This model in-
troduces several research issues related to data security.
One of the core security requirements is providing efficient
mechanisms to ensure data integrity and authenticity while
incurring minimal computation and bandwidth overhead.
In this work, we investigate the problem of ensuring data in-
tegrity and suggest secure and practical schemes that help
facilitate authentication of query replies. We explore the ap-
plicability of popular digital signature schemes (RSA and
DSA) as well as a recently proposed scheme due to Boneh
et al. [1] and present their performance measurements.

1 Introduction

Continued growth of the Internet and advances in net-
working technology have fueled a trend toward outsourcing
data management and information technology needs to ex-
ternal Application Service Providers. By outsourcing, or-
ganizations can concentrate on their core tasks and operate
other business applications via the Internet, rather than in-
curring substantial hardware, software and personnel costs
involved in maintaining applications in house. Database
outsourcing [2] is a recent and important manifestation of
this trend. In this model, the provider is responsible for of-
fering adequate software, hardware and network resources
to host the clients’ databases as well as mechanisms for the
client to efficiently create, update and access the outsourced
data.

The database outsourcing paradigm poses numerous re-
search challenges which influence the overall performance,
usability and scalability. One of the foremost challenges is
the security of stored data. A client stores its data (which

is a critical asset) at an external, potentially untrusted,
Database Service Provider site. It is essential to provide
adequate security measures to protect the stored data from
both malicious outsider attacks and the Database Service
Provider itself. Security in most part, implies maintaining
data integrity and guarding data privacy. Although some
work [3] has been done to protect data confidentiality while
guaranteeing its continued availability to authorized users,
the problem of providing efficient integrity in this model has
not received much attention.

In this paper, we focus on providing secure and effective
means of ensuring data authentication and integrity, while
incurring minimal computational and bandwidth overhead.
In particular, we investigate techniques to help the ODB
client authenticate the origin and verify the integrity of data
returned by the service provider in response to a posed
query.

Scope: In this paper, we consider only queries testing
equality and other logical comparison predicate clauses. In
other words, we consider the standard SQL queries involv-
ing SELECT clauses which typically result in selection of
a set of records (or attributes) matching a given predicate
or a set thereof. We specifically do not address queries that
involve any kind of data aggregation (such as SUM or AV-
ERAGE).

This paper focuses on providing mechanisms for effi-
cient integrity and origin authenticity of query replies re-
turned by the service provider in the ODB model. A related,
and equally important, issue is the completeness of query
replies. The term completeness refers to the correct execu-
tion of the query over the entire target domain, i.e., whether
or not all records satisfying a query are returned. Although
we consider it debatable whether completeness is a security
concern, we acknowledge that it poses a challenge which
needs to be addressed in the ODB model. However, it re-
mains beyond the scope of this paper.

Organization: The rest of the paper is organized as fol-
lows: In section 2, we describe the details of our model
and identify design requirements for the integrity mecha-
nisms. Section 3 describes the motivation for studying ag-
gregate signature schemes. We look at our design choices
and our assumptions in section 4 while section 5 covers the
overhead factors and design features that go along with ag-
gregate signature schemes. In section 6, we discuss aggre-
gation of RSA signatures, then describe an aggregate sig-
nature scheme proposed by Boneh et al. [1] and finally
discuss why aggregation of DLP based signatures schemes
is difficult. In section 7, we briefly discuss another viable
solution for ensuring integrity in ODB model which uses
Merkle Hash Trees. In section 8, we compare and contrast
the relative performance of the three signature schemes de-
scribed in section 6. Section 9 looks at relevant prior work
in the fields of database security, batch cryptography and
aggregated signatures. We finally conclude in section 10 by
giving an outline for our future work.

2 System Model

The outsourced database (ODB) model is an example of
the well-known Client-Server model. In the ODB model,
the Database Service Provider (also referred to as the
Server) has the infrastructure required to host outsourced
databases and provides efficient mechanisms for clients to
create, store, update and query the database. Before pro-
ceeding further, we need to clarify the meaning of the term
“client”. A client, in this context, is not necessarily a single
entity, such as a user. Instead, a logical client can be thought
of as an administrative entity, such as an organization or a
set of authorized users within an organization.

In practice, an actual client may be a computationally
weak and storage-challenged device, such as a cellphone
or a wireless PDA. Moreover, the bandwidth available to
a client may be severely limited due to the communication
medium characteristics and/or the battery power consumed
by receiving large amounts of data.

An ODB client is assumed to trust the server to faith-
fully maintain its data. Specifically, the server is relied upon
for the replication, backup and availability of outsourced
databases it stores. However, the server might not be trusted
with the actual database contents and/or the integrity of
these contents. This lack of trust is crucial as it opens up
new security issues and serves as the chief motivation for
our work.

We distinguish among three flavors of the ODB model:
The most basic setting is where each outsourced database
is used by a single entity, the client who creates, manip-
ulates and queries the data. We refer to it as the Unified
Client Model (Figure 1). In a more advanced, Multi-Querier
Model (Figure 2), there are two types of clients: owners and

queriers. The former is the actual data owner who adds,
deletes and updates database records. Whereas, a querier is
a client only allowed read access (i.e., query) to the database
or portions thereof. This distinction is both necessary and
natural as it reflects many real-world database scenarios.
For example, an airline may allow its customers to query its
database to check flight timings and availability or view spe-
cific information about itineraries and reservations. How-
ever, customers are, of course, not authorized to modify any
flight-related data.

In the third, most general, ODB model, a single database
can have multiple owners. This is referred to as the Multi-
Owner Model (see Figure 3). The distinction between the
Multi-Querier and Multi-Owner models might seem subtle.
In the former, a single security principal creates and ma-
nipulates database records, whereas, in the latter, different
records can be created by distinct security principals. How-
ever, in both models, there can be multiple queriers. The
motivation for the Multi-Owner model is rather straight-
forward. Consider an example of an outsourced cus-
tomer/sales database. Each record in this database is created
and maintained by the salesperson responsible for a partic-
ular customer. A salesperson then “owns” the records that
s/he creates.

3 Motivation

As mentioned above, the ODB model triggers some im-
portant security concerns. The more obvious concern is
the privacy of outsourced data with respect to the server.
The main challenge is how to reconcile the requirement
for privacy with the need to outsource data. Some notable
previous work [2, 3] addressed this challenge by devising
methods for essentially running encrypted queries over en-
crypted databases. (Albeit, much work remains to be done
to support aggregation-style queries.)

The focus of this paper is on data authentication and in-
tegrity in the ODB model. It is easy to see that data privacy
in the ODB model is orthogonal to data authentication and
integrity. We consider it unlikely that there are many re-
alistic ODB settings where privacy is desired but integrity
is not. On the other hand, one can easily envision ODB
scenarios where privacy is not a concern but data authen-
tication and integrity are required. For example, a govern-
ment agency, e.g., the National Science Foundation (NSF),
might outsource its awards database and allow anyone to
run queries over it. A similar situation might arise if the US
Patents and Trademarks Office (USPTO) were to outsource
its issued patents and patent applications databases. In such
cases, privacy is not an issue since the database contents
(records) are public, yet their integrity and authenticity are
very important.

From a more technical perspective, the motivation for

Figure 1. ODB – Unified Client Model Overview

Figure 2. ODB – Multi-Querier Model Overview

Figure 3. ODB – Multi-Owner Model Overview

our work is fairly intuitive. When an ODB client queries its
outsourced data, it expects in return a set of records (query
reply) satisfying the query’s predicates. The size of the re-
ply can vary, in principle, between zero and � , where �
is the total number of records in the database. In other
words, a query reply can be any one of the ��� record sub-
sets. Therefore, the main problem we face is: how to fa-
cilitate secure and efficient authentication of all possible
query replies?

If we were concerned only with outside threats, i.e.,
adversaries tampering with the communication between
queriers and servers, then standard tools for establishing se-
cure channels (e.g., SSL or IPSec) might be appropriate.
However, this is insufficient to authenticate query replies

since, in our model, the server is NOT trusted with the in-
tegrity of the data. More concretely, the problem at hand is
that a malicious server may attempt to insert fake records
into the database or modify existing records. Consequently,
our goal is to assure ODB clients that data they receive from
the server has not been tampered with by either an external
adversary or by the server itself.

4 Design Choices and Assumptions

In this section we discuss several assumptions and design
choices.

Nature of Data: as mentioned earlier, this paper does not
address the issue of data privacy. Consequently, to keep
our discussion general, we do not differentiate between the
cases of the stored data being completely encrypted, par-
tially encrypted or completely unencrypted. We simply as-
sume that the data owner, depending upon the nature of
data, has stored it in some suitable form and has a mech-
anism for formulating queries (involving selection predi-
cates) that can be executed remotely over the stored data.

Granularity of Integrity: data integrity/authentication
can be provided at different levels of granularity. In prin-
ciple, integrity checks can be at the level of a table (en-
tire relation), a column (an attribute of the relation), a row
(a record or a tuple of the table), or finally, an individual
attribute value. Providing integrity checks at the table (or
column) level implies that the entire data pertaining to that
table (or column) should be returned in the query reply in
order for the client to verify the integrity of the query re-
sponse. This is clearly impractical as it requires transferring
large amounts of data to the client. Hence, we do not con-
sider this to be a viable approach. On the other hand, com-
puting integrity checks at the level of individual attribute
values yields a very large number of signatures which is
very expensive for the signer (owner) in terms of computa-
tion as well as for the the server in terms of storage.

We believe that the optimal choice is to provide integrity
at the record level. This enables the server to return – in re-
sponse to a query – any set of matching records along with
their respective integrity checks. Of course, computing in-
tegrity checks over the entire record, as opposed to individ-
ual attributes, implies that the smallest unit of data returned
as a query reply is an entire record, even when the querying
client is only interested in a single field.1

Signatures or MAC-s? One natural and intuitive solution
for record-level integrity is to use message authentication
codes (MAC-s) as they tend to be small and efficient to
compute and verify. A simple MAC-based scheme can be
constructed whereby the client asks the server to store each
outsourced record along with a MAC (or keyed hash) of that
record computed with some key known only to the client.
Then, for any query reply, the server encloses a single in-
tegrity check computed as a hash of all record-level MAC-s
in the query reply. The bandwidth overhead is minimal and
the computation overhead at the client is low. This works
well for the the Unified Client Model where the client and
the querier are one and the same.

1It is possible to compute integrity checks over hashes of record at-
tributes rather than over actual attribute values. Even in this case, if the
query requests only some attributes, hashes of other (un-requested) at-
tributes must be returned.

However, recall that in the more general Multi-Querier
and Multi-Owner models, we assume potentially many
queriers for each client. In these settings, MAC-s are not
useful since they would require the MAC key to be shared
among all owner(s) and all legitimate queriers. Obviously,
non-repudiation for the queriers can not be achieved. There-
fore, the only choice is use public key digital signatures.
However, digital signatures introduce significant overhead
in terms of storage, bandwidth and computation.2

5 Overhead Factors and Desired Features

A typical digital signature is between 320 (e.g., DSA)
and 1024 (e.g., RSA) bits. As discussed above, we are us-
ing record-level signatures. Now, considering that a query
reply can, potentially, contain many thousands of records,
receiving and verifying individual record signatures can be
prohibitively expensive for a querier. Also, even if the stor-
age on the server is not a resource constraint, the querier can
be a weak device with limited storage and computational re-
sources. Therefore, it is essential to reduce the bandwidth
as well as computational overhead introduced by the secu-
rity services. To be more specific in our goals, we consider
five overhead factors that we would like to minimize (listed
in the decreasing order of perceived importance):

1. Querier computation: verifying integrity/authenticity
of a set of records in a query reply.

2. Querier bandwidth: sending/receiving integrity data
(in addition to the overhead incurred for send-
ing/receiving actual records in a reply).

3. Server computation: server-side manipulation (if any)
of integrity information in the query reply.

4. Owner computation: computing integrity information
to be stored in the outsourced database.

5. Server storage: space required to store integrity infor-
mation in an outsourced database.

We claim that the first three are the most important overhead
factors stemming from the integrity of outsourced data. The
last two are markedly less important. Server storage over-
head is not much of a concern since servers are assumed
to be interested in selling or renting more storage. Owner
computation overhead is also comparatively less pressing
since we assume that ODB records are manipulated (cre-
ated, deleted, modified) much less frequently than client

2We observe that, even in the Unified Client model, there may be ben-
efits to using signatures as opposed to MAC-s. The main incentive is to
protect the server from a malicious (or litigious) client who might fraud-
ulently claim that the server mangled or faked records in the outsourced
database. Record-level signatures would obviate this problem.

queries are executed. This observation favors digital sig-
nature schemes that are particularly efficient in verification.
Efficiency in generating (computing) signatures is, in com-
parison, less important.

Based on the above, we can outline an idealized solu-
tion. It would involve minimal querier computation over-
head and constant (only in terms of integrity information)
querier bandwidth overhead. It is easy to see that achieving
constant querier computation overhead is impossible, since,
for all records in a query reply, the querier must at least
recompute a hash or a similar function. Fortunately, there
are digital signature schemes that can be used to construct
idealized or near-idealized solutions. Such schemes allow
combining (or aggregation) of multiple individual signa-
tures into one unified signature such that verification of the
unified signature is equivalent to verifying individual com-
ponent signatures. Some schemes only allow aggregation
of a single signer’s signatures, whereas, others allow signa-
tures produced by multiple signers to be aggregated. For
our purposes, the former can be used to support the Uni-
fied Client and Multi-Querier models, while the latter can
additionally support the Multi-Owner model.

In the remainder of this paper we focus on two concrete
techniques that support aggregation of multiple signatures.
The first is based on a simple extension of the well-known
“Batch verification of RSA” method, and the second is the
recent scheme by Boneh, et al. [1].

6 Suitable Signature Schemes

As noted in section 5, signature schemes that allow ag-
gregation seem to be ideally suited for ODB integrity. In
this section, we examine some viable solutions and identify
their limitations. We start by presenting a simple scheme for
aggregating RSA signatures generated by a single signer.
We then introduce an aggregated signature scheme due to
Boneh et al. (hereafter referred to as the BGLS scheme),
and conclude with the discussion of the applicability of
DLP-based signature schemes in the ODB model. An al-
ternative approach based on so-called Merkle Hash Trees is
discussed in Section 7.

6.1 Condensed-RSA

The Condensed-RSA scheme discussed in this section is
a simple extension of the standard RSA [4] scheme. One
of the well-known features of RSA is its multiplicative ho-
momorphic property. This feature makes RSA suitable for
combining signatures generated by a single signer into a sin-
gle “condensed” signature. Having successfully verified a
condensed signature, a verifier can be assured that each in-
dividual message covered by the condensed signature was,

indeed, properly signed by the purported signer. RSA sig-
natures can be condensed “incrementally” by any party in
possession of individual message signatures.

Standard RSA: We now briefly summarize the standard
RSA scheme. An entity has a public key ���
	��������� and a
secret key ����	������ , where is a � -bit modulus computed
as the product of two random ����� -bit primes � and � . The
respective public and secret exponents ��� ��!#"%$& satisfy
�'�)(+*�,.-0/�12��3� , where 12�43�5	6�7�98�*��:���;8<*'� . In
today’s cryptographic literature, � is assumed to be at least
*>=���? bits. The security of the RSA cryptosystem is widely
believed to be based on the conjectured intractability of the
integer factorization problem.

In practice, an RSA signature is computed over the hash
of the input message. Let @3�A� denote a suitable crypto-
graphic hash function (such as MD5 or SHA-1) which, upon
a variable-length input � , produces a fixed-length output
@3����� . A standard RSA signature on message � is com-
puted as: BC	D@3������EF��,G-0/H3� . RSA signature verification
involves checking that B3IJ(K@L�4�C�M,G-0/H . Both signature
generation and verification involve computing one exponen-
tiation.

Condensed-RSA: Given N input messages O��QP'�>RSRTRS���
U V
and their corresponding signatures O'BWP��>RSRTRT��BXU V (generated
by the same signer), a Condensed-RSA signature is given
by the product of individual signatures:

B PZY U 	
U[

\S] P B
\ ��,.-^/�3� (1)

The resulting signature B_PZY U has the same size as a standard
RSA signature. When verifying a condensed signature, the
verifier needs to multiply the hashes of all input messages
and check that:

��B_P`Y Ua� I (
U[

\S] P @L�4� \ �b��,G-0/�3� (2)

Batch verification of RSA signatures: Condensed-RSA
verification is very similar to Batch verification of RSA.
Batching, in general, helps reduce computational complex-
ity in settings where many signature verifications (or other
computationally intensive tasks) must be performed simul-
taneously. Batch verification of RSA [5, 6, 7] aims at speed-
ing up the verification process by reducing the total number
of exponentiations. Given a batch instance of signatures
O�B P �cRTRTRS� B U V and distinct messages O>� P �cRTRTRS��� U V , an RSA
batch verification (also called fast screening [6]) consists
of checking that:

�
U[

\T] P B
\ � I (

U[
\S] P @3��� \ �b�4,.-0/H3� (3)

Bellare et al. in [6] give the exact bounds for the proba-
bility that an adversary can successfully create a batch in-
stance which satisfies the above equation without possess-
ing individual signatures on each of the messages in the in-
stance. The main difference between Condensed-RSA and
Batch verification of RSA is that, in the latter, the prod-
uct of individual signatures is computed by the verifier who
has access to individual signatures. This allows for post-
verification auditing if batch verification fails, i.e., it is pos-
sible to screen individual signatures to determine the faulty
one(s). In contrast, Condensed-RSA has a single aggregated
signature which makes auditing impossible. Therefore, in
the event of verification failure, further steps (perhaps in-
volving off-line mechanisms) become necessary.

Security of Condensed-RSA: We claim that
Condensed-RSA is unforgeable against adaptive cho-
sen message attacks. We support this claim by showing
that, if an adversary d can break Condensed-RSA, then,
using this adversary, we can construct a forger e to
successfully create a batch instance that passes the batch
verification test without the possession of valid individual
signatures on each input message in the instance.

We begin by defining what it means for an adver-
sary d to break Condensed-RSA. d succeeds in breaking
Condensed-RSA if it produces a valid aggregated signature
for messages O�� P , ..., � U V which satisfies equation 2 with-
out possessing valid individual signatures for each of the N
input messages. We argue the security of Condensed-RSA
by demonstrating that it is at least as secure as Batch ver-
ification of RSA, which, in turn, was shown in [6] to be
secure under the assumption that RSA is a collection of one-
way functions. Note that we are assuming the use of a full-
domain hash function (FDH), as described in [8]. FDH is a
hash function f.g3hjilk0O'=X�c*mV�$onp"q$&

Outline: d accepts as input (� P , ..., � U) and r = O�B P ,
..., B�stV where B \ 	uf gvhji �4� \ ��E�,.-0/H , and w#xyN . In
other words, adversary d accepts as input N messages and a
set r which has valid signatures for w of these N messages
(wzx<N). d , by our definition, breaks Condensed-RSA by
outputting a valid Condensed-RSA signature BWPZY U . We now
construct a forger e that breaks Batch verification of RSA.

Details: Forger e , on input (� P �>RSRTRT�a� U) and r , out-
puts ��� P �cRTRSRT� � U � such that �|{ U \S] P � \ � I (�{ U\T] P f gvhti ��� \ �
�4,.-0/
3� . e proceeds in the following manner:

1. Creates random numbers � \ !v}�"q$& where *F~#��~
�4N28�*'� .

2. Transfers messages (�QP'�>RSRTRT�a�HU) and r to d

3. Let the forged Condensed-RSA signature returned by
d be �

4. Computes �>Uj	l�|{ U|�vP\T] P � \ � �WP�� �b�4,.-0/H3�
5. Outputs a batch instance ����P��cRTRSRT� �>Ua� for messages (��P ,

..., �HU).

Claim 1: Forger e produces a set of signatures that sat-
isfy the Batch verification test.
Note that { U \S] P � \ ({ U \T] P B \ �4,.-0/
3� . Therefore, equa-
tion 3 is satisfied and the Batch verification test succeeds.

Claim 2: If RSA is one-way, then Condensed-RSA is a
secure signature scheme.
Batch verification of RSA was shown secure under the
assumption that RSA is one-way. Therefore, since
Condensed-RSA is at least as secure as Batch verification of
RSA, we conclude that Condensed-RSA is secure assuming
RSA is a collection of one-way functions.

Overhead Costs: We now compare the costs of
Condensed-RSA in the ODB model with those of standard
RSA and Batch verification of RSA (also in ODB). The cost
of hashing is ignored as it is negligible in comparison with
that of modular arithmetic.

With standard RSA signatures, the querier would need to
receive and process N signatures, one for each record in the
query reply. To verify the signatures, it would have to per-
form N RSA verifications, i.e., N exponentiations. The band-
width overhead would amount to N �.� � bits. With Batch
verification of RSA, the verification process would involve
computing the product of all message hashes and the prod-
uct of message signatures, resulting in �X�4N�8l*�� multipli-
cations, followed by one exponentiation. The bandwidth
overhead is the same as in standard RSA.

In contrast, the bandwidth overhead of Condensed-RSA
is a single signature (� � bits), and verification costs would
amount to ��N�8D*�� multiplications, to compute the product
of all message hashes, followed by one exponentiation. To
summarize, Condensed-RSA saves �4Nm8
*�� �2� � bits of band-
width and ��N38�*'� multiplications over Batch verification of
RSA.

Condensed-RSA in ODB Setting: Condensed-RSA is
clearly applicable to both Unified-Client and Multi-Querier
models since each assumes a single data owner (signer).
The server executing a client query is required to perform
the following: select records that match the query predicate;
fetch the signatures corresponding to these records; aggre-
gate them (by multiplying them, as mentioned above) and
send back the single aggregated signature along with the
records in the result set. Note that, clearly, Condensed-RSA

helps save both querier computation and querier bandwidth
(Section 5). In case of Multi-Owner model, it is no longer
possible to incur a constant bandwidth overhead. The server
can aggregate signatures generated by each signer and send
them separately which results in querier bandwidth over-
head being linear in the number of signers. The client can
verify these partially aggregated signatures by carrying out
one verification per signer.

6.2 BGLS

Boneh, et al. in [1] describe an aggregated signature
scheme that aggregates signatures generated by distinct
signers on different messages into one short signature based
on elliptic curves and bilinear mappings. Their scheme op-
erates in a Gap Diffie-Hellman group (GDH) which is de-
fined as a group where the Decisional Diffie-Hellman prob-
lem (DDH) is easy while the Computational Diffie-Hellman
problem (CDH) is hard. The first such GDH group was de-
scribed in [9]. Prior to describing their signature scheme we
give a brief introduction to the parameters involved [1].

1. � P and �%� are two (multiplicative) cyclic groups of
prime order � ;

2. � P is a generator of � P and �m� is a generator of ��� ;

3. � is a computable isomorphism from ��� to � P , with
�����m���j	�� P ; and

4. � is a computable bilinear map �%km� PJ� �%��n��%� as
described below

A bilinear mapping ��k���P � � � n�� � , where � ��P � 	� � � � 	 � � � � , satisfies the following properties.
1. Bilinearity: ����!p� P , ��!p�%� and ��� ��!p� ,

���7�������� `�j	M�^�¡�3� ���a�:
2. Non-degenerate: ���4�^P'�a� � ��¢	y*

These two properties imply that:
�^�_P���� � !C��P'� ��!C� � ���^�¡�WP|� � �����j	

���7�_P������2£>�^�7� � � ��� and�^�3����!H� � ���^�����¡�_�Z� ���j	K�^�4�q�����:�����

BGLS Scheme: BGLS uses a full-domain hash function
@3�A��kqO�=¤�c*mV�$Qn¥��P . Key generation involves picking a
random ¦§!§�©¨ , and computing ª
)�X«� . The public key is
ª�!¬� � and the secret key is ¦K!��¨ . Signing a message
� involves computing @Q	�@3����� , where @§!9� P and B�	
@¤« (the actual signature is B). To verify a signature one
computes @;	M@L�4�C� and checks that �^��B_�®�X�m�j	¬�^�A@v��ª^� .

BGLS Aggregation: To aggregate N BGLS signatures,
one computes the product of individual signatures as fol-
lows: B�PZY Uq	 { U \T] P B \ , where B \ corresponds to the signa-
ture on message � \ . The aggregated signature B_PZY U is of
the same size as an individual BGLS signature, i.e., � � � bits.

Similar to Condensed-RSA, aggregation can be performed
incrementally and by anyone.

Verification of an aggregated BGLS signature B PZY U
involves computing the product of all message hashes
and verifying the following equality: �^��B P`Y U �a�m�c�¯	
{ U\T] P ���A@ \ �aª \ � . Due to the properties of the bilinear map-
ping, we can expand the left hand side of the equation as
follows:
�^��B�PZY U`�®� � �z	 �^�A{ U \T] P @ «>°\ �a� � �±	 { U\T] P �^�A@ \ �®� � �a« ° 	
{ U \T] P ���A@ \ �®� « °� �j	 { U \S] P �^��@ \ �aª \ �
BGLS Performance When analyzing the cost of BGLS
signature verification, we distinguish between the two oper-
ations: multiplication and computation of the bilinear map.
For a single-signer BGLS signature and N input messages,
verification costs amount to computing the product of mes-
sage hashes (N�8¬* multiplications), followed by two bilin-
ear mappings. For a multiple-signer BGLS signature (with
� signers and N signatures per signer), verification costs
amount to ��� � Nm8�*'� multiplications as well as �L²�* bilinear
mappings.

BGLS in ODB Setting: BGLS is applicable to all three
ODB models. The server executing a client’s query by
selecting records (along with their signatures) that match
the query predicate; aggregates them (as described above)
and sends back a single aggregated signature along with all
records in the result set. BGLS saves both querier computa-
tion and querier bandwidth in case of Unified-Client as well
as Multi-Querier models. However, although in the Multi-
Owner model, BGLS provides bandwidth efficiency, it does
not offer much savings in terms of querier computation. As
mentioned above, verification of a BGLS signature which
includes messages by � distinct signers involves computing
�L²C* bilinear mappings, which is quite costly (see Section 8
below).

6.3 Whither DLP-based Signatures?

Batch verification of DSA signatures was introduced
by Naccache et al. [10]. Online generation of DSA or
ElGamal-type signatures can be made efficient due to some
pre-computation techniques. Whereas, verification is usu-
ally far less efficient; a typical signature verification re-
quires 2 exponentiations. Therefore, batching of multiple
signature verifications, which is much more efficient than
sequential verification of multiple signatures, becomes par-
ticularly attractive in this case. Some notable work on batch
verification of DLP-based signatures is due to Naccache et
al.[10], Harn [11, 12], Yen and Laih [7] and Bellare et al.
[6]. The principle of DLP-based batch verification is, as in
RSA, based on the multiplicative homomorphic property of
these signatures.

Aggregation of DSA signature aggregation would be
very useful in the ODB setting, especially, in the Multi-
Owner Model3. Unfortunately, there seems to be no se-
cure way to aggregate DLP-based signatures. The batching
schemes which can be aggregated (for example, [12]) have
been shown insecure by Boyd and Pavlovski in [13] who
have demonstrated that an adversary can easily introduce
false signatures that would pass the batch verification test.
Current Batch-DSA methods involve techniques known as:
small exponent test [10, 6] or bucket test [6] which require
the verifier to perform operations on individual signatures.
(For example, the small exponent test, as the name suggests,
calls for the verifier to perform an exponentiation with a
small exponent on each individual signature before batch-
ing). Therefore, it seems impossible to compose a single
aggregated signature. In other words, using a DLP-based
signature scheme along with a batch verification technique
in ODB model would only help in reducing querier compu-
tation costs. and would not reduce querier bandwidth over-
head. (See [13] for details on Batch-DSA).

7 Merkle Hash Trees

An alternative solution for providing record authentica-
tion and integrity in the ODB setting is to use Merkle Hash
Trees (MHT-s) [14]. It is easy to construct an integrity ar-
chitecture for an outsourced database using MHT-s: each
leaf in a tree corresponds to a hash of a database record. In
all other respects, the use of MHT-s is standard.

MHT is an appealing construct for our purposes: it is ef-
ficient, as most computation involves simple hashes, and
provides authenticity, since the root of a tree is signed.
However, upon a closer look, we are unsure whether MHT-
s would compare favorably with pure signature-based tech-
niques introduced earlier in this paper. In the following, we
briefly sketch out potential applications of Merkle Trees.

The owner generates a hash tree with the leaves corre-
sponding to hashes of individual data records and signs the
root of tree using a standard signature technique. Any mod-
ification to the database (add, delete, update) requires the
owner to conduct a multi-round protocol with the server to
make structural changes to the MHT (which includes re-
signing the root). This results in increased owner computa-
tion overhead.

Although querier computation overhead may be lower
than in signature-based schemes, querier bandwidth over-
head is considerably higher than in either Condensed-RSA
or BGLS. In order to verify integrity of a single record, a
set of intermediate tree nodes (corresponding to the co-path
from the specific leaf up to the root) needs to be sent to the

3Note that, in DSA, it is customary for multiple users to share the same
system parameters - primes ³ and ´ and generator µ - which would have
enabled aggregating signatures generated by distinct users

verifier. This translates into ��¶S-�·t3� extra hashes. However,
for a query reply containing multiple records, bandwidth
overhead can be significantly reduced by eliminating com-
mon ancestors of returned records.

Despite the above shortcomings, MHT-s are a useful tool
for ODB integrity. In a related paper [15], we explore
their applications further. In particular, we investigate ex-
act bounds on querier bandwidth overhead, discuss database
modification issues and techniques for providing complete-
ness of query replies efficiently.

8 Discussion

In this section, we compare the signature schemes de-
scribed in section 6 with respect to the overhead factors
presented in section 5. We begin by assessing the cost in
terms of basic cryptographic operations (e.g., multiplica-
tions, inverses, and exponentiations) in Condensed-RSA,
Batch-DSA and BGLS schemes. Then, by plugging in the
timings for each such operation, we show the actual over-
head incurred by each scheme.

For the testing platform we used a P3-977Mhz Linux
machine with the OpenSSL library [16] for computing the
individual operations. We used 1024-bit moduli in RSA and
DSA: 1024-bit in RSA and 1024-bit � (along with 160-bit
�) in DSA. For BGLS, we used a field ¸3¨ where � � � 	D¹0*�� .

Cost Comparison: We use the notation in Table 1. We
assume that the query result contains � � N records where �
denotes the number of signers (data owners) and N denotes
the number of signatures (data records) generated by each
signer.

QC Querier Computation
QB Querier Bandwidth
SC Server Computation
OC Owner Computation
SS Server StorageºH»m¼¡½4¾a¿TÀ�Á ½

modular multiplications with modulus of size Â À ÂÃ�Ä ³ ¾Å|¿TÀ�Á ½
modular exponentiations with modulus of size Â À Â

and exponent of size Â ¼ ÂÆZÇ�È ¾ ¿TÀ�Á ½
modular inverses with modulus of size Â À ÂÉjº5¿T½�Á ½
bilinear mappings

Table 1. Notation

Table 2 illustrates the overhead (computation, storage and
bandwidth) associated with each scheme in terms of the
number of cryptographic operations. The table provides a
breakdown of the total cost with respect to overhead factors
described in section 5. These factors are arranged in the de-
creasing order of perceived importance. (Our main goal is
to minimize the cost of QC and QB.)

Note that the number of signers �Ê	y* for Unified Client
and Multi-Querier models. In both models, Condensed-

RSA and BGLS have constant bandwidth requirement, in-
dependent of the number of component signatures. The
querier computation (QC) overhead is linear in the num-
ber of signatures since both models involve N multiplica-
tions. Moreover, verifying an aggregated signature involves
a single exponentiation in Condensed-RSA and two bilin-
ear mapping in BGLS, making Condensed-RSA more effi-
cient. In contrast, both QC and QB are linear in the number
of signatures for Batch-DSA. This is because of the small
exponent test. However, in Batch-DSA, since there no ag-
gregation is performed, the server is not required to do any
extra work.

The querier computation (QC) overhead is linear in the
number of signatures. In the Multi-Owner model, BGLS
has constant QB overhead, whereas, in Condensed-RSA,
QB overhead is linear in the number of signers (�). In
Batch-DSA, as before, QB is linear in the number of sig-
natures.

Condensed-RSA performs better than BGLS since a
modular exponentiation is much more efficient than a bi-
linear mapping and a modular multiplication in "%$& (where� � 	 *>=���?) is cheaper than scalar addition in elliptic
curves.

Table 3 shows the actual times required to generate and
verify a single signature, multiple signatures by a single
signer, and multiple signatures by multiple signers in each
of the three schemes. We set the public exponent �.	�Ë in
RSA and use the Chinese Remainder Theorem to speed up
signing. Note that no optimization techniques were used in
any of the verification operations.

Condensed-RSA Batch-DSA BGLS
Sign 1 signature 6.82 3.82 3.54

1 signature 0.16 8.52 62
Verify t = 1000, k = 1 44.12 1623.59 184.88

t = 100, k = 10 45.16 1655.86 463.88
t = 1000, k = 10 441.1 16203.5 1570.8

Table 3. Cost comparison (in msecs): verification and signing. No-
tation: t – # signatures, k – # signers

9 Related Work

In this section, we briefly overview relevant prior work
in database security.

Traditional database security has been studied exten-
sively in the database as well as in cryptography and se-
curity communities. Database security in the ODB model is
a more recent research topic. Hacigümüş, et al. examined
various challenges associated with providing database as a
service in [2]. In our work, we use a similar system model.

One seemingly related field is Private Information Re-
trieval (PIR) [17, 18] which has been explored extensively
in the cryptographic literature. The PIR work is primarily
concerned with privately retrieving parts of data stored at

an external server such that no partial information about the
query is leaked to the server. PIR techniques support search-
ing based on either the physical location [17] of the data or
keywords [19]. However, as most current PIR techniques
aim for very strong security properties they are unsuitable
for more practical purposes. Specifically, PIR schemes typ-
ically require either multiple non-colluding servers or mul-
tiple rounds of communication. Song et al. [20] propose a
practical scheme to search encrypted data; it requires a sin-
gle server and has low computational complexity. In gen-
eral, searching encrypted data is becoming an increasingly
popular research topic. (See, for example, [20, 21].) How-
ever, all current schemes only support exact match queries
whereby the server returns data matching either a physical
address or a keyword. Hacigümüş, et al. in [3] explore
how SQL queries can be executed over encrypted data and
provide details of query processing and optimization tech-
niques. Specifically, they support range searches and joins
in addition to exact match queries.

Another recent work [22] studies the problem of data in-
tegrity in the ODB model. This work is most closely re-
lated to this paper. It uses data encryption in tandem with
manipulation detection codes to provide integrity; as such,
it is applicable only to the Unified Client ODB model. In
contrast, our solutions use digital signatures for providing
integrity and aggregation techniques to achieve efficiency.
Public key signatures allows us to provide integrity with-
out requiring data encryption. Furthermore, they provide
authentication and non-repudiation which are important re-
quirements in Multi-Querier and Multi-Owner models.

10 Future Work and Conclusion

In conclusion, we investigated providing efficient data
integrity mechanisms in the outsourced database (ODB)
model. We presented a secure and practical Condensed-
RSA scheme which performs well in Unified Client and
Multi-Querier models. However, since it does not aggregate
signatures by different signers, it is not well-suited for the
Multi-Owner model. On the other hand, while the BGLS
signature scheme aggregates signatures by distinct users
into one short signature, the computational complexity is
unfortunately quite high. Therefore, as part of future work,
we plan to focus on finding efficient and practical signature
schemes for the Multi-Owner model.

Acknowledgments

We thank NDSS’04 anonymous reviewers for their in-
sightful reviews. Special thanks to Yongdae Kim for sug-
gesting Merkle Hash Trees as a candidate solution and for
providing the software for experimenting with BGLS signa-
tures. We also thank Dan Boneh for his helpful comments.

Condensed-RSA Batch-DSA BGLS
QC

ºH»m¼7½�Ì`Í`Î¡¾�Ï�Ð�Ñ®¿SÇ0Á�ÒÊÃjÄ ³ ÌÓ ¿SÇ0Á ºH»m¼¡½4ÔaÍaÌ`Í®¾�Ï�Ð`¿ ´ Á^ÒÊºH»m¼7½�Ì`Í®¾®¿ ³ Á�ÒÊÃ�Ä ³ Ì`Õ_ÐÖ ¿ ³ Á ºH»m¼¡½�ÌZÍ®¾�Ï�ÐZ¿ ³ Á�ÒÊÉjº5¿×ÀjÒHØ�ÁÒÙÃjÄ ³ ÌZÍÚ¾ÅÛ¿ ³ Á�Ò;ÆZÇ�È�Ì`Í®¾®¿ ´ Á
QB

ÀjÜWÇ À�Ü_½�Ü2¿ ³ Ò ´ Á ³
SC

ºH»m¼7½�ÌZÍ Î¡¾�Ï�Ð�Ñ®¿SÇ0Á Ý ºH»m¼7½�ÌZÍÚ¾�Ï�Ð`¿ ³ Á
OC

Ã�Ä ³ ÐÞ ¿TÇ^Á Ã�Ä ³ ÐÖ ¿ ³ Á�Ò.Æ:Ç�È Ð ¿ ³ Á�Ò;ºH»m¼¡½�ß>¿ ³ Á Ã�Ä ³ ÐÖ ¿ ³ Á
SS

À�Ü_½^Ü_Ç À�Ü_½�Ü2¿ ³ Ò ´ Á À�Ü_½�Ü ³
Table 2. Cost comparison in the ODB model

References

[1] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate
and Verifiably Encrypted Signatures from Bilinear Maps,” in
Advances in Cryptology – EUROCRYPT ’2003 (E. Biham,
ed.), Lecture Notes in Computer Science, International As-
sociation for Cryptologic Research, Springer-Verlag, Berlin
Germany, 2003.

[2] H. Hacigümüş, B. Iyer, and S. Mehrotra, “Providing
Database as a Service,” in International Conference on Data
Engineering, March 2002.

[3] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra, “Executing
SQL over Encrypted Data in the Database-Service-Provider
Model,” in ACM SIGMOD Conference on Management of
Data, pp. 216–227, ACM Press, June 2002.

[4] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Communications of the ACM, vol. 21, pp. 120–126, Feb.
1978.

[5] L. Harn, “Batch verifying rsa signatures,” Electronic Letters,
vol. 34, pp. 1219–1220, Apr 1998.

[6] M. Bellare, J. Garay, and T. Rabin, “Fast batch verification
for modular exponentiation and digital signatures,” in Euro-
crypt 1998, vol. 1403, pp. 191–204, 1998.

[7] S. Yen and C. Laih, “Improved Digital Signature Suitable
for Batch Verification,” IEEE Transactions on Computers,
vol. 44, pp. 957–959, July 1995.

[8] M. Bellare and P. Rogaway, “Random oracles are practical:
a paradigm for designing efficient protocols,” in ACM Press,
pp. 62–73, 1993.

[9] A. Joux and K. Nguyen, “Separating Decision Diffie-
Hellman from Diffie-Hellman in cryptographic groups,” in
Cryptology ePring Archive, no. Report 2001/003, 2001.

[10] D. Naccache, D. M’Raı̈hi, D. Raphaeli, and S. Vaude-
nay, “Can DSA be improved: complexity trade-offs with
the Digital Signature Standard,” in Advances in Cryptol-
ogy – EUROCRYPT ’94, Lecture Notes in Computer Sci-
ence, pp. 85–94, International Association for Cryptologic
Research, Springer-Verlag, Berlin Germany, 1994.

[11] L. Harn, “DSA-type Secure Interactive Batch Verification
Protocols,” Electronic Letters, vol. 31, pp. 257–258, Feb.
1995.

[12] L. Harn, “Batch Verifying Multiple DSA-type Digital Signa-
tures,” Electronic Letters, vol. 34, pp. 870–871, Apr. 1998.

[13] C. Boyd and C. Pavlovski, “Attacking and repairing batch
verification schemes,” in Asiacrypt 2000, pp. 58–71, 2000.

[14] R. Merkle, “Protocols for public key cryptosystems,” in
IEEE Symposium on Research in Security and Privacy, 1980.

[15] E. Mykletun, M. Narasimha, and G. Tsudik, “Provid-
ing Authentication and Integrity in Outsourced Databases
using Merkle Hash Trees.” UCI-SCONCE Technical Re-
port, 2003. http://sconce.ics.uci.edu/das/
MerkleODB.pdf.

[16] OpenSSL Project, available from, http://www.
openssl.org.

[17] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan,
“Private Information Retrieval,” Journal of ACM, vol. 45,
pp. 965–981, Nov. 1998.

[18] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin, “Protect-
ing Data Privacy in Private Information Retrieval Schemes,”
in 30th Annual Symposium on Theory of Computing (STOC),
(Dallas, TX, USA), ACM Press, 1998.

[19] B. Chor, N. Gilboa, and M. Naor, “Private Information Re-
trieval by Keywords,” Tech. Rep. TR CS0917, Department
of Computer Science, Technion, 1997.

[20] D. Song, D. Wagner, and A. Perrig, “Practical Techniques
for Searches on Encrypted Data,” in 2000 IEEE Symposium
on Security and Privacy, May 2000.

[21] E.-J. Goh, “Secure Indexes for Efficient Searching on En-
crypted Compressed Data.” Cryptology ePrint Archive, Re-
port 2003/216, 2003. http://eprint.iacr.org/
2003/216/.

[22] H. Hacigümüş, B. Iyer, and S. Mehrotra, “Encrypted
Database Integrity in Database Service Provider Model,” in
International Workshop on Certification and Security in E-
Services (CSES’02 IFIP WCC), 2002.

