
Automated Recovery in a Secure Bootstrap Process

William A. Arbaugh
Angelos D. Keromytis

David J. Farber�

Jonathan M. Smith
University of Pennsylvania

Distributed Systems Laboratory
Philadelphia, PA. 19104-6389

fwaa, angelos, farber, jmsg@dsl.cis.upenn.edu

Abstract

Integrity is rarely a valid presupposition in many sys-
tems architectures, yet it is necessary to make any security
guarantees. To address this problem, we have designed a
secure bootstrap process, AEGIS, which presumes a mini-
mal amount of integrity, and which we have prototyped on
the Intel x86 architecture. The basic principle is sequenc-
ing the bootstrap process as a chain of progressively higher
levels of abstraction, and requiring each layer to check a
digital signature of the next layer before control is passed
to it. A major design decision is the consequence of a failed
integrity check. A simplistic strategy is to simply halt the
bootstrap process. However, as we show in this paper, the
AEGIS bootstrap process can be augmented with automated
recovery procedures which preserve the security properties
of AEGIS under the additional assumption of the availabil-
ity of a trusted repository. We describe two means by which
such a repository can be implemented, and focus our atten-
tion on a network-accessible repository.

1 Introduction

Systems are organized as layered levels of abstraction,
in effect defining a series of virtual machines. Each virtual
machine presumes the correctness (integrity) of whatever
virtual or real machines underlie its own operation. With-
out integrity, no system can be made secure, and conversely,
any system is only as secure as the foundation upon which

�Smith and Farber’s work is supported by DARPA under Con-
tracts #DABT63-95-C-0073, #N66001-96-C-852, and #MDA972-95-1-
0013 with additional support from the Hewlett-Packard and Intel Corpora-
tions.

it is built. Thus, without such a secure bootstrap the oper-
ating system kernel cannot be trusted since it is invoked by
an untrusted process. We believe that designing trusted sys-
tems by explicitly trusting the boot components provides a
false sense of security to the users of the operating system,
and more important, is unnecessary.

We have previously reported[4] the design and prelimi-
nary implementation results for AEGIS, a secure bootstrap
process. AEGIS increases the security of the boot pro-
cess by ensuring the integrity of bootstrap code. It does
this by constructing a chain of integrity checks, beginning
at power-on and continuing until the final transfer of con-
trol from the bootstrap components to the operating system
itself. The integrity checks compare a computed crypto-
graphic hash value with a stored digital signature associated
with each component.

The importance of the integrity of the bootstrap pro-
cess is highlighted by the recent disclosure by Intel that
the Pentium Pro and Pentium II processors can have their
microcode dynamically updated through a process during
bootstrap by using capabilities of the Basic Input Output
System (BIOS) and the Power on Self Test (POST)[19].
While this is a useful upgrade capability, it is also a dan-
gerous one. AEGIS provides integrity guarantees not only
for the BIOS code that updates the processor microcode,
but also the microcode itself. Beyond the integrity guar-
antees, AEGIS can also provide secure automatic updates
to all of the bootstrap components including the processor
microcode.

In order to provide integrity guarantees the AEGIS
model relies explicitly on three assumptions:

1. The motherboard, processor, and a portion of the sys-
tem ROM (BIOS) are not compromised,i.e.,the adver-
sary is unable or unwilling to replace the motherboard

1 of 13

or BIOS.

2. Existence of a cryptographic certificate authority in-
frastructure to bind an identity with a public key, al-
though no limits are placed on the type of infrastruc-
ture.

3. A trusted repository exists for recovery purposes. This
repository may be a host on a network that is reachable
through a secure communications protocol, or it may
be a trusted ROM card located on the protected host.

The AEGIS architecture, which we outline below in Sec-
tion 2, includes a recovery mechanism for repairing in-
tegrity failures and protection against some classes of de-
nial of service attacks. An added benefit of the recovery
mechanism is the potential for reducing the Total Cost of
Operation (TCO) of a computer system by reducing trouble
calls and down time associated with failures and upgrades
of the boot process.

From the start, AEGIS has been targeted for commer-
cial operating systems on commodity hardware, making it a
practical “real-world” system. In AEGIS, the boot process
is guaranteed to end up in a secure state, even in the event
of integrity failures outside of a minimal section of trusted
code.

We define aguaranteed secureboot process in two parts.
The first is that no code is executed unless it is either explic-
itly trustedor its integrity is verified prior to its use. The
second is that when an integrity failure is detected a process
can recover a suitable verified replacement module. This
recovery process is the focus of the current paper.

1.1 Responses to integrity failure

When a system detects an integrity failure, one of three
possible courses of action can be taken.

The first is to continue normally, but issue a warning.
Unfortunately, this may result in the execution or use of ei-
ther a corrupt or malicious component.

The second is to not use or execute the component. This
approach is typically calledfail secure, and creates a poten-
tial denial of service attack.

The final approach is to recover and correct the inconsis-
tency from atrusted repositorybefore the use or execution
of the component.

The first two approaches are unacceptable when the sys-
tems are important network elements such as switches, in-
trusion detection monitors, or associated with electronic
commerce, since they either make the component unavail-
able for service, or its results untrustworthy.

1.2 Goals

There are six main goals of the AEGIS recovery proto-
col.

1. Allow the AEGIS client and the trusted repository to
mutually authenticate their identities with limited or
no prior contact (mobility between domains).

2. Prevent man in the middle attacks.

3. Prevent replay attacks.

4. Mitigate certain classes of denial of service attacks.

5. Allow the participating parties to agree upon a shared
secret in a secure manner in order to optimize future
message authentication.

6. KISS (Keep It Simple and Secure): Complexity breeds
design and implementation vulnerabilities.

1.3 Outline of the Paper

In Section 2, we make the goals of the AEGIS design
explicit. Sections 3, 4, and 5 form the core of the pa-
per, giving an overview of AEGIS, and the IBM PC boot
process. Section 4 provides an introduction to the crypto-
graphic and system tools needed to build a secure recov-
ery protocol, and describes such a protocol. Section 5 de-
scribes the details of adding the recovery protocol to ex-
isting Dynamic Host Configuration Protocol (DHCP), and
Trivial File Transfer Protocol (TFTP) implementations and
provides performance information. We discuss the system
status and our next steps in section 6, and conclude the pa-
per in section 7.

2 AEGIS Architecture

2.1 Overview

To have a practical impact, AEGIS must be able to work
with commodity hardware with minimal changes (ideally
none) to the existing architecture. The IBM PC architecture
was selected as our prototype platform because of its large
user community and the availability of the source code for
several operating systems. We also use the FreeBSD oper-
ating system, but the AEGIS architecture is not limited to
any specific operating system. Porting to a new operating
system only requires a few minor changes to the boot sec-
tor code so that the kernel can be verified prior to passing
control to it. Since the verification code is contained in the
BIOS, the changes will not substantially increase the size of
the boot loader, nor the boot sector.

2 of 13

AEGIS modifies the standard PC boot process shown in
Figure 1 so that all executable code, except for a very small
section of trusted code, is verified prior to execution by us-
ing a digital signature. This is accomplished through modi-
fications and additions to the BIOS. The BIOS contains the
verification code, and public key certificate(s). In essence,
the trusted software serves as the root of an authentication
chain that extends to the operating system and potentially
beyond to application software [38] [18] [34]. In the AEGIS
boot process, either the operating system kernel is started,
or a recovery process is entered to repair any integrity fail-
ure detected. Once the repair is completed, the system is
“warm booted” to ensure that the system starts. This entire
process occurs without user intervention.

In addition to ensuring that the system starts in a secure
manner, AEGIS can also be used to maintain the hardware
and software configuration of a machine. Since AEGIS
maintains a copy of the signature for each expansion card1,
any additional expansion cards will fail the integrity test.
Similarly, a new operating system cannot be started since
the OS kernel would change, and the new kernel would fail
the integrity test.

2.2 AEGIS Boot Process

Every computer with the IBM PC architecture follows
approximately the same boot process. We have divided this
process into four levels of abstraction (see Figure 1), which
correspond to phases of the bootstrap operation. The first
phase is the Power on Self Test or POST [30]. POST is
invoked in one of four ways:

1. Applying power to the computer automatically invokes
POST causing the processor to jump to the entry point
indicated by the processor reset vector.

2. Hardware reset also causes the processor to jump to
the entry point indicated by the processor reset vector.

3. Warm boot (ctrl-alt-del under DOS) invokes POST
without testing or initializing the upper 64K of system
memory.

4. Software programs, if permitted by the operating sys-
tem, can jump to the processor reset vector.

In each of the cases above, a sequence of tests are con-
ducted. All of these tests, except for the initial processor
self test, are under the control of the system BIOS.

Once the BIOS has performed all of its power on tests,
it begins searching for expansion card ROMs which are
identified in memory by a specific signature. Once a valid

1Ideally, the signature would be embedded in the firmware of the ROM.

ROM signature is found by the BIOS, control is immedi-
ately passed to it. When the ROM completes its execution,
control is returned to the BIOS.

The final step of the POST process calls the BIOS operat-
ing system bootstrap interrupt (Int 19h). The bootstrap code
first finds a bootable disk by searching the disk search order
defined in the CMOS. Once it finds a bootable disk, it loads
the primary boot sector into memory and passes control to
it. The code contained in the boot block proceeds to load
the operating system, or a secondary boot sector depending
on the operating system [22] [14] or boot loader [3].

Ideally, the boot process would proceed in a series of
levels with each level passing control to the next until the
operating system kernel is running. Unfortunately, the IBM
architecture uses a “star like” model which is shown in Fig-
ure 1.

Expansion ROMs

System BIOS

Initiate POST

Operating System

Boot Block

Level 1

Level 2

Level 3

Level 4

Expansion ROMs

Figure 1. IBM PC boot process

2.2.1 A Layered Boot Process

We have divided the boot process into several levels to
simplify and organize the AEGIS BIOS modifications, as
shown in Figure 3. Each increasing level adds functional-
ity to the system, providing correspondingly higher levels
of abstraction. The lowest level is Level 0. Level 0 con-
tains the small section oftrustedsoftware, digital signa-
tures, public key certificates, and recovery code. The in-
tegrity of this level is assumed to be valid. We do, how-
ever, perform an initial checksum test to identify PROM
failures. The first level contains the remainder of the usual
BIOS code, and the CMOS. The second level contains all
of the expansion cards and their associated ROMs, if any.
The third level contains the operating system boot sector(s).

3 of 13

These are resident on the bootable device and are respon-
sible for loading the operating system kernel. The fourth
level contains the operating system, and the fifth and final
level contains user level programs and any network hosts.

The transition between levels in a traditional boot pro-
cess is accomplished with a jump or a call instruction with-
out any attempt at verifying the integrity of the next level.
AEGIS, on the other hand, uses public key cryptography
and cryptographic hashes to protect the transition from each
lower level to the next higher one, and its recovery process
ensures the integrity of the next level in the event of failures.
The pseudo code for the action taken at each level,L, before
transition to levelL + 1 is shown in Figure 2. The func-

int IntegrityValid(Level L) {
Certificate c = LookupCert(L);
int result;

if (result = VerifyCertChain(c))
return DSAVerify(SHA1(L), c);

else return result;
}

if (IntegrityValid(L+1))) {
GOTO(L+1);

} else {
Recovery(L+1);

}

Figure 2. Layer Transition Pseudo code

tion IntegrityValid first finds the component certificate for
Level L. Ideally this will be stored in the component itself,
but initially it will be stored in a table contained in Level
0. Once the certificate,c, is found. VerifyCertChainthen
verifies that the certificate(s) form a “chain” of trust from
the component certificate to the root Certificate Authority
Public Key. If they do not, then bothVerifyCertChainand
IntegrityValidreturn an error code and a recovery procedure
is entered. IfVerifyCertChainreturns TRUE, then the sig-
nature contained in the certificate is verified using the public
key contained in the certificate.

Any integrity or certificate failures identified in the above
process are recovered through the trusted repository.

2.3 Integrity Policy

Formalizing the discussion in Section 1.1, the AEGIS
integrity policy prevents the execution of a component if its
integrity can not be validated. There are three reasons why
the integrity of a component could become invalid. The first
is the integrity of the component could change because of
some hardware or software malfunction, or it could change

because of some malicious act. Finally, the component’s
certificate timestamp may no longer be valid. In each case,
the clientMUSTattempt to recover from a trusted reposi-
tory. Should a trusted repository be unavailable after several
attempts, then the client’s further action depends on the in-
tegrity policy of the user. For instance, a user may choose to
continue operation in a limited manner, or they may choose
to halt operations altogether.

2.4 Trusted Repository

The trusted repository can either be an expansion ROM
board that contains verified copies of the required software,
or it can be a network host. If the repository is a ROM
board, then simple memory copies can repair or shadow
failures. If the repository is a network host, then a proto-
col with strong authentication is required.

In the case of a network host, the detection of an integrity
failure causes the system to boot into a recovery kernel con-
tained on the network card ROM. The recovery kernel con-
tacts a “trusted” repository through the secure protocol de-
scribed in this paper to recover a signed copy of the failed
component or its certificate. The failed component is then
shadowed or repaired, and the system is restarted (warm
boot).

The resultant AEGIS boot process is shown in Figure 3.
Note that when the boot process enters the recovery proce-
dure it becomes isomorphic to a secure network boot with
the purpose of retrieving valid bootstrap components rather
than an operating system. We leverage this fact by adding
authentication to the well known network protocols sup-
porting Remote Program Loading (RPL) DHCP[12], and
TFTP[17] and using them as our recovery protocol. As
a result, our approach is similar to that proposed in the
NetPC specification[8]. The biggest difference, however,
between our approach and the NetPC approach, in addition
to that noted above, is the addition of security. Currently,
the NetPC specification does not containany form of secu-
rity. The authors of the NetPC specification, however, are
developing a security architecture, and it will likely be an-
nounced by the conference date.

3 AEGIS Network Recovery Protocol

The AEGIS network recovery protocol combines proto-
cols and algorithms from networking and cryptography to
ensure the security of the protocol. This section first pro-
vides an introduction to the material needed to fully under-
stand the recovery protocol. We then describe the protocol
and provide examples of its use.

4 of 13

Expansion ROMs

Boot Block

Operating System

Initiate POST

BIOS Section 1

BIOS Section 2

AEGIS ROM

Level 0

User Programs

Network Host

Recovery Transition

Control Transition

Legend

Level 1

Level 2

Level 3

Level 4

Level 5

Figure 3. AEGIS boot control flow

3.1 Certificates

The usual purpose of a certificate with respect to public
key cryptography is to bind a public key with an identity.
While this binding is essential for strong authentication, it
severely limits the potential of certificates, e.g. anonymous
transactions. The most widely used certificate standard, the
X.509[7] and its variants, provideonly this binding. The
X.509 standard, also, suffers from other serious problems.
The most significant is ambiguity in the parsing of com-
pliant certificates because of its use of the Basic Encoding
Rules (BER)[6]. The encoding rules also require a great
deal of space to implement, and the encoded certificates are
usually large. While the V3 specification eliminates most
of the problems above, the remaining ones prevent its use.

Because of the limits and problems with the X.509
certificate standard, we use a subset of the proposed
SDSI/SPKI 2.0 certificate structure[16][15] instead. The
SDSI/SPKI format does not suffer from the same problems
as X.509, and it offers additional functionality.

3.1.1 SDSI/SPKI Lite

Since the SDSI/SPKI standard is still under development,
we have chosen to support the small subset of SDSI/SPKI
needed for AEGIS. We call this subset SDSI/SPKI Lite.

SDSI/SPKI provides for functionality beyond the sim-
ple binding of an identity with a public key. Identity based
certificates require the existence of an Access Control List
(ACL) which describe the access rights of an entity. Main-
taining such lists in a distributed environment is a complex
and difficult task. In contrast, SDSI/SPKI provides for the

notion of a capability [29]. In a capability based model, the
certificate carries the authorizations of the holder eliminat-
ing the need for an identity infrastructure and access con-
trol lists. In AEGIS, we use two capabilities: SERVER, and
CLIENT with the obvious meanings.

In AEGIS we only use three types of certificates. The
first is an authorization certificate. This certificate, signed
by a trusted third party or certificate authority, grants to the
key holder (the machine that holds the private key) the capa-
bility to generate the second type of certificate- an authen-
tication certificate. The authentication certificate demon-
strates that the client or server actually hold the private key
corresponding to the public key identified in the authenti-
cation certificate. A nonce field is used along with a cor-
responding nonce in the server authentication certificate to
ensure that the authentication protocol is “Fail Stop”[20]
detecting and preventing active attacks such as a man–in–
the–middle. Themsg-hashfield ensures that the entire mes-
sage containing the certificates has not been modified. Us-
ing themsg-hashin the authentication certificate eliminates
a signature and verification operation since the entire mes-
sage no longer needs to be signed. The additional server
fields are used to pass optional Diffie-Helman parameters
to the client so that these parameters need not be global val-
ues. While clients are free to set the validity period of the
authentication certificate to whatever they desire, we expect
that clients will keep the period short.

The current SDSI/SPKI draft RFC proposes several en-
coding schemes. The one shown in Figures 5, 6, and 7
is the Advanced Transport Format (ATF). Basically, an
ASCII representation of the certificate with binary infor-
mation, e.g. keys, represented by Base64 encoding. Un-
fortunately, none of the proposed representation schemes
for SDSI/SPKI produce certificates small enough for our
purposes. Therefore, we propose a new encoding scheme
which we call the Binary Transport Format (BTF). BTF
uses fixed identifiers for the various certificate types, and
a direct mapping of binary data into its network byte or-
der representation. The resulting encoding scheme reduces
the size of a certificate from approximately one thousand
bytes when encoded in ATF to slightly less than two hun-
dred and fifty six bytes when encoded in BTF. Space is
also saved by combining several SPKI fields into a single
type, e.g. (subject (hash-of-key (hash sha1 bytes)))maps
to subject-publickey-dsa-hash-sha1. While this expands the
name space significantly, it also saves a significant amount
of space. Table 1 lists sample type identifiers for BTF. BTF
uses two formats. The first is a three tuple of identifier, size,
data. The identifier is two bytes, the size is two bytes, and
the data is a variable size. The second is an implied size
format based on the identifier. The latter format is used as
much as possible to save space.

Examples of these certificates are shown in Figures 4 , 5,

5 of 13

((cert (issuer (hash-of-key (hash sha1 cakey)))
(subject (hash-of-key (hash sha1 keyholderkey)))
(tag (client))
(not-before 03/29/97-0000)
(not-after 03/29/98-0000)

(signature (hash sha1 hashbytes)
(public-key dsa-sha1 cakey)
(sigbytes)))

(a) ATF

cert

tag client

not-before

not-after

Size in bytes
2

22

22

4

6

6

issuer-publickey-dsa-hash-sha1

subject-publickey-dsa-hash-sha1

signature-publickey-1024-dsa

Total = 252

190

(b) BTF

Figure 4. AEGIS Authorization Certificate

SPKI Type Identifier
cert 0xaeba
issuer 0x0001
issuer-publickey-dsa-hash-sha1 0x1001
subject 0x0002
subject-publickey-dsa-hash-sha1 0x1002
sha1-hash 0x0004
tag 0x0005
not-before 0x0006
not-after 0x0007
signature 0x0008
signature-publickey-1024-dsa-hash-sha10x1008
signature-publickey-1024-dsa 0x2008

Table 1. Sample Binary Transport Format
Identifiers

and 6. The first figure shows an authorization certificate in
both ATF and BTF forms. The remaining Figures use only
ATF for readability purposes. The third and final certificate
format is the component signature certificate shown in Fig-
ure 7. This certificate is either embedded in a component
or stored in a table. It is used with the AEGIS boot process
described earlier in this paper.

3.1.2 Certificate Revocation Lists

Requiring each client to maintain a Certificate Revocation
List (CRL) places a significant burden on the non-volatile
storage of the client. Rather than use CRLs, we choose in-
stead to keep the validity period of certificates short as in the
SDSI/SPKI model and require the client to update the cer-
tificates when they expire. This serves two purposes beyond
the ability to handle key revocation. First, we eliminate the

((cert (issuer (hash-of-key (hash sha1
clientkey)))

(subject (hash-of-key (hash sha1
clientkey)))

(tag (client (cnonce cbytes)
(msg-hash

(hash sha1 hbytes))))
(not-before 09/01/97-0000)
(not-after 09/01/97-0000))

(signature (hash sha1 hashbytes)
(public-key dsa-sha1 clientkey)
(sigbytes)))

Figure 5. AEGIS Client Authentication Certifi-
cate

storage requirements for CRLs which would overburden a
client. Second, we can potentially reduce the amount of
system maintenance required of the client. Since the client
must connect to the server on a regular basis to update the
component certificates, the server can, at the same time, up-
date the actual component as well if a new version is avail-
able.

3.2 Diffie Hellman Key Agreement

The Diffie Hellman Key Agreement (DH) [9] permits
two parties to establish a shared secret between them. Un-
fortunately, the algorithm as originally proposed is suscep-
tible to a man-in-the-middle attack. The attack can be de-
feated, however, by combining DH with a public key al-
gorithm such as DSA as proposed in the Station to Station
Protocol (StS)[10]. Our recovery protocol is an extension
to StS.

6 of 13

((cert (issuer (hash-of-key (hash sha1
serverkey)))

(subject (hash-of-key (hash sha1
serverkey)))

(tag (server (dh-g gbytes)
(dh-p pbytes)
(dh-Y ybytes)
(msg-hash

(hash sha1 hbytes))
(cnonce cbytes)
(snonce sbytes)))

(not-before 09/01/97-0900)
(not-after 09/01/97-0900))

(signature
(hash sha1 hashbytes)
(public-key dsa-sha1 serverkey)
(sigbytes)))

Figure 6. AEGIS Server Authentication Certifi-
cate

((cert (issuer (hash-of-key (hash sha1
approverkey)))

(subject (hash sha1
hashbytes))

(not-before 09/01/97-0000)
(not-after 09/05/97-0000))

(signature (hash sha1
hashbytes)

(public-key dsa-sha1
approverkey)

(sigbytes)))

Figure 7. AEGIS Component Certificate

The DH algorithm is based on the difficulty of calculat-
ing discrete logarithms in a finite field. Each participant
agrees to two primes,g andp, such thatg is primitivemod

n. These values do not need to be protected in order to
ensure the strength of the system, and therefore can be pub-
lic values. Each participant then generates a large random
integer. Bob generatesx as his large random integer and
computesX = gx mod p. He then sendsX to Alice. Al-
ice generatesy as her large random integer and computes
Y = gy mod p. She then sendsY to Bob. Bob and Al-
ice can now each compute a shared secret,k, by computing
k = Y x mod p andk = Xy mod p, respectively.

3.3 Digital Signature Standard

The Digital Signature Standard (DSS) includes a digital
signature algorithm (DSA) [35] and a cryptographic hash
algorithm (SHA1) [36]. DSA produces a 320 bit signature
using the following parameters:

A prime,p, between 512 and 1024 bits in length. The size
of the prime must also be a multiple of 64.

A 160 bit prime factor,q, of p� 1.

g, whereg = h(p�1)=q mod p andh is less thanp � 1

such thatg is greater than 1.

x, wherex is less thanq.

y, wherey = gx mod p.

The parametersp, q, andg are public. The private key isx,
and the public key isy.

A signature of a message,M , is computed in the follow-
ing manner. The signer generates a random number,k, that
is less thanq, and then computesr = (gk mod p) mod q

ands = (k�1(SHA1(M) + xr)) mod q. The valuesr
ands, each 160 bits in length, comprise the signature. The
receiver verifies the signature by computing:

w = s�1 mod q

u1 = (SHA1(M) � w) mod q

u2 = (r � w) mod q

v = ((gu1 � yu2) mod p) mod q.

The signature is verified by comparingv andr. If they are
equal, then the signature is valid.

3.4 IPSEC Authentication Header

The IPSEC Authentication Header (AH) provides au-
thentication and integrity of an IP datagram [25]. The for-
mat for the IPSEC Authentication Header is shown in Fig-
ure 8. Thenext headerfield describes the type of header

7 of 13

following AH. The Lengthfield indicates the size of the
header in 4-byte units minus 2. For instance, if the entire
header size was 192 bits then the length field would have a
value of 4. The Security Parameters Index (SPI) determines
which security association defined between the source and
destination to use. The sequence number is a 32 bit field
that is used to prevent replay attacks, and theauthentication
datafield is a variable length, aligned to 32 bits, field con-
taining the appropriate authentication information. In the
case of AEGIS, this is a 96 bit MAC.

Security Parameters Index

Sequence Number Field

Authentication Data (variable)

Length ReservedNext Hdr

0 8 16 31

Figure 8. IPSEC AH Format

3.5 SHA1 Message Authentication Code

Message Authentication Codes (MAC) utilize a secret,
k, shared between the communicating parties and a message
digest. We use the Secure Hash Algorithm (SHA1), and the
HMAC described in RFC 2104[26] and a draft RFC[31].
The MAC is defined as:

SHA1(k XOR opad; SHA1(k XOR ipad;M)),

whereM is the message or datagram,opad is an array of
64 bytes each with the value 0x5c, andipad is an array of
sixty four bytes each with the value 0x36.k is zero padded
to sixty four bytes. The result of this MAC is the 160-bit
SHA1 digest which is truncated to the first ninety six bits.
These bits are used as the MAC.

3.6 Dynamic Host Configuration Protocol

The DHCP protocol[12] provides clients the ability to
configure their networking and host specific parameters dy-
namically during the boot process. The typical parameters
are the IP addresses of the client, gateways, and DNS server.
DHCP, however, supports up to 255 configuration parame-
ters, or options. Currently approximately one hundred op-
tions are defined for DHCP [2]. One of these options is an
authentication option which is described in Section 4.1.

The format of a DHCP message is shown in Figure 9[12].
The first field in the DHCP message is theopcode. The op-
code can have one of two values, 1 for a BOOTREQUEST

OPCODE

XID

FLAGSSECS

HTYPE HLEN HOPS

Client IP Address

Your (Client) IP Address

IP Address of Next Server in Bootstrap

Relay Agent IP Address

Client Hardware Address (16 bytes)

Options (variable)

Boot File Name (128 bytes)

Optional Server Name (64 bytes)

0 8 16 24 31

Figure 9. DHCP Message Format

message, and 2 for a BOOTREPLY message. The next field,
htype, is the hardware address type defined by the “Assigned
Numbers” RFC[39].hlen indicates the length of the hard-
ware address.hopsis set to zero by the client and used by
BOOTP relay agents to determine if they should forward the
message.xid is a random number chosen by the client. Its
use is to permit the client and the server to associate mes-
sages between each other.secsis set by the client to the
number of seconds elapsed since the start address acquisi-
tion process. Currently, only the leftmost bit of theflags
field is used to help solve an IP multicast problem. The re-
maining bits must be zero.ciaddr is the client address if
the client knows it already,yiaddr is “your” address set by
the server if the client did not know (or had a bad one) its
address.giaddr is the relay agent address.chaddr is the
client’s hardware address.snameis an optional null termi-
nated string containing the server’s name.file is the name
of the boot file. In AEGIS, this is the name of the compo-
nent to recover. Finally,optionsis a variable length field
containing any options associated with the message.

The initial message exchange between the client and the
server is shown in Figure 10.

The client begins the process by sending a DHCPDIS-
COVER message as a broadcast message on its local area

8 of 13

ACK

REQUEST

OFFER

OFFER

ServerClient

Time DISCOVER

Figure 10. Initial DHCP Message Exchange

network. The broadcast message may or may not be for-
warded beyond the LAN depending on the existence of re-
lay agents at the gateways. Any or all DHCP servers re-
spond with a DHCPOFFER message. The client selects one
of the DHCPOFFER messages and responds to that server
with a DHCPREQUEST message, and the server acknowl-
edges it with a DHCPACK.

In addition to providing networking and host specific pa-
rameters, DHCP can provide the name and server location
of a bootstrap program to support diskless clients. After
the client receives the IP address of the boot server and the
name of the bootstrap program, the client uses TFTP[40] to
contact the server and transfer the file.

3.7 Trivial File Transfer Protocol

TFTP was designed to be simple and small enough to
fit into a ROM on a diskless client. Because of this, TFTP
uses UDP rather than TCP with no authentication included
in the protocol. TFTP has five unique messages that are
identified by a two byte opcode value at the beginning of
the packet. The Read Request (RRQ) and the Write Request
(WRQ) packets share the same format and have an options
capability[32]. Unfortunately, the option capability does
not apply to the remaining three packet types (DATA, ACK,
and ERROR). This makes it problematic to use a MAC with
TFTP without changing the protocol itself.

3.8 Initial Mutual Authentication Protocol

A Client (AEGIS) and a Server (Trusted Repository)
wish to communicate and establish a shared secret after
authenticating the identity of each other. There has been
no prior contact between the Client and the Server other
than to agree on a trusted third party, or a public key infras-
tructure, to sign their authorization certificates,CAR. The
Server and the Client also need to have a copy of the trusted

third party’s public key,PCA. The Client sends a message
to the Server containing the Client’s authorization and au-
thentication certificates,CAN . The Server receives the mes-
sage and verifies the Client’s signature on the authentication
certificate and that the hash contained in the authentication
certificate matches that of the message,M . The signature
of the CA on the authorization certificate is also verified
(or chain of certificates). If all are valid and the timestamp
on the authentication certificate is within bounds, then the
Server sends to the Client a message containing its autho-
rization and authentication certificates. The server’s authen-
tication certificate may include the optional DH parameters,
g andp, andY , whereY = gy mod p. If the DH param-
eters are not identified in the certificate, then default values
for g andp are used. Currently, we are using the same de-
fault values as those used in SKIP[5]. The server’s nonce,
snonce, and the client’s nonce,cnonce, are also included
in the message. The Client receives this message and ver-
ifies the signatures on the authentication and authorization
certificates, that the hash in the servers authentication cer-
tificate matches the message hash, and thatcnonce matches
that sent in the first message. If all are valid and the times-
tamp value of the authentication certificate is within bounds
andcnonce matches that sent in the first message, then the
Client sends a signed message to the Server containing its
DH parameterX whereX = gx mod p, and the server’s
noncesnonce. The Server receives the message and verifies
the signature and thatsnonce matches that sent in its previ-
ous message. If both are valid, then the Server can generate
the shared secret,k, using DH,k = Xy mod p. The Client
similarly generates the shared secret,k = Y x mod p. The
shared secret,k, can now be used to authenticate messages
between the Server and the Client until such time as both
agree to changek. Figure 11 depicts the entire exchange
between the Client and the Server with the DHCP messages
identified. The use of the authentication certificate assists
in ensuring that the protocol is “Fail Stop” through the use
of nonces and a short validity period for the certificate. The
use ofsnonce also permits the Server to reuseY over a
limited period. This reduces the computational overhead on
the server during high activity periods. The potential for a
TCPSYN like denial of service attack[24] is mitigated in the
same manner by the authentication certificate. The autho-
rization certificate also prevents clients from masquerading
as a server because of the client/server capability tag. This
is a benefit not possible with basic X.509 certificates.

3.9 Subsequent Message Authentication

After the establishment of the shared secret through the
protocol described above, subsequent DHCP messages are
authenticated through the use of the SHA1 HMAC defined
in Section 3.5 augmented with a one up counter to prevent

9 of 13

X, snonce, S (M)

P CAP

CAN

Client
CAR

Client

VClient

Y=g mod py

VCA CAR

Client

CAN

Client

()

()

CAN

Server
CAR

x
k = Y mod p

hash = H(M)?

hash = H(M)?

CAN

Server

CAR

Server

X=g mod px

ServerV ()

CAV ()

cnonce = cnonce?

ClientV Client(S (M))

k = X mod p
y

snonce = snonce
?

Client Server

,

,
Server

Client

SHA1MAC(M, k)

CA

Figure 11. Authentication Message Exchange

replays. The counter is initially set to zero when the shared
secret,k, is derived. In computing the MAC, the fieldsgi-
addrandhopsmust be zeroed since these fields are mutable
by relay agents.

Authentication of the subsequent TFTP messages re-
quire the use of the IPSEC Authentication header option
described in Section 3.4.

4 Implementation

Moving from a high level design to an implementation
requires a great deal of work. In this section we take the
protocol and certificates described in section 4 and describe
their implementation using DHCP and TFTP. We also pro-
vide the message formats and type information. We con-
clude the section by providing performance information,
and discussing related work.

4.1 DHCP Authentication Option

DHCP is extensible through the use of the variable length
options field at the end of each DHCP message. The for-
mat and use of this field is currently defined by an Internet
RFC [2]. An option for authentication is also defined by
a draft RFC [11]. The format of the authentication option
is shown in Figure 12. The DHCP authentication option
was designed to support a wide variety of authentication
schemes by using single byte protocol and length fields.
Unfortunately, a single byte value for the size in octets of
authentication information severely limits the ability to in-
clude public key certificates, with reasonable key sizes, in

90 Length Protocol

Authentication Information

8 16 24 310

Figure 12. DHCP Authentication Option For-
mat

Type Value
Authorization Certificate 0
Client Authentication Certificate 1
Server Authentication Certificate 2
Component Authentication Certificate3
X value 4
snonce 5
signature 6
SHA1MAC 7

Table 2. AEGIS Types

the data field of the option. Fortunately however, we do so
by using the BTF format described earlier, and using multi-
ple authentication option fields. While this latter approach
technicallyviolates the DHCP authentication option proto-
col, it does not cause any interoperability problems. An
alternate approach would have required increasing the the
option size field from one to two bytes. While interoperabil-
ity issues could be mitigated, the approach still presented a
significant change to the DHCP protocol.

Since we must use multiple authentication option fields
in a DHCP message, we must add a field to identify the
information contained in the option. The resultant AEGIS
authentication option format is shown in Figure 13, and a
table describing the various types is shown in Table 2. The

90

8 16 24 310

Length ÆGIS AEGISType

AEGIS Information

Figure 13. AEGIS Authentication Option For-
mat

client and server use this option format to exchange the in-
formation required by our protocol.

10 of 13

IP
HDR

AH
HDR

UDP
HDR

TFTP
FRAME

Figure 14. Authenticated TFTP Datagram For-
mat

In addition to using BTF formatted SPKI certificates, we
support the use of a new DHCP option to permit the con-
tinuation of the previous option field. Through the use of
this option, any information that exceeds the two hundred
and fifty six bytes available in a DHCP option can be ex-
tended into the next field. This permits the use of X.509v3
certificates if desired.

4.2 Trivial File Transfer Protocol Authentication

As we discussed earlier, adding authentication to TFTP
packets within the currently defined protocol is problematic.
Rather than suffer the potential interoperability problems,
we use the IPSEC Authentication header[25]. This ap-
proach has several benefits. The foremost is that it doesn’t
require any changes to the TFTP protocol itself, and it uses
a proposed standard for authentication. The resulting TFTP
datagram is shown in Figure 14.

4.3 Using DHCP/TFTP as the Recovery Protocol

Once authentication is added to DHCP and TFTP,
AEGIS can use them without further modifications as its
recovery protocol. In AEGIS, the client follows the DHCP
protocol but adds to the DHCPDISCOVER message the
name of the required component needed followed by the
SHA1 hash of the component in the boot file name field.
Once the DHCP protocol is completed and the shared secret
established, the AEGIS client contacts the trusted reposi-
tory using TFTP with authentication and downloads the new
component.

4.4 Prototype Information

We are currently in the process of completing this
work using the Internet Software Consortium’s DHCP
server [28], the GNU Multi-Precision Arithmetic package
(GnuMP) [21], the Etherboot package [23], and portions of
AT&T’s Cryptolib [27]. Currently, the prototype ROM im-
age is approximately 41 KB. This includes a subset of the
DHCP protocol and all of the cryptographic code described
in this paper. It currently does not contain the BTF certifi-
cate parsing code.

Algorithm Time
SHA1 6.1 MB/sec
DSA Verify (1024bit) 88 msec
DSA Sign (1024bit) 26 msec
Generate X,Y (1024bit) 27 msec
Generate k (1024bit) 91 msec

Table 3. AEGISrom Cryptographic Bench-
marks

4.4.1 Performance Information

This section provides performance estimates for the recov-
ery protocol based on its current implementation. The tim-
ings were obtained using a 200Mhz Pentium with 32MB
of main memory using an Intel EtherExpress Pro100B net-
work interface card and the AEGIS recovery ROM code.
The SHA1 code is from Cryptolib 2.0beta, and the DSA and
Diffie-Hellman implementations were done using GNU MP.
Times for the cryptographic operations are shown in Table
3. The times for DSA Verify and Sign include the cost of
computing the SHA1 digest of the resultant DHCP message.

4.4.2 Initial Exchange

The initial authentication exchange includes the first three
DHCP messages,DHCPDISCOVER, DHCPOFFERand
DHCPREQUEST. DHCPDISCOVERrequires the client to
perform one signature operation, and the server must per-
form two verify operations. Thus, the total cost of this mes-
sage is 202 msec. TheDHCPOFFERmessage requires the
server to generateY and perform one signature operation.
The client must perform two verify operations. This re-
sults in a message cost of 229 msec. The final message,
DHCPREQUEST, requires the client to generateX andk,
and perform one signature operation. The server must per-
form one verify operation, and generatek resulting in a
message cost of 323 msec. Summing the cost of these three
messages gives a total cost of 754 msec.

While the above time may seem too high a cost to pay
for security, the total time is small when compared to the
total time spent booting a computer system. It is unlikely
that users will see the increase in time required to perform
the authentication. Also, the above times are unoptimized
at this point in the prototype.

4.4.3 Subsequent Exchanges

Subsequent DHCP and TFTP messages use the MAC de-
scribed earlier, and will likely (in a LAN situation) be
bounded by the speed of SHA1, 6.1 MB/sec.

11 of 13

4.5 Related Work

To our knowledge, there is no previous academic work
involving the secure recovery of bootstrap components. Re-
cently, however, several commercial products have been an-
nounced that allow system administrators to automatically
update and manually repair bootstrap components. None of
the proposed products, however, include automatic recovery
and repair.

There are several efforts at incorporating authentication
into DHCP. Microsoft, Intel and others are working on de-
veloping a security architecture for the NetPC specification
which uses DHCP and TFTP. While an early draft of this
paper was provided to members of that group, the group
has not revealed their draft architecture yet.

There are also two draft RFCs. The first effort [11] in-
volves the use of a shared secret between the DHCP client
and server. While this approach is secure, it severely lim-
its the mobility of clients to only those domains where a
shared secret was previously established. Furthermore, the
maintenance and protection of the shared secrets is a dif-
ficult process. Another effort at incorporating authentica-
tion into DHCP is by TIS. This proposal combines DHCP
with DNSSEC[13]. This approach provides for the mobil-
ity of DHCP clients, but at a significant increase in cost in
terms of complexity. The client implementation, in order
to support this approach, must also include an implementa-
tion of DNSSEC. This will significantly increase the size of
client code- possibly beyond the ROM size available to the
client. Recently, Intel has proposed authentication support
for DHCP [37]. Their proposal uses a two phase approach.
In the first phase, the computer system boots normally using
DHCP. The second phase begins after the system completes
the DHCP process and uses ISAKMP [33] to exchange a
security association. This security association is then used
to once again obtain the configuration information from the
DHCP server using a secure channel, if such a channel can
be established. This information is then compared to that
obtained in the first phase. If they differ or a secure chan-
nel cannot be established, then the boot fails. The benefit of
this approach is that it requires no changes to DHCP. The
drawbacks are the same as the DNSSEC approach with the
addition of two problems. The first is a possible race con-
dition vulnerability during the time before the two configu-
rations are compared. The second is that the approach does
not protect against denial of service attacks.

5 Future Work

One of the major goals of the AEGIS research has been
the development of new ideas for the construction of se-
cure systems, with the additional constraint that the ideas
must be realizable today or in the very near term with com-

mercial platforms. While confining, this constraint ensures
that AEGIS results will have impact beyond simply the aca-
demic community.

We intend to further investigate the centralized manage-
ment of the bootstrap process. This has many practical
uses, including desktop management in LAN-attached PCs
(where integrity failures might be stimulated by viruses or
user-inserted cards), as well as secure, recoverable boot-
strap for network elements with processors, such as bridges,
IP routers, and “Active Networks”[1].

The recovery protocol itself will be fully incorporated
into the DHCP model, and we intend to propose it as an
authentication RFC standard. We also intend to propose
the DHCP option continuation as a standard. We expect to
make these proposals at the December 1997 Internet Engi-
neering Task Force meeting.

6 Conclusions

We introduced the AEGIS secure bootstrap architecture,
explained its approach to integrity and the assumptions it
makes about the operating environment, and discussed the
general idea behind automated recovery in a secure boot-
strap process using a trusted repository. We are currently
implementing this new automated recovery process in the
context of the PC architecture using a small portion of the
BIOS. We have shown how it can be extended to recovery
over networks by use of cryptographic protocols, and pro-
vided one such protocol, with expected data structures and
packet formats.

We believe that this work has a significant impact on the
administration and manage-ability of systems. While we
have previously demonstrated the need and provided an ar-
chitecture for a secure bootstrap for any trusted system, here
we have shown how that architecture can be utilized in a
very realistic environment, with no loss of security. Thus,
we can build distributed computer systems of nodes which
are in two logical states: (1) non-operational (e.g., down
or recovering), and (2) operational and trusted. Such simple
states and transitions ease, and in some sense make possible,
verification of applications built on the distributed systems.

References

[1] D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, and J. M.
Smith. A Secure Active Network Environment Architecture.
Technical Report MS-CIS-97-17, University of Pennsylva-
nia, November 1997.

[2] S. Alexander and R. Droms. DHCP Options and BOOTP
Vendor Extensions. Internet RFC 2132, March 1997.

[3] W. Almesberger.LILO Technical Overview, version 19 edi-
tion, May 1996.

12 of 13

[4] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A Secure
and Reliable Bootstrap Architecture. InProceedings 1997
IEEE Symposium on Security and Privacy, pages 65–71,
May 1997.

[5] A. Aziz, T. Markson, and H. Prafullchan-
dra. Assigned Numbers for SKIP Protocols.
http://skip.incog.com/spec/numbers.html.

[6] C. Committee. Recommendation X.209: Specification of
Basic Encoding Rules for Abstract Syntax Notation One
(ASN.1), 1988.

[7] C. Committee.X.509: The Directory Authentication Frame-
work. International Telephone and Telegraph, International
Telecommunications Union, Geneva, 1989.

[8] C. Computer, D. Computer, H. Packard, Intel, and M. Corpo-
rations.Network PC System Design Guidelines, 1.0b edition,
July 1997.

[9] W. Diffie and M. Hellman. New Directions in Cryptography.
IEEE Transactions on Information Theory, IT–22(6):644–
654, Nov 1976.

[10] W. Diffie, P. van Oorschot, and M. Wiener. Authentica-
tion and Authenticated Key Exchanges.Designs, Codes and
Cryptography, 2:107–125, 1992.

[11] R. Droms. Authentication for DHCP Messages. Work in
Progress, August 1997.

[12] R. Droms. Dynamic Host Configuration Protocol, RFC
2131, March 1997.

[13] D. Eastlake and C. Kaufman. Dynamic Name Service and
Security. Internet RFC 2065, January 1997.

[14] J. Elischer. 386 boot.
/sys/i386/boot/biosboot/README.386, July 1996. 2.1.5
FreeBSD.

[15] C. M. Ellison. SDSI/SPKI BNF. Private Email, July 1997.
[16] C. M. Ellison, B. Frantz, R. Rivest, and B. M. Thomas. Sim-

ple Public Key Certificate. Work in Progress, April 1997.
[17] R. Finlayson. Bootstrap Loading using TFTP. Internet RFC

906, June 1984.
[18] Y. D. G. Davida and B. Matt. Defending Systems Against

Viruses through Cryptographic Authentication. In1989
IEEE Symposium on Security and Privacy, pages 312–318.
IEEE, 1989.

[19] J. Goldmeer. Re: Re: Pentium pro floating point
patch. USENET Posting to intel.motherboards.pentiumpro,
November 1997.

[20] L. Gong and P. Syverson. Fail-Stop Protocols: An Ap-
proach to Designing Secure Protocols. InProceedings of
IFIP DCCA-5, September 1995.

[21] T. Granlund. The GNU Multiple Precision Arithmetic Li-
brary. TMG Datakonsult, 2.0.2 edition, June 1996.

[22] R. Grimes. AT386 Protected Mode Bootstrap Loader.
/sys/i386/boot/biosboot/README.MACH, October 1993.
2.1.5 FreeBSD.

[23] M. Gutschke and K. Yap. Etherboot 3.2.
http://www.syd.dit.csiro.au/staff/ken/personal/etherboot/,
July 1997.

[24] L. Heberlein and M. Bishop. Attack Class: Address Spoof-
ing. InProceedings of the 19th National Information Systems
Security Conference, pages 371–377, October 1996.

[25] S. Kent and R. Atkinson. Work in Progress, October 1997.

[26] H. Krawczyk, M. Bellare, and R. Canetti. HMAC:Keyed–
Hashing for Message Authentication. Internet RFC 2104,
February 1997.

[27] J. Lacy, D. Mitchell, and M. Blaze. Cryptolib 2.0beta. Email
to cryptolib@research.att.com, 1995.

[28] T. Lemon. Dynamic Host Configuration Server.
ftp://ftp.fugue.com/pub/, 1997.

[29] H. Levy. Capability Based Computer Systems. Digital Press,
1984.

[30] P. T. Ltd.System BIOS for IBM PCs, Compatibles, and EISA
Computers. Addison Wesley, 2nd edition, 1991.

[31] C. Madson and R. Glenn. The Use of HMAC-SHA1-1-96
within ESP and AH. Work in Progress, November 1997.

[32] G. Malkin and A. Harkin. TFTP Option Extension. Internet
RFC 1782, March 1995.

[33] D. Maughan, M. Schertler, M. Schneider, and J. Turner. In-
ternet Security Association and Key Management Protocol
(ISAKMP). Internet–draft, IPSEC Working Group, June
1996.

[34] Microsoft. Authenticode Techonology. Microsoft’s Devel-
oper Network Library, October 1996.

[35] N. I. of Standards. Digital Signature Standard. Technical Re-
port FIPS-186, U.S. Department of Commerce, May 1994.

[36] N. I. of Standards. Secure Hash Standard. Technical Report
FIPS-180-1, U.S. Department of Commerce, April 1995.
Also known as: 59 Fed Reg 35317 (1994).

[37] B. V. Patel. Securing DHCP. Work in Progress, July 1997.
[38] M. M. Pozzo and T. E. Gray. A Model for the Containment

of Computer Viruses. In1989 IEEE Symposium on Security
and Privacy, pages 312–318. IEEE, 1989.

[39] J. Reynolds and J. Postel. Assigned Numbers. Internet RFC
1700, October 1994.

[40] K. R. Sollins. The TFTP Protocol (revision 2). Internet RFC
1350, July 1992.

13 of 13

