
Automated Web Patrol with Strider HoneyMonkeys:

Finding Web Sites That Exploit Browser Vulnerabilities

Yi-Min Wang, Doug Beck, Xuxian Jiang, Roussi Roussev,

Chad Verbowski, Shuo Chen, and Sam King

Microsoft Research, Redmond

Abstract

Internet attacks that use malicious web sites to install
malware programs by exploiting browser vulnerabilities
are a serious emerging threat. In response, we have
developed an automated web patrol system to automatically
identify and monitor these malicious sites. We describe the

design and implementation of the Strider HoneyMonkey
Exploit Detection System, which consists of a pipeline of
“monkey programs” running possibly vulnerable browsers
on virtual machines with different patch levels and

patrolling the Web to seek out and classify web sites that
exploit browser vulnerabilities.

Within the first month of utilizing this system, we
identified 752 unique URLs hosted on 288 web sites that

could successfully exploit unpatched Windows XP
machines. The system automatically constructed topology
graphs based on traffic redirection to capture the
relationship between the exploit sites. This allowed us to
identify several major players who are responsible for a

large number of exploit pages. By monitoring these 752
exploit-URLs on a daily basis, we discovered a malicious
web site that was performing zero-day exploits of the
unpatched javaprxy.dll vulnerability and was operating

behind 25 exploit-URLs. It was confirmed as the first
“inthe-wild”, zero-day exploit of this vulnerability that was
reported to the Microsoft Security Response Center.
Additionally, by scanning the most popular one million

URLs as classified by a search engine, we found over seven
hundred exploit-URLs, many of which serve popular
content related to celebrities, song lyrics, wallpapers, video
game cheats, and wrestling.

1. Introduction

Internet attacks that use a malicious or hacked web site

to exploit unpatched client-side vulnerabilities of visiting

browsers are on the rise. Malcode distributed by this method
in the past 12 months includes the Download.Ject [D04],

Bofra [R04], and Xpire.info [B04] programs. These attacks

1 An automation-enabled program such as the Internet Explorer

browser allows programmatic access to most of the operations

that can be invoked by a user. A “monkey program” is a program

that drives the browser in a way that mimics a human user’s

operation. 2

allow web servers that host compromised URLs to install

malcode on visiting client machines without requiring any
user interaction beyond visitation. There have been several

manual analyses of these events

[E04,F04,G05,IF05,R05,S05,T05]. Although these analyses
provide very useful and detailed information about which

vulnerabilities are exploited and which malware programs
are installed, such efforts are not scalable, do not provide a

comprehensive picture of the problem, and are generally

ineffective at efficiently finding new malicious sites.

To address these issues, we developed a system that

uses a pipeline of active, client-side, Virtual Machine (VM)-
based honeypots [H,HC], called Strider HoneyMonkeys, to

perform large-scale, systematic and automated web patrol.

The HoneyMonkey system uses monkey programs1 that run
within virtual machines with OS’s of various patch levels to

drive web browsers in an attempt to mimic human web
browsing. Our approach adopts a state-management

methodology to cybersecurity: instead of directly detecting

the acts of vulnerability exploits, the system uses the Strider
Tracer [W03] to catch unauthorized file creations and

configuration changes that are the result of a successful

exploit.

We demonstrate the effectiveness of our method by

discovering a large community of malicious web sites that
host exploit pages and by deriving the redirection

relationships among them. We describe a real-world
experience with identifying a zero-day exploit2 using this

system. We show the existence of hundreds of malicious

web pages amongst many popular web sites. Finally, we
propose a comprehensive anti-exploit process based on this

monitoring system in order to improve Internet safety.

This paper is organized as follows. Section 2 provides

background information on the problem space by describing
the techniques used in actual client-side exploits of popular

web browsers. Section 3 gives an overview of the Strider

HoneyMonkey Exploit Detection System and its
surrounding Anti-Exploit Process. Section 4 evaluates the

effectiveness of HoneyMonkey in both known-vulnerability

 In this paper, a zero-day exploit

refers to a vulnerability exploit that

exists before the patch for the

vulnerability is released. The

vulnerability can be known or

unknown to the public at that time.

and zero-day exploit detection, and presents an analysis of

the exploit data to help prioritize investigation tasks. Section
5 discusses the limitations of and possible attacks on the

current HoneyMonkey system and describes several
countermeasures including an enhancement based on a

vulnerability-specific exploit detection mechanism. Section

6 surveys related work and Section 7 concludes the paper.

2. Browser-based Vulnerability Exploits

Malicious activities performed by actual web sites

exploiting browser vulnerabilities can be divided into four

steps: code obfuscation, URL redirection, vulnerability

exploitation, and malware installation.

2.1. Code Obfuscation

To complicate investigation and to escape
signaturebased scanning by anti-virus/anti-spyware

software, some web sites use a combination of the following
code obfuscation techniques: (1) dynamic code injection

using the document.write() function inside a script; (2)

unreadable, long strings with encoded characters such as

“%28”, “h”, etc. which are then decoded either by the

unescape() function inside a script or by the browser; (3)

custom decoding routine included in a script; and (4) sub-

string replacement using the replace() function. Since code-

obfuscation is a common technique, this limits the ability of
attack-signature-based detectors to detect new attacks that

leverage old exploit code.

2.2. URL Redirection

Most malicious web sites automatically redirect

browser traffic to additional URLs. Specifically, when a

browser visits a primary URL, the response from that URL
instructs the browser to automatically visit one or more

secondary URLs, which may or may not affect the content
that is displayed to the user. Such redirections typically use

one of the following mechanisms classified into three

categories: (1) protocol redirection using HTTP 302

Temporary Redirect; (2) HTML tags including <iframe>,

<frame> inside <frameset>, and <META http-
equiv=refresh>; (3) script functions including

window.location.replace(), window.location.href(),
window.open(), window.showModalDialog(), and

<link_ID>.click(), etc. Since redirection is commonly used by

non-malicious sites to enrich content, simply eliminating
redirection from a browser would present significant

complications

2.3. Vulnerability Exploitation

It is not uncommon to see a malicious web page

attempting to exploit multiple browser vulnerabilities in
order to maximize the chance of a successful attack. Figure

1 shows an example HTML fragment that uses various

primitives to load multiple files from different URLs on the
same server to exploit three vulnerabilities fixed in

Microsoft Security Bulletins MS05-002 [M52], MS03-011
[M311], and MS04-013 [M413]. If any of the exploits

succeeds, a Trojan downloader named win32.exe is
downloaded and executed. Note that although Internet

Explorer is the common target due to its popularity, other

browsers can also be attacked.

2.4. Malware Installation

The purpose of an exploit is almost always to introduce

some piece of arbitrary code on the victim machine, as a
way to achieve a larger attack goal. We have observed a

plethora of malcode types installed through browser
exploits, including viruses that infect files, backdoors that

open entry points for future unauthorized access, bot

programs that allow the attacker to control a whole network
of compromised systems, Trojan downloaders that connect

to the Internet and download other programs, Trojan
droppers that drop files from themselves without accessing

<html><head><title></title></head><body>
<style>
* {CURSOR: url("http://vxxxxxxe.biz/adverts/033/sploit.anr")}
</style>
<APPLET ARCHIVE='count.jar' CODE='BlackBox.class' WIDTH=1 HEIGHT=1>
<PARAM NAME='url' VALUE='http://vxxxxxxe.biz/adverts/033/win32.exe'></APPLET>
<script>

try{ MS03-011
document.write('<object
data=`ms-its:mhtml:file://
C:\fo'+'o.mht!'+'http://vxxxx'+'xxe.biz//adv'+'erts//033//targ.ch'+'m::/targ'+'et.htm` type=`text/x-scriptlet`></ob'+'ject>');
}catch(e){}
</script>

MS04-013
</body></html>

Figure 1. Actual sample Web page attempting to exploit multiple vulnerabilities

MS05 - 002

the Internet, and Trojan proxies that redirect network traffic.

Some spyware programs and even anti-spyware programs

are also installed through exploits.

3. The HoneyMonkey System

The HoneyMonkey system attempts to automatically

detect and analyze a network of web sites that exploit web
browsers. Figure 2 illustrates the HoneyMonkey Exploit

Detection System, shown inside the dotted square, and the

surrounding Anti-Exploit Process which includes both

automatic and manual components.

3.1. Exploit Detection System

The exploit detection system is the heart of the
HoneyMonkeys design. This system consists of a 3-stage

pipeline of virtual machines. Given a large list of input
URLs with a potentially low exploit-URL density, each

HoneyMonkey in Stage 1 starts with a scalable mode by

visiting N URLs simultaneously inside one unpatched VM.
When the HoneyMonkey detects an exploit, it switches to

the basic, one-URL-per-VM mode to re-test each of the N

suspects in order to determine which ones are exploit URLs.

Stage-2 HoneyMonkeys scan Stage 1 detected exploit-

URLs and perform recursive redirection analysis to identify
all web pages involved in exploit activities and to determine

their relationships. Stage-3 HoneyMonkeys continuously
scan Stage-2 detected exploit-URLs using (nearly) fully

patched VMs in order to detect attacks exploiting the latest

vulnerabilities.

We used a network of 20 machines to produce the results

reported in this paper. Each machine had a CPU speed

between 1.7 and 3.2 GHz, a memory size between 512 MB

and 2GB, and was responsible for running one

VM configured with 256 MB to 512MB of RAM. Each VM

supported up to 10 simultaneous browser processes in the
scalable mode, with each process visiting a different URL.

Due to the way HoneyMonkeys detect exploits

(discussed later), there is a trade-off between the scan rate
and the robustness of exploit detection: if the HoneyMonkey

does not wait long enough or if too many simultaneous
browser processes cause excessive slowdown, some exploit

pages may not be able to perform a detectable attack (e.g.,

beginning a software installation).

Through extensive experiments, we determined that a

wait time of two minutes was a good trade-off. Taking into
account the overhead of restarting VMs in a clean state, each

machine was able to scan and analyze between 3,000 to
4,000 URLs per day. We have since improved the scalability

of the system to a scan rate of 8,000 URLs per day per

machine in the scalable mode. (In contrast, the basic mode
scans between 500 and 700 URLs per day per machine.) We

expect that using a more sophisticated VM platform that

enables significantly more VMs per host machine and faster
rollback [VMC+05] would significantly increase our

scalability.

3.1.1. Exploit Detection

Although it is possible to detect browser exploits by

building signature-based detection code for each known

vulnerability or exploit, this approach is manually intensive.

To lower this cost, we take the following blackbox, non-
signature-based approach: we run a monkey program that

launches a browser instance to visit each input URL and

Figure 2. HoneyMonkey Exploit Detection System and Anti-Exploit Process

then waits for a few minutes to allow downloading of any

code which may have a short time delay. We then detect a
group of persistent-state changes to signal exploitation.

Since the monkey is not instructed to click on any dialog
box to permit software installation, any executable files or

registry entries created outside the browser sandbox indicate

an exploit. This approach has the additional important
advantage of allowing the detection of known-vulnerability

exploits and zero-day exploits in a uniform way.

Specifically, the same monkey program running on
unpatched machines to detect a broad range of browser-

based vulnerability exploits (as shown in Stages 1 and 2)
can run on fully patched machines to detect zero-day

exploits, as shown in Stage 3.

At the end of each visit, the HoneyMonkey generates

an XML report containing the following five pieces of

information:

(1) Executable files created or modified outside the

browser sandbox folders: this is the primary mechanism
for exploit detection. It is implemented on top of the Strider

Tracer [W03], which uses a file-tracing driver to efficiently

record every single file read/write operation.

(2) Processes created: Strider Tracer also tracks all

child processes created by the browser process.

(3) Windows registry entries created or modified:

Strider Tracer additionally includes a driver that efficiently
records every single registry [G04] read/write. To highlight

the most critical entries, we use the Strider Gatekeeper and
GhostBuster filters [W04,W05], which target registry

entries most frequently attacked by spyware, Trojans, and

rootkits based on an extensive study. This allows
HoneyMonkey to detect exploits that modify critical

configuration settings (such as the browser home page and

the wallpaper) without creating executable files.

(4) Vulnerability exploited: to provide additional
information and to address limitations of the black-box

approach, we have developed and incorporated a

vulnerability-specific detector, to be discussed in Section 5.
This is based on the vulnerability signature of the exploit,

rather than on any particular piece of malcode.

(5) Redirect-URLs visited: Since malcode is often

laundered through other sites, this module allows us to track

redirections to determine both the real source of the

malcode and those involved in the distribution chain.

To ease cleanup of infected state, we run
HoneyMonkeys inside a VM. (Our current implementation

uses Microsoft Virtual PC and Virtual Server.) Upon
detecting an exploit, the monkey saves its logs and notifies

the Monkey Controller on the host machine to destroy the

infected VM and re-spawn a clean HoneyMonkey, which
then continues to visit the remaining URL list. The Monkey

Controller then passes the detected exploit-URL to the next

monkey in the pipeline to further investigate the strength of

the exploit.

3.1.2. Redirection Analysis

Many exploit-URLs identified in Stage 1 do not
perform the actual exploits but instead act as front-end

content providers that serve “interesting” content such as

pornography in order to attract browser traffic. This traffic
is then sold and redirected to back-end exploit providers,

which specialize in exploiting clients and installing

malware.

URLs visited through traffic redirection can be tracked
with a Browser Helper Object (BHO) running within each

browser process or by intercepting and analyzing network

packets. When the HoneyMonkey runs in its “redirection
analysis” mode, any automatically visited URLs are fed

back to the system for further checking. This recursive

scanning allows the construction of topology graphs based

on traffic redirection. In Section 4, we present our analysis

of topology graphs to demonstrate how they enable the
identification of major exploit providers that receive traffic

from a large number of content providers; they also show

how exploit providers organize their web pages in a way that
facilitates customized malware installations for each of their

affiliates. Finally, we are able to positively identify the web
pages that actually perform the exploits by implementing an

option in our redirection tracker to block all redirection

traffic.

3.2. Anti-Exploit Process

The Anti-Exploit Process involves generating the input

URL lists for HoneyMonkeys to scan, and taking various

actions based on analyses of the output exploit-URL data.

3.2.1. Generating Input URL Lists

We use three sources for generating “interesting” URLs
for analysis. The first category consists of suspicious URLs

including web sites that are known to host spyware

[CWS05] or malware, links appearing in phishing or spam
emails [S05] or instant messages, web pages serving

questionable content such as pornography, URL names that

are typos of popular sites [G05], web sites involved in DNS
cache poisoning [HD05,IW05,S04], and similar common

sources of malicious web content.

The second category consists of the most popular web

pages, which, if compromised, can potentially infect a large
population. Examples include the top 100,000 web sites

based on browser traffic ranking [AL] or the top N million

web sites based on click-through counts as measured by

search engines.

The third category encompasses URL lists of a more
localized scope. For example, an organization may want to

regularly verify that its web pages have not been

compromised to exploit visitors; a user may want to

investigate whether any recently visited URL was

responsible for causing a spyware infection.

3.2.2. Acting on Output Exploit-URL Data

Stage 1 Output – Exploit-URLs

The percentage of exploit-URLs in a given list can be
used to measure the risk of web surfing. For example, by

comparing the percentage numbers from two URL lists

corresponding to two different search categories (e.g.,
gambling versus shopping), we can assess the relative risk

of malware infection for people with different browsing

habits. Also, we have observed that depth-N crawling of
exploit pages containing a large number of links, as

illustrated at the top of Figure 2, often leads to the

discovery of more exploit pages.

Stage 2 Output – Traffic-Redirection Topology Graphs

The HoneyMonkey system currently serves as a

leadgeneration tool for the Internet safety enforcement
team in the Microsoft legal department. The topology

graphs and subsequent investigations of the malicious

behavior of the installed malware programs provide a
prioritized list for potential enforcement actions that

include sending sitetakedown notices, notifying law
enforcement agencies, and filing civil suits against the

individuals responsible for distributing the malware

programs. We have successfully shut down several

malicious URLs discovered by the HoneyMonkey.

Due to the international nature of the exploit
community, access blocking may be more appropriate and

effective than legal actions in many cases. Blocking can be

implemented at different levels: search engines can remove
exploit-URLs from their database; Internet Service

Providers (ISPs) can black-list exploit-URLs to protect
their entire customer base; corporate proxy servers can

prevent employees from accessing any of the exploitURLs;

and individual users can block their machines from
communicating with any exploit sites by editing their local

“hosts” files to map those server hostnames to a local

loopback IP address.

Exploit-URLs also provide valuable leads to our
antispyware product team. Each installed program is

tagged with an “exploit-based installation without user

permission” attribute. This clearly distinguishes the
program from other more benign spyware programs that

are always installed after a user accepts the licensing

agreement.

Stage 3 Output – Zero-Day Exploit-URLs and Topology

Graphs

By constantly monitoring all known exploit-URLs
using HoneyMonkeys running on fully patched machines,

we can detect zero-day exploits either when one of the

monitored URLs “upgrade” its own exploit code or when a

new URL that hosts zero-day exploit code starts receiving
redirection traffic from any of the monitored URLs. Zero-

day exploit monitoring is perhaps the most valuable
contribution of the HoneyMonkey because zeroday exploits

can be extremely damaging and whether they are actually

being used in the wild is the most critical piece of
information in the decision process for security guidance,

patch development, and patch release. When a

HoneyMonkey detects a zero-day exploit, it reports the URL
to the Microsoft Security Response Center, which works

closely with the enforcement team and the groups owning
the software with the vulnerability to thoroughly investigate

the case and determine the most appropriate course of

action. We will discuss an actual case in Section 4.2.

Due to the unavoidable delay between patch release and

patch deployment, it is important to know whether the
vulnerabilities fixed in the newly released patch are being

actively exploited in the wild. Such latest-
patchedvulnerability exploit monitoring can be achieved by

running HoneyMonkeys on nearly fully patched machines,

which are missing only the latest patch. This provides
visibility into the prevalence of such exploits to help provide

guidance on the urgency of patch deployment.

4. Experimental Evaluation

We present experimental results in three sections:

scanning suspicious URLs, zero-day exploit detection, and

scanning popular URLs. We refer to the first and the third
sets of data as “suspicious-list data” and “popular-list

data”, respectively. All experiments were performed with

Internet Explorer browser version 6.0.

We note that the statistics reported in this paper do not

allow us to calculate the total number of end-hosts exploited
by the malicious web sites we have found. Such calculations

would require knowing precisely the number of machines
that have visited each exploit page and whether each

machine has patched the specific vulnerabilities targeted by

each visited exploit page.

4.1. Scanning Suspicious URLs

4.1.1. Summary Statistics

Our first experiment aimed at gathering a list of most

likely candidates for exploit-URLs in order to get the
highest hit rate possible. We collected 16,190 potentially

malicious URLs from three sources: (1) a web search of

“known-bad” web sites involved in the installations of
malicious spyware programs [CWS05]; (2) a web search for

Windows “hosts” files [HF] that are used to block
advertisements and bad sites by controlling the domain

name-to-IP address mapping; (3) depth-2 crawling of some

of the discovered exploit-URLs.

We used the Stage-1 HoneyMonkeys running on

unpatched WinXP SP1 and SP2 VMs to scan the 16,190
URLs and identified 207 as exploit-URLs; this translates

into a density of 1.28%. This serves as an upper bound on
the infection rate: if a user does not patch his machine at all

and he exclusively visits risky web sites with questionable

content, his machine will get exploited by approximately
one out of every 100 URLs he visits. We will discuss the

exploit-URL density for normal browsing behavior in

Section 4.3.

After recursive redirection analysis by Stage-2

HoneyMonkeys, the list expanded from 207 URLs to 752
URLs – a 263% expansion. This reveals that there is a

sophisticated network of exploit providers hiding behind

URL redirection to perform malicious activities.

Figure 3 shows the breakdown of the 752 exploitURLs
among different service-pack (SP1 or SP2) and patch levels,

where “UP” stands for “UnPatched”, “PP” stands for

“Partially Patched”, and “FP” stands for “Fully Patched”.
As expected, the SP1-UP number is much higher than the

SP2-UP number because the former has more known

vulnerabilities that have existed for a longer time.

 Number of

Exploit-URLs
Number of

Exploit Sites

Total 752 288

SP1 Unpatched (SP1-UP) 688 268

SP2 Unpatched (SP2-UP) 204 115

SP2 Partially Patched

(SP2-PP)
17 10

SP2 Fully Patched

(SP2-FP)

0 0

Figure 3. Exploit statistics for Windows XP as a
function of patch levels (May/June 2005 data)

The SP2-PP numbers are the numbers of exploit pages
and sites that successfully exploited a WinXP SP2 machine

partially patched up to early 2005. The fact that the numbers
are one order of magnitude lower than their SP2-UP

counterparts demonstrates the importance of patching. An

important observation is that only a small percentage of
exploit sites are updating their exploit capabilities to keep

up with the latest vulnerabilities, even though proof-of-

concept exploit code for most of the vulnerabilities are
publicly posted. We believe this is due to three factors: (1)

Upgrading and testing new exploit code incurs some cost
which needs to be traded off against the increase in the

number of victim machines; (2) Some vulnerabilities are

more difficult to exploit than others; for example, some of
the attacks are nondeterministic or take longer. Most

exploiters tend to stay with existing, reliable exploits, and

only upgrade when they find the next easy target. (3) Most

security-conscious web users diligently apply patches.
Exploit sites with “advanced” capabilities are likely to draw

attention from knowledgeable users and become targets for

investigation.

 The SP2-FP numbers again demonstrate the

importance of software patching: none of the 752

exploitURLs was able to exploit a fully updated WinXP SP2
machine according to our May/June 2005 data. As we

describe in Section 4.2, there was a period of time in early

July when this was no longer true. We were able to quickly
identify and report the few exploit providers capable of

infecting fully patched machines, which led to actions to

shut them down.

4.1.2. Topology graphs and node ranking

Figure 4 shows the topology graph of the 17
exploitURLs for SP2-PP. These are among the most

powerful exploit pages in terms of the number of machines
they are capable of infecting and should be considered high

priorities for investigation. Rectangular nodes represent

individual exploit-URLs. Solid arrows between rectangles
represent automatic traffic redirection. Circles represent site

nodes that act as an aggregation point for all exploit pages

hosted on that site, with the site node having a thin edge
connecting each of its child-page rectangles. Nodes that do

not receive redirected traffic are most likely content
providers. Nodes that receive traffic from multiple exploit

sites (for example, the large rectangle R at the bottom) are

most likely exploit providers.

The size of a node is proportional to the number of

cross-site arrows directly connected to it, both incoming and
outgoing. Such numbers provide a good indication of the

relative popularity of exploit-URLs and sites and are

referred to as connection counts. It is clear from the picture
that the large rectangle R and its associated circle C have

the highest connection counts. Therefore, blocking access to

this site would be the most effective starting point since it

would disrupt nearly half of this exploit network.

The topology graph for the 688 SP1-UP exploit-URLs

is much larger and more complex. It is only useful when

viewed from a graph manipulation tool and is therefore
omitted here. Most of the URLs appear to be pornography

pages and the aggressive traffic redirection among them
leads to the complexity of the bulk of the graph. In the

isolated corners, we found a shopping site redirecting traffic

to five advertising companies that serve exploiting
advertisements, a screensaver freeware site, and over 20

exploit search sites. Next, we describe two ranking
algorithms that help prioritize the investigations of these

hundreds of URLs and sites.

Site ranking based on connection counts

Figure 5 illustrates the top 15 exploit sites for SP1-UP
according to their connection counts. The bar height

indicates how many other sites a given site has direct traffic-

redirection relationship with and likely reflects how
entrenched a site owner is with the exploit community. The

bar for each site is composed of three segments of different
colors: a black segment represents the number of sites that

redirect traffic here; a white segment represents the number

of sites to which traffic is redirected; a gray segment
indicates the number of sites that have two-way traffic

redirection relationship with the given site.

For example, site #15 corresponds to a content provider

who is selling traffic to multiple exploit providers and

sharing traffic with a few other content providers. Site #7
corresponds to an exploit provider that is receiving traffic

from multiple web sites. Sites #4, #5, and #9 correspond to
pornography sites that play a complicated role: they redirect

traffic to many exploit providers and receive traffic from

many content providers. Their heavy involvement in exploit
activities and the fact that they are registered to the same

owner suggest that they may be set up primarily for exploit

purposes.

Site ranking, categorization, and grouping play a key
role in the anti-exploit process because it serves as the basis

for deciding the most effective resource allocation for

monitoring, investigation, blocking, and legal actions.

For example, high-ranked exploit sites in Figure 5 should be

heavily monitored because a zero-day exploit page

connected to any of them would likely affect a large number
of web sites. Legal investigations should focus on top

exploit providers, rather than content providers that are
mere traffic redirectors and do not perform exploits

themselves.

Site ranking based on number of hosted exploit-URLs

Figure 6 illustrates the top 129 sites, each hosting more
than one exploit URL. This ranking helps highlight those

web sites whose internal page hierarchy provides important

insights. First, some web sites host a large number of exploit
pages with a well-organized hierarchical structure. For

example, the #1 site hosts 24 exploit pages that are
organized by what look likes account names for affiliates;

many others organize their exploit pages by affiliate IDs or

referring site names; some even organize their pages by the
names of the vulnerabilities they exploit and a few of them

have the word “exploit” as part of the URL names.

The second observation is that some sophisticated web

sites use transient URLs that contain random strings. This is
designed to make investigations more difficult. Site ranking

based on the number of hosted exploit-URLs helps highlight

such sites so that they are prioritized higher for
investigation. The zero-day exploits discussed in the next

sub-section provide a good example of this.

Figure 4. SP2-PP topology graph (17 URLs, 10 sites)

4.2. Zero-Day Exploit Detection

In early July 2005, a Stage-3 HoneyMonkey discovered

our first zero-day exploit. The javaprxy.dll vulnerability was

known at that time without an available patch [J105,J205],
and whether it was actually being exploited was a critical

piece of information that was previously not known. The
HoneyMonkey system detected the first exploit page within

2.5 hours of scanning and it was confirmed to be the first in-

the-wild exploitURL of the vulnerability reported to the
Microsoft Security Response Center. A second exploit-URL

was detected in the next hour. These two occupy positions

#132 and #179, respectively, in our list of 752 monitored
URLs. This information enabled the response center to

provide customers with a security advisory and a followup

security bulletin [SH, J205].

During the subsequent five days, HoneyMonkey
detected that 26 of the 752 exploit-URLs upgraded to the

zero-day exploit. Redirection analysis further revealed that

25 of them were redirecting traffic to a previously unknown

exploit provider site that was hosting exploitURLs with

names in the following form:

http://[IP address]/[8 chars]/test2/iejp.htm

where [8 chars] consists of 8 random characters that

appeared to change gradually over time. Takedown notices

were sent after further investigation of the installed malware
programs, and most of the 25 web pages stopped exploiting

the javaprxy.dll vulnerability shortly after that. Latest-

Patched-Vulnerability Exploit Monitoring

One day after the patch release, HoneyMonkey detected

another jump in the number of exploit-URLs for the

vulnerability: 53 URLs from 12 sites were upgraded in the
subsequent six days. Redirection analysis revealed that all

of them were redirecting traffic to a previously known
exploit provider (ranked #1 in Figure 6) who decided to add

a new exploit page for javaprxy.dll to increase its infection

base. A takedown notice was sent after malware
investigation and all 53 URLs stopped exploiting within a

couple of days.

Figure 5. Top 15 exploit sites ranked by connection counts, among the 268 SP1-UP exploit sites
from the suspicious list

Site ranking based on the number of hosted exploit URLs

Figure 6. Top 129 SP1-UP exploit sites ranked by the number of exploit-URLs hosted

0

10

20

30

40

50

60

Number of sites from which traffic is received

Number of sites with two-way redirection

Number of sites to which traffic is redirected

Important Observations

This experience provides concrete evidence that the
HoneyMonkey system can potentially evolve into a

fullfledged, systematic and automatic zero-day exploit
monitoring system for browser-based attacks. We make the

following observations from the initial success:

(1) Monitoring easy-to-find exploit-URLs is

effective: we predicted that monitoring the 752

exploitURLs would be useful for detecting zero-day
exploits because the fact that we could find them quickly

within the first month implies that they are more popular
and easier to reach. Although zero-day exploits are

extremely powerful, they need to connect to popular web

sites in order to receive traffic to exploit. If they connect to
any of the monitored URLs in our list, the HoneyMonkey

can quickly detect the exploits and identify the exploit

providers behind the scene through redirection analysis.
Our zero-day exploit detection experience confirmed the

effectiveness of this approach.

(2) Monitoring content providers with well-known

URLs is effective: we predicted that monitoring content
providers would be useful for tracking the potentially

dynamic behavior of exploit providers. Unlike exploit

providers who could easily move from one IP address to
another and use random URLs, content providers need to

maintain their well-known URLs in order to continue
attracting browser traffic. The HoneyMonkey takes

advantage of this fundamental weakness in the

browserbased exploit model and utilizes the content
providers as convenient entry points into the exploit

network. Again, our zero-day exploit detection experience

confirmed the effectiveness of this approach.

(3) Monitoring highly ranked and advanced

exploitURLs is effective: we predicted that the top exploit
sites we identified are more likely to upgrade their exploits

because they have a serious investment in this business.
Also, web sites that appear in the SP2-PP graph are more

likely to upgrade because they appeared to be more up-

todate exploiters. Both predictions have been shown to be
true: the first detected zero-day exploit-URL belongs to the

#9 site in Figure 5 (which is registered to the same email
address that also owns the #4 and #5 sites) and 7 of the top

10 sites in Figure 5 upgraded to the javaprxy.dll exploit;

nearly half of the SP2-PP exploit-URLs in Figure 4

upgraded as well.

4.3. Scanning Popular URLs

By specifically searching for potentially malicious web
sites, we were able to obtain a list of URLs that have 1.28%

of the pages performing exploits. A natural question that
most web users will ask is: if I never visit those risky web

sites that serve dangerous or questionable content, do I have

to worry about vulnerability exploits? To answer this

question, we gathered the most popular one million URLs

as measured by the click-through counts from a search
engine and tested them with the HoneyMonkey system. We

also compared the results of this popular-list data with the
suspicious-list data in Section 4.1. Figure 7 summarizes the

comparison of key data.

 Suspicious List Popular List

URLs scanned 16,190 1,000,000

Exploit URLs 207 (1.28%) 710 (0.071%)

Exploit URLs

After Redirection

(Expansion Factor)

752 (263%) 1,036

(46%)

Exploit Sites 288 470

SP2-to-SP1 Ratio 204/688 = 0.30 131/980 = 0.13

Figure 7. Comparison of the suspicious-list and
popular-list data.

4.3.1. Summary Statistics

Before redirection analysis

Of the one million URLs, HoneyMonkey determined

that 710 were exploit pages. This translates into a density of
0.071%, which is between one to two orders of magnitude

lower than the 1.28% number from the suspicious-list data.

The distribution of exploit-URLs among the ranked list is
fairly uniform, which implies that the next million URLs

likely exhibit a similar distribution and so there are likely
many more exploit URLs to be discovered. Eleven of the

710 exploit pages are very popular: they are among the top

10,000 of the one million URLs that we scanned. This
demonstrates the need for constant, automatic web patrol of

popular pages in order to protect the Internet from large-

scale infections.

After redirection analysis:

The Stage-2 HoneyMonkey redirection analysis
expanded the list of 710 exploit-URLs to 1,036 URLs

hosted by 470 sites. This (1,036-710)/710=46% expansion
is much lower than the 263% expansion in the suspiciouslist

data, suggesting that the redirection network behind the

former is less complex. The SP2-to-SP1 ratio of 0.13 is
lower than its counterpart of 0.30 from the suspiciouslist

data (see Figure 7). This suggests that overall the exploit
capabilities in the popular list are not as advanced as those

in the suspicious list, which is consistent with the findings

from our manual analysis.

Intersecting the 470 exploit sites with the 288 sites from

Section 4.1 yields only 17 sites. These numbers suggest that
the degree of overlap between the suspicious list, generally

with more powerful attacks, and the popular list is not

alarmingly high at this point. But more and more exploit
sites from the suspicious list may try to “infiltrate” the

popular list to increase their infection base. In total, we have

collected 1,780 exploit-URLs hosted by 741 sites.

4.3.2. Node ranking

Site ranking based on connection counts

Figure 8 illustrates the top 15 SP1-UP exploit sites by
connection counts. There are several interesting differences

between the two data sets behind the suspicious-list

exploiters (Figure 5) and the popular-list exploiters (Figure
8). First, there is not a single pair of exploit sites in the

popular-list data that are doing twoway traffic redirection,

which appears to be unique in the malicious pornography
community. Second, while it is not uncommon to see web

sites redirecting traffic to more than 10 or even 20 sites in

the suspicious-list, sites in the popular-list data redirect

traffic to at most 4 sites. This suggests that aggressive traffic
selling is also a phenomenon unique to the malicious

pornography community.
Finally, the top four exploit providers in the popularlist

clearly stand out. None of them have any URLs in the

original list of one million URLs, but all of them are behind
a large number of exploit pages which redirect traffic to

them. The #1 site provides exploits to 75 web sites primarily

in the following five categories: (1) celebrities, (2) song

lyrics, (3) wallpapers, (4) video game cheats, and (5)

wrestling. The #2 site receives traffic from 72 web sites, the
majority of which are located in one particular country. The

#3 site is behind 56 related web sites that serve cartoon-

related pornographic content. The #4 site appears to be an
advertising company serving exploiting links through web

sites that overlap significantly with those covered by the #1

site.

Site ranking based on number of hosted exploit-URLs

Figure 8. Top 15 exploit sites ranked by connection counts, among the 426 SP1-UP exploit sites

Site ranking based on number of hosted exploit URLs

Figure 9. Top 122 sites ranked by the number of exploit-URLs, among the 426 SP1-UP exploit sites

Figure 9 illustrates the top 122 sites hosting more than

one exploit URL. Unlike Figure 6, which highlights

mostly exploit provider sites, Figure 9 highlights many

content provider sites that host a large number of exploit
pages containing a similar type of content. Again, the top

four sites stand out: the #1 site is a content provider of video
game cheats information for multiple game consoles. The

#2 site (which also appears as the third entry in Figure 8)

hosts a separate URL for each different web site from which
it receives traffic. The #3 site is a content provider that has

a separate entry page for each celebrity figure. The #4 site

is a content provider of song lyrics with one entry page per

celebrity singer.

5. Discussions

Now that the effectiveness of the HoneyMonkey system
is widely known [HM], it is expected that exploit sites will

start adopting techniques to evade HoneyMonkey detection.

We discuss three types of potential evasion techniques and
our countermeasures. Since it has become clear that a

weakness of the HoneyMonkey is the time window between
a successful exploit that allows foreign code execution and

the subsequent execution of the HoneyMonkey exploit

detection code, we have developed and integrated a tool
called Vulnerability-Specific Exploit Detector (VSED),

which allows the HoneyMonkey to detect and record the
first sign of an exploit. Such a detector only works for

known vulnerabilities though; detecting zero-day exploits of

totally unknown vulnerabilities remains a challenge. The

VSED tool will be discussed in Section 5.4.

5.1. Identifying HoneyMonkey Machines

There are three ways for an exploit site to identify

HoneyMonkey machines and skip exploits.

(1) Targeting HoneyMonkey IP addresses: The
easiest way is to black-list the IP addresses of

HoneyMonkey machines. We plan to run the HoneyMonkey
network behind multiple ISPs with dynamically assigned IP

addresses. If an exploit site wants to black-list all IP

addresses belonging to these ISPs, it will need to sacrifice a
significant percentage of its infection base. One market

research study of ISP client membership [ISP] shows that

the top 10 US ISPs service over 62% of US Internet users.

(2) Performing a test to determine if a human is

present: Currently, HoneyMonkeys do not click on any
dialog box. A malicious web site could introduce a onetime

dialog box that asks a simple question; after the user clicks
the OK button to prove he’s human, the web site drops a

cookie to suppress the dialog box for future visits. More

sophisticated web sites can replace the simple dialog box
with a CAPTCHA Turing Test [ABL04] (although this

would raise suspicion because most non-exploiting sites do
not use such tests). We will need to incorporate additional

intelligence into the HoneyMonkeys to handle dialog boxes

and to detect CAPTCHA tests when we see web sites

starting to adopt such techniques to evade detection.

(3) Detecting the presence of a VM or the

HoneyMonkey code: Malicious code could detect a VM by
executing a series of instructions with high virtualization

overhead and comparing the elapsed time to some external
reference [VMC+05]; by detecting the use of reserved x86

opcodes normally only used by specific VMs [L05]; by

leveraging information leaked by sensitive, non-privileged
instructions [RP]; and by observing certain file directory

contents known to be associated with UML (User-Mode

Linux) [CDF+04] or a specific hardware configuration,
default MAC address, or I/O backdoor associated with

VMware [HR05].

Most VM-detection techniques arise due to the fact that

the x86 processors are not fully virtualizable. Fortunately,
both Intel [VT] and AMD [PVT] have proposed architecture

extensions that would make x86 processors fully

virtualizable, and thus make detecting a VM more difficult.
In the meantime, we can adopt antidetection techniques that

target known VM-detection methods [CDF+04,VMC+05].
As VMs are increasingly used as general computing

platforms, the approach of detecting HoneyMonkeys by

detecting VMs will become less effective.

Alternatively, we developed techniques that allow us to

also run HoneyMonkey on non-virtual machines so that the
results can be cross-checked to identify sophisticated

attackers. We implemented support to efficiently checkpoint

our system (both memory and disk state) when it is in a
known-good state, and roll back to that checkpoint after an

attack has been detected. To checkpoint memory, we utilized
the hibernation functionality already present in Windows to

efficiently store and restore memory snapshots. To support

disk checkpoints, we implemented copy-on-write disk
functionality by modifying the generic Windows disk class

driver which is used by most disks today. Our copyon-write
implementation divides the physical disk into two equally

sized partitions. We use the first partition to hold the default

disk image that we roll back to when restoring a checkpoint,
and the second partition as a scratch partition to store all disk

writes made after taking a checkpoint. We maintain a bitmap

in memory to record which blocks have been written to so
we know which partition contains the most recent version

of each individual block. As a result, no extra disk reads or
writes are needed to provide copy-on-write functionality

and a rollback can be simply accomplished by zeroing out

the bitmap. To provide further protection, we can adopt
resource-hiding techniques to hide the driver from

sophisticated attackers who are trying to detect the driver to

identify a HoneyMonkey machine.

Some exploit sites may be able to obtain the
“signatures” of the HoneyMonkey logging infrastructure

and build a detection mechanism to allow them to disable

the logging or tamper with the log. Since such detection

code can only be executed after a successful exploit, we can
use VSED to detect occurrences of exploits and highlight

those that do not have a corresponding filecreation log.
Additionally, we are incorporating log signing techniques to

detect missing or modified log entries.

We note that some classes of exploits require writing a

file to disk and then executing that file for running arbitrary

code. These exploits cannot escape our detection by trying
to identify a HoneyMonkey machine because our file-based

detection actually occurs before they can execute code.

5.2. Exploiting without Triggering

HoneyMonkey Detection

Currently, HoneyMonkey cannot detect exploits that do
not make any persistent-state changes or make such changes

only inside browser sandbox. Even with this limitation, the

HoneyMonkey is able to detect most of today’s Trojans,
backdoors, and spyware programs that rely on significant

persistent-state changes to enable automatic restart upon
reboot. Again, the VSED tool can help address this

limitation.

HoneyMonkeys only wait for a few minutes for each

URL. So a possible evasion technique is to delay the exploit.

However, such delays reduce the chance of successful
infections because real users may close the browser before

the exploit happens. We plan to run HoneyMonkeys with

random wait times and highlight those exploit pages that
exhibit inconsistent behaviors across runs for more in-depth

manual analysis.

5.3. Randomizing the Attacks

Exploit sites may try to inject nondeterministic

behavior to complicate the HoneyMonkey detection. They
may randomly exploit one in every N browser visits. We

consider this an acceptable trade-off: while this would

require multiple scans by the HoneyMonkeys to detect an
exploit, it forces the exploit sites to reduce their infection

rates by N times as well. If a major exploit provider is behind
more than N monitored content providers, the

HoneyMonkey can still detect it through redirection

tracking in one round of scans.

Exploit sites may try to randomize URL redirections by

selecting a random subset of machines to forward traffic to
each time, from a large set of infected machines that are

made to host exploit code. Our node ranking algorithm
based on connection counts should discourage this because

such sites would end up prioritizing themselves higher for

investigation. Also, they reveal the identities of infected
machines, whose owners can be notified to clean up the

machines.

5.4. Vulnerability-Specific Exploit

 Detector (VSED)

To address some of the limitations discussed above and
to provide additional information on the exact

vulnerabilities being exploited, we have developed a

vulnerability-specific detector, called VSED, and integrated
it into the HoneyMonkey. The VSED tool implements a

source-code level, vulnerability-specific intrusion detection
technique that is similar to IntroVirt [JKD+05]. For each

vulnerability, we manually write “predicates” to test the

state of the monitored program to determine when an
attacker is about to trigger a vulnerability. VSED operates

by inserting breakpoints within buggy code to stop

execution before potentially malicious code runs, in order to
allow secure logging of an exploit alert. For example, VSED

would detect a buffer overflow involving the “strcpy”
function by setting a breakpoint right before the buggy

“strcpy” executes. Once VSED stops the application, the

predicate examines the variables passed into “strcpy” to

determine if an overflow is going to happen.

To evaluate the effectiveness of VSED for detecting
browser-based exploits, we wrote predicates for six recent

IE vulnerabilities and tested them against the exploitURLs
from both the suspicious list and the popular list. Although

we do not have a comprehensive list of predicates built yet,

we can already pinpoint the vulnerabilities exploited by
hundreds of exploit-URLs. One limitation of VSED is that

it cannot identify zero-day exploits of unknown

vulnerabilities.

6. Related Work

There is a rich body of literature on honeypots. Most

honeypots are deployed to mimic vulnerable servers waiting
for attacks from client machines [H,P04,J04,KGO+05]. In

contrast, HoneyMonkeys are deployed to mimic clients

drawing attacks from malicious servers.

To our knowledge, there are three other projects related

to the concept of client-side honeypots: email quarantine,
shadow honeypots, and Honeyclient. Sidiroglou et al.

[SK05] described an email quarantine system which
intercepts every incoming message, “opens” all suspicious

attachments inside instrumented virtual machines, uses

behavior-based anomaly detection to flag potentially
malicious actions, quarantines flagged emails, and only

delivers messages that are deemed safe.

Anagnostakis et al. [ASA+05] proposed the technique

of “shadow honeypots” which are applicable to both servers

and clients. The key idea is to combine anomaly detection
with honeypots by diverting suspicious traffic identified by

anomaly detectors to a shadow version of the target
application that is instrumented to detect potential attacks

and filter out false positives. As a demonstration of client-

side protection, the authors deployed their prototype on

Mozilla Firefox browsers.

The two client-side honeypots described above are both

passive in that they are given existing traffic and do not
actively solicit traffic. In contrast, HoneyMonkeys are

active and are responsible for seeking out malicious web
sites and drawing attack traffic from them. The former has

the advantage of providing effective, focused protection of

targeted population. The latter has the advantages of staying
out of the application’s critical path and achieving a broader

coverage, but it does require additional defense against

potential traps/black-holes during the recursive redirection
analysis. The two approaches are complementary and can be

used in conjunction with each other to provide maximum

protection.

In parallel with our work, the Honeyclient project [HC]
shares the same goal of trying to identify browserbased

attacks. However, the project has not published any

deployment experience or any data on detected
exploitURLs. There are also several major differences in

terms of implementation: Honeyclient is not VM-based,
does not use a pipeline of machines with different patch

levels, and does not track URL redirections.

Existing honeypot techniques can be categorized using
two other criteria: (1) physical honeypots [KGO+05] with

dedicated physical machines versus virtual honeypots built
on Virtual Machines [VMW,UML]; (2) lowinteraction

honeypots [P04], which only simulate network protocol

stacks of different operating systems, versus high-
interaction honeypots [J04], which provide an authentic

decoy system environment. HoneyMonkeys belong to the

category of high-interaction, virtual honeypots.

In contrast with the black-box, state-change-based
detection approach used in HoneyMonkey, several papers

proposed vulnerability-oriented detection methods, which

can be further divided into vulnerability-specific and
vulnerability-generic methods. The former includes Shield

[WGS+04], a network-level filter designed to detect worms

exploiting known vulnerabilities, and IntroVirt [JKD+05], a
technique for specifying and monitoring vulnerability-

specific predicates at code level. The latter includes system
call-based intrusion detection systems [FHS+96,FKF+03],

memory layout randomization [ASLR,XKI03], non-

executable pages [AA] and pointer encryption [CBJ+03].
An advantage of vulnerabilityoriented techniques is the

ability to detect an exploit earlier and identify the exact
vulnerability being exploited. As discussed in Section 5.4,

we have incorporated IntroVirt-style, vulnerability-specific

detection capability into the HoneyMonkey.

7. Summary

We have presented the design and implementation of

the Strider HoneyMonkey as the first systematic method for

automated web patrol to hunt for malicious web sites that
exploit browser vulnerabilities. Our analyses of two sets of

data showed that the densities of malicious URLs are 1.28%
and 0.071%, respectively. In total, we have identified a large

community of 741 web sites hosting 1,780 exploit-URLs.

We proposed using topology graphs based on redirection
traffic to capture the relationship between exploit sites and

using site ranking algorithms based on the number of

directly connected sites and the number of hosted exploit-
URLs to identify major players. Our success in detecting the

first-reported, in-the-wild, zero-day exploit-URL of the
javaprxy.dll vulnerability provided the best demonstration

of the effectiveness of our approach by monitoring easy-to-

find content providers with well-known URLs as well as top
exploit providers with advanced exploit capabilities.

Finally, we discussed several techniques that malicious web
sites can adopt to evade HoneyMonkey detection, which

motivated us to incorporate an additional vulnerability-

specific exploit detection mechanism to complement the

HoneyMonkey’s core black-box exploit detection approach.

Acknowledgement

We would like to express our sincere thanks to the

anonymous reviewers and our shepherd Nick Weaver for

their valuable comments.

References

[AA] S. Andersen and V. Abella, “Data Execution Prevention.
Changes to Functionality in Microsoft Windows XP Service
Pack 2, Part 3: Memory Protection Technologies.,”
http://www.microsoft.com/technet/prodtechnol/winxppro/mai
ntain/ sp2mempr.mspx.

[ABL04] L. von Ahn, M. Blum, and J. Langford, “Telling Humans
and Computers Apart Automatically,”
Communications of the ACM, Feb. 2004.

[AL] Alexa, http://www.alexa.com/.

[ASA+05] K. Anagnostakisy, S. Sidiroglouz, P. Akritidis, K.
Xinidis, E. Markatos, and A. Keromytis. “Detecting Targeted
Attacks Using Shadow Honeypots,” in Proc. USENIX Security
Symposium, August 2005.

[ASLR] PaX Address Space Layout Randomization (ASLR).
http://pax.grsecurity.net/docs/aslr.txt.

[B04] Xpire.info, http://www.vitalsecurity.org/xpiresplitinfinity-
serverhack_malwareinstall-condensed.pdf, Nov. 2004.

[CBJ+03] C. Cowan, S. Beattie, J. Johansen, and P. Wagle.
“PointGuard: Protecting pointers from buffer overflow
vulnerabilities,” in Proc. USENIX Security Symposium, August
2003.

[CDF+04] C. Carella, J. Dike, N. Fox, and M. Ryan, “UML
Extensions for Honeypots in the ISTS Distributed Honeypot

Project,” in Proc. IEEE Workshop on Information Assurance,
2004.

[CWS05] “Webroot: CoolWebSearch Top Spyware Threat,”
http://www.techweb.com/showArticle.jhtml?articleID=16040
0314, TechWeb, March 30, 2005.

[D04] Download.Ject,
http://www.microsoft.com/security/incident/download_ject.ms
px, June 2004.

[E04] Ben Edelman, “Who Profits from Security Holes?”, Nov.
2004, http://www.benedelman.org/news/111804-1.html.

[F04] “Follow the Money; or, why does my computer keep

getting infested with spyware?”

http://www.livejournal.com/users/tacit/125748.html.

[FHS+96] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longsta,
“A sense of self for Unix processes,” in Proc. IEEE Symp. on
Security and Privacy, May 1996.

[FKF+03] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong,
“Anomaly detection using call stack information,” in Proc.
IEEE Symp. on Security and Privacy, May 2003.

[G05] “Googkle.com installed malware by exploiting browser

vulnerabilities,” http://www.f-

secure.com/vdescs/googkle.shtml.

[G04] Archana Ganapathi, Yi-Min Wang, Ni Lao, and Ji-Rong
Wen, "Why PCs Are Fragile and What We Can Do About It: A
Study of Windows Registry Problems", in Proc. IEEE
DSN/DCC, June 2004.

[H] The Honeynet Project, http://www.honeynet.org/.

[HC] Honeyclient Development Project,
http://www.honeyclient.org/.

[HD05] “Another round of DNS cache poisoning,” Handlers
Diary, March 30, 2005, http://isc.sans.org/.

[HF] hpHOSTS community managed hosts file, http://www.hosts-
file.net/downloads.html.

[HM] Strider HoneyMonkey Exploit Detection,
http://research.microsoft.com/HoneyMonkey.

[HR05] T. Holz and F. Raynal, “Detecting Honeypots and other
suspicious environments,” in Proc. IEEE Workshop on
Information Assurance and Security, 2005.

[IF05] “iframeDOLLARS dot biz partnership maliciousness,”
http://isc.sans.org/diary.php?date=2005-05-23.

[ISP] ISP Ranking by Subscriber,
http://www.ispplanet.com/research/rankings/index.html.

[IW05] “Scammers use Symantec, DNS holes to push adware,”
InfoWorld.com, March 7, 2005,
http://www.infoworld.com/article/05/03/07/HNsymantecholes
andadware_1.html?DESKTOP%20SECURITY.

[J04] Xuxian Jiang, Dongyan Xu, “Collapsar: A VM-Based
Architecture for Network Attack Detention Center”, in Proc.
USENIX Security Symposium, Aug. 2004.

[J105] Microsoft Security Advisory (903144) - A COM Object
(Javaprxy.dll) Could Cause Internet Explorer to Unexpectedly
Exit,
http://www.microsoft.com/technet/security/advisory/903144.
mspx.

[J205] Microsoft Security Bulletin MS05-037 - Vulnerability in
JView Profiler Could Allow Remote Code Execution

(903235),
http://www.microsoft.com/technet/security/bulletin/ms05037.
mspx.

[JKD+05] Ashlesha Joshi, Sam King, George Dunlap, Peter Chen,
“Detecting Past and Present Intrusions Through Vulnerability-
Specific Predicates,” in Proc. SOSP, 2005.

[KGO+05] Sven Krasser, Julian Grizzard, Henry Owen, and John
Levine, “The Use of Honeynets to Increase Computer Network
Security and User Awareness”, in Journal of Security
Education, pp. 23-37, vol. 1, no. 2/3. March 2005.

[L05] Lallous, ” Detect if your program is running inside a

Virtual Machine,” March 2005,

http://www.codeproject.com/system/VmDetect.asp.

[M52] Microsoft Security Bulletin MS05-002, Vulnerability in
Cursor and Icon Format Handling Could Allow Remote Code
Execution,
http://www.microsoft.com/technet/security/Bulletin/MS05002.
mspx.

[M311] Microsoft Security Bulletin MS03-011, Flaw in Microsoft
VM Could Enable System Compromise,
http://www.microsoft.com/technet/security/Bulletin/MS03011.
mspx.

[M413] Microsoft Security Bulletin MS04-013, Cumulative
Security Update for Outlook Express,
http://www.microsoft.com/technet/security/Bulletin/MS040
13.mspx.

[NK04] Neal Krawetz, Anti-honeypot technology, Security &
Privacy Magazine, IEEE Volume 2, Issue 1, Jan.-Feb. 2004
Page(s):76–79.

[P04] Niels Provos, “A Virtual Honeypot Framework”, in Proc.
USENIX Security Symposium, Aug. 2004.

[PVT] AMD Pacifica Virtualization Technology,
http://enterprise.amd.com/downloadables/Pacifica.ppt.

[R05] “Russians use affiliate model to spread spyware,”
http://www.itnews.com.au/newsstory.aspx?CIaNID=18926.

[R04] Team Register, “Bofra exploit hits our ad serving supplier,”
http://www.theregister.co.uk/2004/11/21/register_adserver_att
ack/, November 2004.

[RP] Red Pill, http://invisiblethings.org/papers/redpill.html.

[S04] Symantec Gateway Security Products DNS Cache
Poisoning Vulnerability,
http://securityresponse.symantec.com/avcenter/security/Conte
nt/2004.06.21.html.

[S05] “Michael Jackson suicide spam leads to Trojan horse,”
http://www.sophos.com/virusinfo/articles/jackotrojan.html,
Sophos, June 9, 2005.

[SH] “What is Strider HoneyMonkey,”
http://research.microsoft.com/honeymonkey/article.aspx, Aug.
2005.

[SK05] Stelios Sidiroglou and Angelos D. Keromytis, “A Network
Worm Vaccine Architecture,” in 1st Information Security
Practice and Experience Conference (ISPEC), April 2005.

[T05] Michael Ligh, “Tri-Mode Browser Exploits - MHTML,
ANI, and ByteVerify,”
http://www.mnin.org/write/2005_trimode.html, April 30,
2005.

[UML] Know Your Enemy: Learning with User-Mode Linux.
Building Virutal Honeynets using UML,

http://www.honeynet.org/papers/uml/.

[VMC+05] Michael Vrable, Justin Ma, Jay Chen, David Moore,
Erik Vandekieft, Alex Snoeren, Geoff Voelker, and Stefan
Savage, “Scalability, Fidelity and Containment in the Potemkin
Virtual Honeyfarm,” in Proc. ACM Symposium on Operating
Systems Principles (SOSP), Oct. 2005.

[VMW] Know Your Enemy: Learning with VMware. Building
Virutal Honeynets using VMware,
http://www.honeynet.org/papers/vmware/.

[VT] Vanderpool Technology, Technical report, Intel Corporation,
2005.

[W03] Yi-Min Wang, et al., “STRIDER: A Black-box, Statebased
Approach to Change and Configuration Management and
Support”, in Proc. Usenix LISA, Oct. 2003.

[W04] Yi-Min Wang, et al., “Gatekeeper: Monitoring Auto-Start

Extensibility Points (ASEPs) for Spyware Management”, in
Proc. Usenix LISA, 2004

[W05] Yi-Min Wang, Doug Beck, Binh Vo, Roussi Roussev, and
Chad Verbowski, “Detecting Stealth Software with Strider
GhostBuster,” in Proc. DSN, June 2005

[WGS+04] Helen J. Wang, Chuanxiong Guo, Daniel R. Simon,
and Alf Zugenmaier, “Shield: Vulnerability-Driven Network
Filters for Preventing Known Vulnerability Exploits,” in Proc.
ACM SIGCOMM, August 2004.

[XKI03] J. Xu, Z. Kalbarczyk and R. K. Iyer, “Transparent
Runtime Randomization for Security,” in Proc. Symp. Reliable
and Distributed Systems (SRDS), October 2003.

[XSS] “Code insertion in Blogger comments”, March 28, 2005,
http://www.securityfocus.com/archive/1/394532.

	Abstract
	1. Introduction
	2. Browser-based Vulnerability Exploits
	2.1. Code Obfuscation
	2.2. URL Redirection
	2.3. Vulnerability Exploitation
	2.4. Malware Installation

	3. The HoneyMonkey System
	3.1. Exploit Detection System
	3.1.1. Exploit Detection
	3.1.2. Redirection Analysis

	3.2. Anti-Exploit Process
	3.2.1. Generating Input URL Lists
	3.2.2. Acting on Output Exploit-URL Data
	Stage 1 Output – Exploit-URLs
	Stage 2 Output – Traffic-Redirection Topology Graphs
	Stage 3 Output – Zero-Day Exploit-URLs and Topology Graphs

	4. Experimental Evaluation
	4.1. Scanning Suspicious URLs
	4.1.1. Summary Statistics
	4.1.2. Topology graphs and node ranking
	Site ranking based on connection counts
	Site ranking based on number of hosted exploit-URLs

	4.2. Zero-Day Exploit Detection
	http://[IP address]/[8 chars]/test2/iejp.htm
	Important Observations

	4.3. Scanning Popular URLs
	4.3.1. Summary Statistics
	Before redirection analysis

	4.3.2. Node ranking
	Site ranking based on connection counts
	Site ranking based on number of hosted exploit-URLs

	5. Discussions
	5.1. Identifying HoneyMonkey Machines
	5.2. Exploiting without Triggering HoneyMonkey Detection
	5.3. Randomizing the Attacks
	5.4. Vulnerability-Specific Exploit Detector (VSED)

	6. Related Work
	7. Summary
	Acknowledgement
	References

