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Abstract  

Internet attacks that use malicious web sites to install 
malware programs by exploiting browser vulnerabilities 
are a serious emerging threat. In response, we have 
developed an automated web patrol system to automatically 
identify and monitor these malicious sites. We describe the 

design and implementation of the Strider HoneyMonkey 
Exploit Detection System, which consists of a pipeline of 
“monkey programs” running possibly vulnerable browsers 
on virtual machines with different patch levels and 

patrolling the Web to seek out and classify web sites that 
exploit browser vulnerabilities.  

Within the first month of utilizing this system, we 
identified 752 unique URLs hosted on 288 web sites that 

could successfully exploit unpatched Windows XP 
machines. The system automatically constructed topology 
graphs based on traffic redirection to capture the 
relationship between the exploit sites. This allowed us to 
identify several major players who are responsible for a 

large number of exploit pages. By monitoring these 752 
exploit-URLs on a daily basis, we discovered a malicious 
web site that was performing zero-day exploits of the 
unpatched javaprxy.dll vulnerability and was operating 

behind 25 exploit-URLs. It was confirmed as the first 
“inthe-wild”, zero-day exploit of this vulnerability that was 
reported to the Microsoft Security Response Center. 
Additionally, by scanning the most popular one million 

URLs as classified by a search engine, we found over seven 
hundred exploit-URLs, many of which serve popular 
content related to celebrities, song lyrics, wallpapers, video 
game cheats, and wrestling.  

1. Introduction  

Internet attacks that use a malicious or hacked web site 

to exploit unpatched client-side vulnerabilities of visiting 

browsers are on the rise. Malcode distributed by this method 
in the past 12 months includes the Download.Ject [D04], 

Bofra [R04], and Xpire.info [B04] programs. These attacks 

 
1 An automation-enabled program such as the Internet Explorer 

browser allows programmatic access to most of the operations 

that can be invoked by a user. A “monkey program” is a program 

that drives the browser in a way that mimics a human user’s 

operation. 2 

allow web servers that host compromised URLs to install 

malcode on visiting client machines without requiring any 
user interaction beyond visitation. There have been several 

manual analyses of these events 

[E04,F04,G05,IF05,R05,S05,T05]. Although these analyses 
provide very useful and detailed information about which 

vulnerabilities are exploited and which malware programs 
are installed, such efforts are not scalable, do not provide a 

comprehensive picture of the problem, and are generally 

ineffective at efficiently finding new malicious sites.  

To address these issues, we developed a system that 

uses a pipeline of active, client-side, Virtual Machine (VM)-
based honeypots [H,HC], called Strider HoneyMonkeys, to 

perform large-scale, systematic and automated web patrol. 

The HoneyMonkey system uses monkey programs1 that run 
within virtual machines with OS’s of various patch levels to 

drive web browsers in an attempt to mimic human web 
browsing. Our approach adopts a state-management 

methodology to cybersecurity: instead of directly detecting 

the acts of vulnerability exploits, the system uses the Strider 
Tracer [W03] to catch unauthorized file creations and 

configuration changes that are the result of a successful 

exploit.  

We demonstrate the effectiveness of our method by 

discovering a large community of malicious web sites that 
host exploit pages and by deriving the redirection 

relationships among them. We describe a real-world 
experience with identifying a zero-day exploit2 using this 

system. We show the existence of hundreds of malicious 

web pages amongst many popular web sites. Finally, we 
propose a comprehensive anti-exploit process based on this 

monitoring system in order to improve Internet safety.  

This paper is organized as follows. Section 2 provides 

background information on the problem space by describing 
the techniques used in actual client-side exploits of popular 

web browsers. Section 3 gives an overview of the Strider 

HoneyMonkey Exploit Detection System and its 
surrounding Anti-Exploit Process. Section 4 evaluates the 

effectiveness of HoneyMonkey in both known-vulnerability 

 In this paper, a zero-day exploit 

refers to a vulnerability exploit that 

exists before the patch for the 

vulnerability is released. The 

vulnerability can be known or 

unknown to the public at that time.  



and zero-day exploit detection, and presents an analysis of 

the exploit data to help prioritize investigation tasks. Section 
5 discusses the limitations of and possible attacks on the 

current HoneyMonkey system and describes several 
countermeasures including an enhancement based on a 

vulnerability-specific exploit detection mechanism. Section 

6 surveys related work and Section 7 concludes the paper.   

2. Browser-based Vulnerability Exploits   

Malicious activities performed by actual web sites 

exploiting browser vulnerabilities can be divided into four 

steps: code obfuscation, URL redirection, vulnerability 

exploitation, and malware installation.  

2.1. Code Obfuscation  

To complicate investigation and to escape 
signaturebased scanning by anti-virus/anti-spyware 

software, some web sites use a combination of the following 
code obfuscation techniques: (1) dynamic code injection 

using the document.write() function inside a script; (2) 

unreadable, long strings with encoded characters such as 

“%28”, “&#104”, etc. which are then decoded either by the 

unescape() function inside a script or by the browser; (3) 

custom decoding routine included in a script; and (4) sub-

string replacement using the replace() function. Since code-

obfuscation is a common technique, this limits the ability of 
attack-signature-based detectors to detect new attacks that 

leverage old exploit code.  

2.2. URL Redirection  

Most malicious web sites automatically redirect 

browser traffic to additional URLs. Specifically, when a 

browser visits a primary URL, the response from that URL 
instructs the browser to automatically visit one or more 

secondary URLs, which may or may not affect the content 
that is displayed to the user. Such redirections typically use 

one of the following mechanisms classified into three 

categories: (1) protocol redirection using HTTP 302 

Temporary Redirect; (2) HTML tags including <iframe>, 

<frame> inside <frameset>, and <META http-
equiv=refresh>; (3) script functions including 

window.location.replace(), window.location.href(), 
window.open(), window.showModalDialog(), and 

<link_ID>.click(), etc. Since redirection is commonly used by 

non-malicious sites to enrich content, simply eliminating 
redirection from a browser would present significant 

complications  

2.3. Vulnerability Exploitation  

It is not uncommon to see a malicious web page 

attempting to exploit multiple browser vulnerabilities in 
order to maximize the chance of a successful attack. Figure 

1 shows an example HTML fragment that uses various 

primitives to load multiple files from different URLs on the 
same server to exploit three vulnerabilities fixed in 

Microsoft Security Bulletins MS05-002 [M52], MS03-011 
[M311], and MS04-013 [M413]. If any of the exploits 

succeeds, a Trojan downloader named win32.exe is 
downloaded and executed. Note that although Internet 

Explorer is the common target due to its popularity, other 

browsers can also be attacked.  

2.4. Malware Installation  

The purpose of an exploit is almost always to introduce 

some piece of arbitrary code on the victim machine, as a 
way to achieve a larger attack goal. We have observed a 

plethora of malcode types installed through browser 
exploits, including viruses that infect files, backdoors that 

open entry points for future unauthorized access, bot 

programs that allow the attacker to control a whole network 
of compromised systems, Trojan downloaders that connect 

to the Internet and download other programs, Trojan 
droppers that drop files from themselves without accessing 

  
<html><head><title></title></head><body>  
<style>  
* {CURSOR: url("http://vxxxxxxe.biz/adverts/033/sploit.anr")}  
</style>  
<APPLET ARCHIVE='count.jar' CODE='BlackBox.class' WIDTH=1 HEIGHT=1>  
<PARAM NAME='url' VALUE='http://vxxxxxxe.biz/adverts/033/win32.exe'></APPLET>  
<script>  

try{  MS03-011  
document.write('<object     
data=`&#109&#115&#45&#105&#116&#115&#58&#109&#104&#116&#109&#108&#58&#102&#105&#108&#101&#58;// 
C:\fo'+'o.mht!'+'http://vxxxx'+'xxe.biz//adv'+'erts//033//targ.ch'+'m::/targ'+'et.htm` type=`text/x-scriptlet`></ob'+'ject>'); 
}catch(e){}  
</script>  

MS04-013  
</body></html>  

Figure 1. Actual sample Web page attempting to exploit multiple vulnerabilities  

MS05 - 002   



the Internet, and Trojan proxies that redirect network traffic. 

Some spyware programs and even anti-spyware programs 

are also installed through exploits.  

3. The HoneyMonkey System  

The HoneyMonkey system attempts to automatically 

detect and analyze a network of web sites that exploit web 
browsers. Figure 2 illustrates the HoneyMonkey Exploit 

Detection System, shown inside the dotted square, and the 

surrounding Anti-Exploit Process which includes both 

automatic and manual components.   

3.1. Exploit Detection System  

The exploit detection system is the heart of the 
HoneyMonkeys design.  This system consists of a 3-stage 

pipeline of virtual machines. Given a large list of input 
URLs with a potentially low exploit-URL density, each 

HoneyMonkey in Stage 1 starts with a scalable mode by 

visiting N URLs simultaneously inside one unpatched VM. 
When the HoneyMonkey detects an exploit, it switches to 

the basic, one-URL-per-VM mode to re-test each of the N 

suspects in order to determine which ones are exploit URLs.  

Stage-2 HoneyMonkeys scan Stage 1 detected exploit-

URLs and perform recursive redirection analysis to identify 
all web pages involved in exploit activities and to determine 

their relationships. Stage-3 HoneyMonkeys continuously 
scan Stage-2 detected exploit-URLs using (nearly) fully 

patched VMs in order to detect attacks exploiting the latest 

vulnerabilities.  

We used a network of 20 machines to produce the results 

reported in this paper. Each machine had a CPU speed 

between 1.7 and 3.2 GHz, a memory size between 512 MB 

and 2GB, and was responsible for running one  

VM configured with 256 MB to 512MB of RAM. Each VM 

supported up to 10 simultaneous browser processes in the 
scalable mode, with each process visiting a different URL. 

Due to the way HoneyMonkeys detect exploits  

(discussed later), there is a trade-off between the scan rate 
and the robustness of exploit detection: if the HoneyMonkey 

does not wait long enough or if too many simultaneous 
browser processes cause excessive slowdown, some exploit 

pages may not be able to perform a detectable attack (e.g., 

beginning a software installation).  

Through extensive experiments, we determined that a 

wait time of two minutes was a good trade-off. Taking into 
account the overhead of restarting VMs in a clean state, each 

machine was able to scan and analyze between 3,000 to 
4,000 URLs per day. We have since improved the scalability 

of the system to a scan rate of 8,000 URLs per day per 

machine in the scalable mode. (In contrast, the basic mode 
scans between 500 and 700 URLs per day per machine.) We 

expect that using a more sophisticated VM platform that 

enables significantly more VMs per host machine and faster 
rollback [VMC+05] would significantly increase our 

scalability.      

3.1.1. Exploit Detection  

Although it is possible to detect browser exploits by 

building signature-based detection code for each known 

vulnerability or exploit, this approach is manually intensive. 

To lower this cost, we take the following blackbox, non-
signature-based approach: we run a monkey program that 

launches a browser instance to visit each input URL and 

 

Figure 2. HoneyMonkey Exploit Detection System and Anti-Exploit Process  



then waits for a few minutes to allow downloading of any 

code which may have a short time delay. We then detect a 
group of persistent-state changes to signal exploitation. 

Since the monkey is not instructed to click on any dialog 
box to permit software installation, any executable files or 

registry entries created outside the browser sandbox indicate 

an exploit. This approach has the additional important 
advantage of allowing the detection of known-vulnerability 

exploits and zero-day exploits in a uniform way. 

Specifically, the same monkey program running on 
unpatched machines to detect a broad range of browser-

based vulnerability exploits (as shown in Stages 1 and 2) 
can run on fully patched machines to detect zero-day 

exploits, as shown in Stage 3.  

At the end of each visit, the HoneyMonkey generates 

an XML report containing the following five pieces of 

information:  

(1) Executable files created or modified outside the 

browser sandbox folders: this is the primary mechanism 
for exploit detection. It is implemented on top of the Strider 

Tracer [W03], which uses a file-tracing driver to efficiently 

record every single file read/write operation.   

(2) Processes created: Strider Tracer also tracks all 

child processes created by the browser process.  

(3) Windows registry entries created or modified: 

Strider Tracer additionally includes a driver that efficiently 
records every single registry [G04] read/write. To highlight 

the most critical entries, we use the Strider Gatekeeper and 
GhostBuster filters [W04,W05], which target registry 

entries most frequently attacked by spyware, Trojans, and 

rootkits based on an extensive study. This allows 
HoneyMonkey to detect exploits that modify critical 

configuration settings (such as the browser home page and 

the wallpaper) without creating executable files.  

(4) Vulnerability exploited: to provide additional 
information and to address limitations of the black-box 

approach, we have developed and incorporated a 

vulnerability-specific detector, to be discussed in Section 5. 
This is based on the vulnerability signature of the exploit, 

rather than on any particular piece of malcode.  

(5) Redirect-URLs visited: Since malcode is often 

laundered through other sites, this module allows us to track 

redirections to determine both the real source of the 

malcode and those involved in the distribution chain.  

To ease cleanup of infected state, we run 
HoneyMonkeys inside a VM. (Our current implementation 

uses Microsoft Virtual PC and Virtual Server.) Upon 
detecting an exploit, the monkey saves its logs and notifies 

the Monkey Controller on the host machine to destroy the 

infected VM and re-spawn a clean HoneyMonkey, which 
then continues to visit the remaining URL list. The Monkey 

Controller then passes the detected exploit-URL to the next 

monkey in the pipeline to further investigate the strength of 

the exploit.  

3.1.2. Redirection Analysis  

Many exploit-URLs identified in Stage 1 do not 
perform the actual exploits but instead act as front-end 

content providers that serve “interesting” content such as 

pornography in order to attract browser traffic. This traffic 
is then sold and redirected to back-end exploit providers, 

which specialize in exploiting clients and installing 

malware.  

URLs visited through traffic redirection can be tracked 
with a Browser Helper Object (BHO) running within each 

browser process or by intercepting and analyzing network 

packets. When the HoneyMonkey runs in its “redirection 
analysis” mode, any automatically visited URLs are fed 

back to the system for further checking. This recursive 

scanning allows the construction of topology graphs based 

on traffic redirection. In Section 4, we present our analysis 

of topology graphs to demonstrate how they enable the 
identification of major exploit providers that receive traffic 

from a large number of content providers; they also show 

how exploit providers organize their web pages in a way that 
facilitates customized malware installations for each of their 

affiliates. Finally, we are able to positively identify the web 
pages that actually perform the exploits by implementing an 

option in our redirection tracker to block all redirection 

traffic.  

3.2. Anti-Exploit Process  

The Anti-Exploit Process involves generating the input 

URL lists for HoneyMonkeys to scan, and taking various 

actions based on analyses of the output exploit-URL data.  

3.2.1. Generating Input URL Lists  

We use three sources for generating “interesting” URLs 
for analysis. The first category consists of suspicious URLs 

including web sites that are known to host spyware 

[CWS05] or malware, links appearing in phishing or spam 
emails [S05] or instant messages, web pages serving 

questionable content such as pornography, URL names that 

are typos of popular sites [G05], web sites involved in DNS 
cache poisoning [HD05,IW05,S04], and similar common 

sources of malicious web content.  

The second category consists of the most popular web 

pages, which, if compromised, can potentially infect a large 
population. Examples include the top 100,000 web sites 

based on browser traffic ranking [AL] or the top N million 

web sites based on click-through counts as measured by 

search engines.  

The third category encompasses URL lists of a more 
localized scope. For example, an organization may want to 

regularly verify that its web pages have not been 



compromised to exploit visitors; a user may want to 

investigate whether any recently visited URL was 

responsible for causing a spyware infection.  

3.2.2. Acting on Output Exploit-URL Data  

Stage 1 Output –  Exploit-URLs  

The percentage of exploit-URLs in a given list can be 
used to measure the risk of web surfing. For example, by 

comparing the percentage numbers from two URL lists 

corresponding to two different search categories (e.g., 
gambling versus shopping), we can assess the relative risk 

of malware infection for people with different browsing 

habits. Also, we have observed that depth-N crawling of 
exploit pages containing a large number of links, as 

illustrated at the top of Figure 2, often leads to the 

discovery of more exploit pages.  

Stage 2 Output – Traffic-Redirection Topology Graphs   

The HoneyMonkey system currently serves as a 

leadgeneration tool for the Internet safety enforcement 
team in the Microsoft legal department. The topology 

graphs and subsequent investigations of the malicious 

behavior of the installed malware programs provide a 
prioritized list for potential enforcement actions that 

include sending sitetakedown notices, notifying law 
enforcement agencies, and filing civil suits against the 

individuals responsible for distributing the malware 

programs. We have successfully shut down several 

malicious URLs discovered by the HoneyMonkey.  

Due to the international nature of the exploit 
community, access blocking may be more appropriate and 

effective than legal actions in many cases. Blocking can be 

implemented at different levels: search engines can remove 
exploit-URLs from their database; Internet Service 

Providers (ISPs) can black-list exploit-URLs to protect 
their entire customer base; corporate proxy servers can 

prevent employees from accessing any of the exploitURLs; 

and individual users can block their machines from 
communicating with any exploit sites by editing their local 

“hosts” files to map those server hostnames to a local 

loopback IP address.   

Exploit-URLs also provide valuable leads to our 
antispyware product team. Each installed program is 

tagged with an “exploit-based installation without user 

permission” attribute. This clearly distinguishes the 
program from other more benign spyware programs that 

are always installed after a user accepts the licensing 

agreement.   

Stage 3 Output – Zero-Day Exploit-URLs and Topology 

Graphs  

By constantly monitoring all known exploit-URLs 
using HoneyMonkeys running on fully patched machines, 

we can detect zero-day exploits either when one of the 

monitored URLs “upgrade” its own exploit code or when a 

new URL that hosts zero-day exploit code starts receiving 
redirection traffic from any of the monitored URLs. Zero-

day exploit monitoring is perhaps the most valuable 
contribution of the HoneyMonkey because zeroday exploits 

can be extremely damaging and whether they are actually 

being used in the wild is the most critical piece of 
information in the decision process for security guidance, 

patch development, and patch release. When a 

HoneyMonkey detects a zero-day exploit, it reports the URL 
to the Microsoft Security Response Center, which works 

closely with the enforcement team and the groups owning 
the software with the vulnerability to thoroughly investigate 

the case and determine the most appropriate course of 

action. We will discuss an actual case in Section 4.2.  

Due to the unavoidable delay between patch release and 

patch deployment, it is important to know whether the 
vulnerabilities fixed in the newly released patch are being 

actively exploited in the wild. Such latest-
patchedvulnerability exploit monitoring can be achieved by 

running HoneyMonkeys on nearly fully patched machines, 

which are missing only the latest patch. This provides 
visibility into the prevalence of such exploits to help provide 

guidance on the urgency of patch deployment.  

4. Experimental Evaluation  

We present experimental results in three sections: 

scanning suspicious URLs, zero-day exploit detection, and 

scanning popular URLs. We refer to the first and the third 
sets of data as “suspicious-list data” and “popular-list 

data”, respectively. All experiments were performed with 

Internet Explorer browser version 6.0.  

We note that the statistics reported in this paper do not 

allow us to calculate the total number of end-hosts exploited 
by the malicious web sites we have found. Such calculations 

would require knowing precisely the number of machines 
that have visited each exploit page and whether each 

machine has patched the specific vulnerabilities targeted by 

each visited exploit page.  

4.1. Scanning Suspicious URLs  

4.1.1. Summary Statistics  

Our first experiment aimed at gathering a list of most 

likely candidates for exploit-URLs in order to get the 
highest hit rate possible. We collected 16,190 potentially 

malicious URLs from three sources: (1) a web search of 

“known-bad” web sites involved in the installations of 
malicious spyware programs [CWS05]; (2) a web search for 

Windows “hosts” files [HF] that are used to block 
advertisements and bad sites by controlling the domain 

name-to-IP address mapping; (3) depth-2 crawling of some 

of the discovered exploit-URLs.  



We used the Stage-1 HoneyMonkeys running on 

unpatched WinXP SP1 and SP2 VMs to scan the 16,190 
URLs and identified 207 as exploit-URLs; this translates 

into a density of 1.28%. This serves as an upper bound on 
the infection rate: if a user does not patch his machine at all 

and he exclusively visits risky web sites with questionable 

content, his machine will get exploited by approximately 
one out of every 100 URLs he visits. We will discuss the 

exploit-URL density for normal browsing behavior in 

Section 4.3.   

After recursive redirection analysis by Stage-2 

HoneyMonkeys, the list expanded from 207 URLs to 752 
URLs – a 263% expansion. This reveals that there is a 

sophisticated network of exploit providers hiding behind 

URL redirection to perform malicious activities.  

Figure 3 shows the breakdown of the 752 exploitURLs 
among different service-pack (SP1 or SP2) and patch levels, 

where “UP” stands for “UnPatched”, “PP” stands for 

“Partially Patched”, and “FP” stands for “Fully Patched”. 
As expected, the SP1-UP number is much higher than the 

SP2-UP number because the former has more known 

vulnerabilities that have existed for a longer time.  

  Number of  

Exploit-URLs   
Number of  

Exploit Sites  

Total  752  288  

SP1 Unpatched (SP1-UP)  688  268  

SP2 Unpatched (SP2-UP)  204  115  

SP2 Partially Patched 

(SP2-PP)  
17  10  

SP2 Fully Patched   

(SP2-FP)  

0  0  

Figure 3. Exploit statistics for Windows XP as a 
function of patch levels (May/June 2005 data)  

The SP2-PP numbers are the numbers of exploit pages 
and sites that successfully exploited a WinXP SP2 machine 

partially patched up to early 2005. The fact that the numbers 
are one order of magnitude lower than their SP2-UP 

counterparts demonstrates the importance of patching. An 

important observation is that only a small percentage of 
exploit sites are updating their exploit capabilities to keep 

up with the latest vulnerabilities, even though proof-of-

concept exploit code for most of the vulnerabilities are 
publicly posted. We believe this is due to three factors: (1) 

Upgrading and testing new exploit code incurs some cost 
which needs to be traded off against the increase in the 

number of victim machines; (2) Some vulnerabilities are 

more difficult to exploit than others; for example, some of 
the attacks are nondeterministic or take longer. Most 

exploiters tend to stay with existing, reliable exploits, and 

only upgrade when they find the next easy target. (3) Most 

security-conscious web users diligently apply patches. 
Exploit sites with “advanced” capabilities are likely to draw 

attention from knowledgeable users and become targets for 

investigation.  

 The  SP2-FP  numbers  again  demonstrate  the  

importance of software patching: none of the 752 

exploitURLs was able to exploit a fully updated WinXP SP2 
machine according to our May/June 2005 data. As we 

describe in Section 4.2, there was a period of time in early 

July when this was no longer true. We were able to quickly 
identify and report the few exploit providers capable of 

infecting fully patched machines, which led to actions to 

shut them down.  

4.1.2. Topology graphs and node ranking   

Figure 4 shows the topology graph of the 17 
exploitURLs for SP2-PP. These are among the most 

powerful exploit pages in terms of the number of machines 
they are capable of infecting and should be considered high 

priorities for investigation. Rectangular nodes represent 

individual exploit-URLs. Solid arrows between rectangles 
represent automatic traffic redirection. Circles represent site 

nodes that act as an aggregation point for all exploit pages 

hosted on that site, with the site node having a thin edge 
connecting each of its child-page rectangles. Nodes that do 

not receive redirected traffic are most likely content 
providers. Nodes that receive traffic from multiple exploit 

sites (for example, the large rectangle R at the bottom) are 

most likely exploit providers.   

The size of a node is proportional to the number of 

cross-site arrows directly connected to it, both incoming and 
outgoing. Such numbers provide a good indication of the 

relative popularity of exploit-URLs and sites and are 

referred to as connection counts. It is clear from the picture 
that the large rectangle R and its associated circle C have 

the highest connection counts. Therefore, blocking access to 

this site would be the most effective starting point since it 

would disrupt nearly half of this exploit network.  

  



The topology graph for the 688 SP1-UP exploit-URLs 

is much larger and more complex. It is only useful when 

viewed from a graph manipulation tool and is therefore 
omitted here.  Most of the URLs appear to be pornography 

pages and the aggressive traffic redirection among them 
leads to the complexity of the bulk of the graph. In the 

isolated corners, we found a shopping site redirecting traffic 

to five advertising companies that serve exploiting 
advertisements, a screensaver freeware site, and over 20 

exploit search sites. Next, we describe two ranking 
algorithms that help prioritize the investigations of these 

hundreds of URLs and sites.  

Site ranking based on connection counts  

Figure 5 illustrates the top 15 exploit sites for SP1-UP 
according to their connection counts. The bar height 

indicates how many other sites a given site has direct traffic-

redirection relationship with and likely reflects how 
entrenched a site owner is with the exploit community. The 

bar for each site is composed of three segments of different 
colors: a black segment represents the number of sites that 

redirect traffic here; a white segment represents the number 

of sites to which traffic is redirected; a gray segment 
indicates the number of sites that have two-way traffic 

redirection relationship with the given site.  

For example, site #15 corresponds to a content provider 

who is selling traffic to multiple exploit providers and 

sharing traffic with a few other content providers. Site #7 
corresponds to an exploit provider that is receiving traffic 

from multiple web sites. Sites #4, #5, and #9 correspond to 
pornography sites that play a complicated role: they redirect 

traffic to many exploit providers and receive traffic from 

many content providers. Their heavy involvement in exploit 
activities and the fact that they are registered to the same 

owner suggest that they may be set up primarily for exploit 

purposes.   

Site ranking, categorization, and grouping play a key 
role in the anti-exploit process because it serves as the basis 

for deciding the most effective resource allocation for 

monitoring, investigation, blocking, and legal actions.  

For example, high-ranked exploit sites in Figure 5 should be 

heavily monitored because a zero-day exploit page 

connected to any of them would likely affect a large number 
of web sites. Legal investigations should focus on top 

exploit providers, rather than content providers that are 
mere traffic redirectors and do not perform exploits 

themselves.  

Site ranking based on number of hosted exploit-URLs  

Figure 6 illustrates the top 129 sites, each hosting more 
than one exploit URL. This ranking helps highlight those 

web sites whose internal page hierarchy provides important 

insights. First, some web sites host a large number of exploit 
pages with a well-organized hierarchical structure. For 

example, the #1 site hosts 24 exploit pages that are 
organized by what look likes account names for affiliates; 

many others organize their exploit pages by affiliate IDs or 

referring site names; some even organize their pages by the 
names of the vulnerabilities they exploit and a few of them 

have the word “exploit” as part of the URL names.  

The second observation is that some sophisticated web 

sites use transient URLs that contain random strings. This is 
designed to make investigations more difficult. Site ranking 

based on the number of hosted exploit-URLs helps highlight 

such sites so that they are prioritized higher for 
investigation. The zero-day exploits discussed in the next 

sub-section provide a good example of this.  

 

Figure 4. SP2-PP topology graph (17 URLs, 10 sites)  



4.2. Zero-Day Exploit Detection  

In early July 2005, a Stage-3 HoneyMonkey discovered 

our first zero-day exploit. The javaprxy.dll vulnerability was 

known at that time without an available patch [J105,J205], 
and whether it was actually being exploited was a critical 

piece of information that was previously not known. The 
HoneyMonkey system detected the first exploit page within 

2.5 hours of scanning and it was confirmed to be the first in-

the-wild exploitURL of the vulnerability reported to the 
Microsoft Security Response Center. A second exploit-URL 

was detected in the next hour. These two occupy positions 

#132 and #179, respectively, in our list of 752 monitored 
URLs. This information enabled the response center to 

provide customers with a security advisory and a followup 

security bulletin [SH, J205].  

During the subsequent five days, HoneyMonkey 
detected that 26 of the 752 exploit-URLs upgraded to the 

zero-day exploit. Redirection analysis further revealed that 

25 of them were redirecting traffic to a previously unknown 

exploit provider site that was hosting exploitURLs with 

names in the following form:  

http://[IP address]/[8 chars]/test2/iejp.htm  

where [8 chars] consists of 8 random characters that 

appeared to change gradually over time. Takedown notices 

were sent after further investigation of the installed malware 
programs, and most of the 25 web pages stopped exploiting 

the javaprxy.dll vulnerability shortly after that. Latest-

Patched-Vulnerability Exploit Monitoring  

One day after the patch release, HoneyMonkey detected 

another jump in the number of exploit-URLs for the 

vulnerability: 53 URLs from 12 sites were upgraded in the 
subsequent six days. Redirection analysis revealed that all 

of them were redirecting traffic to a previously known 
exploit provider (ranked #1 in Figure 6) who decided to add 

a new exploit page for javaprxy.dll to increase its infection 

base. A takedown notice was sent after malware 
investigation and all 53 URLs stopped exploiting within a 

couple of days.  

 

Figure 5. Top 15 exploit sites ranked by connection counts, among the 268 SP1-UP exploit sites 
from the suspicious list   

 

Site ranking based on the number of hosted exploit URLs 

Figure 6. Top 129 SP1-UP exploit sites ranked by the number of exploit-URLs hosted  
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Important Observations  

This experience provides concrete evidence that the 
HoneyMonkey system can potentially evolve into a 

fullfledged, systematic and automatic zero-day exploit 
monitoring system for browser-based attacks. We make the 

following observations from the initial success:  

(1) Monitoring easy-to-find exploit-URLs is 

effective: we predicted that monitoring the 752 

exploitURLs would be useful for detecting zero-day 
exploits because the fact that we could find them quickly 

within the first month implies that they are more popular 
and easier to reach. Although zero-day exploits are 

extremely powerful, they need to connect to popular web 

sites in order to receive traffic to exploit. If they connect to 
any of the monitored URLs in our list, the HoneyMonkey 

can quickly detect the exploits and identify the exploit 

providers behind the scene through redirection analysis. 
Our zero-day exploit detection experience confirmed the 

effectiveness of this approach.  

(2) Monitoring content providers with well-known 

URLs is effective: we predicted that monitoring content 
providers would be useful for tracking the potentially 

dynamic behavior of exploit providers. Unlike exploit 

providers who could easily move from one IP address to 
another and use random URLs, content providers need to 

maintain their well-known URLs in order to continue 
attracting browser traffic. The HoneyMonkey takes 

advantage of this fundamental weakness in the 

browserbased exploit model and utilizes the content 
providers as convenient entry points into the exploit 

network. Again, our zero-day exploit detection experience 

confirmed the effectiveness of this approach.  

(3) Monitoring highly ranked and advanced 

exploitURLs is effective: we predicted that the top exploit 
sites we identified are more likely to upgrade their exploits 

because they have a serious investment in this business. 
Also, web sites that appear in the SP2-PP graph are more 

likely to upgrade because they appeared to be more up-

todate exploiters. Both predictions have been shown to be 
true: the first detected zero-day exploit-URL belongs to the 

#9 site in Figure 5 (which is registered to the same email 
address that also owns the #4 and #5 sites) and 7 of the top 

10 sites in Figure 5 upgraded to the javaprxy.dll exploit; 

nearly half of the SP2-PP exploit-URLs in Figure 4 

upgraded as well.  

4.3. Scanning Popular URLs  

By specifically searching for potentially malicious web 
sites, we were able to obtain a list of URLs that have 1.28% 

of the pages performing exploits. A natural question that 
most web users will ask is: if I never visit those risky web 

sites that serve dangerous or questionable content, do I have 

to worry about vulnerability exploits? To answer this 

question, we gathered the most popular one million URLs 

as measured by the click-through counts from a search 
engine and tested them with the HoneyMonkey system. We 

also compared the results of this popular-list data with the 
suspicious-list data in Section 4.1. Figure 7 summarizes the 

comparison of key data.  

  

  

  Suspicious List  Popular List  

# URLs scanned  16,190  1,000,000  

# Exploit URLs  207 (1.28%)  710 (0.071%)  

# Exploit URLs  

After Redirection  

(Expansion Factor)  

752  (263%)  1,036   

(46%)  

# Exploit Sites  288  470  

SP2-to-SP1 Ratio  204/688 = 0.30  131/980 = 0.13  

Figure 7. Comparison of the suspicious-list and 
popular-list data.  

4.3.1. Summary Statistics  

Before redirection analysis  

Of the one million URLs, HoneyMonkey determined 

that 710 were exploit pages. This translates into a density of 
0.071%, which is between one to two orders of magnitude 

lower than the 1.28% number from the suspicious-list data. 

The distribution of exploit-URLs among the ranked list is 
fairly uniform, which implies that the next million URLs 

likely exhibit a similar distribution and so there are likely 
many more exploit URLs to be discovered. Eleven of the 

710 exploit pages are very popular: they are among the top 

10,000 of the one million URLs that we scanned. This 
demonstrates the need for constant, automatic web patrol of 

popular pages in order to protect the Internet from large-

scale infections.    

After redirection analysis:  

The Stage-2 HoneyMonkey redirection analysis 
expanded the list of 710 exploit-URLs to 1,036 URLs 

hosted by 470 sites. This (1,036-710)/710=46% expansion 
is much lower than the 263% expansion in the suspiciouslist 

data, suggesting that the redirection network behind the 

former is less complex. The SP2-to-SP1 ratio of 0.13 is 
lower than its counterpart of 0.30 from the suspiciouslist 

data (see Figure 7). This suggests that overall the exploit 
capabilities in the popular list are not as advanced as those 

in the suspicious list, which is consistent with the findings 

from our manual analysis.       

Intersecting the 470 exploit sites with the 288 sites from 

Section 4.1 yields only 17 sites. These numbers suggest that 
the degree of overlap between the suspicious list, generally 



with more powerful attacks, and the popular list is not 

alarmingly high at this point. But more and more exploit 
sites from the suspicious list may try to “infiltrate” the 

popular list to increase their infection base. In total, we have 

collected 1,780 exploit-URLs hosted by 741 sites.   

  

  

  

  

4.3.2. Node ranking  

Site ranking based on connection counts  

Figure 8 illustrates the top 15 SP1-UP exploit sites by 
connection counts. There are several interesting differences 

between the two data sets behind the suspicious-list 

exploiters (Figure 5) and the popular-list exploiters (Figure 
8). First, there is not a single pair of exploit sites in the 

popular-list data that are doing twoway traffic redirection, 

which appears to be unique in the malicious pornography 
community. Second, while it is not uncommon to see web 

sites redirecting traffic to more than 10 or even 20 sites in 

the suspicious-list, sites in the popular-list data redirect 

traffic to at most 4 sites. This suggests that aggressive traffic 
selling is also a phenomenon unique to the malicious 

pornography community.   
Finally, the top four exploit providers in the popularlist 

clearly stand out. None of them have any URLs in the 

original list of one million URLs, but all of them are behind 
a large number of exploit pages which redirect traffic to 

them. The #1 site provides exploits to 75 web sites primarily 

in the following five categories: (1) celebrities, (2) song 

lyrics, (3) wallpapers, (4) video game cheats, and (5) 

wrestling. The #2 site receives traffic from 72 web sites, the 
majority of which are located in one particular country. The 

#3 site is behind 56 related web sites that serve cartoon-

related pornographic content. The #4 site appears to be an 
advertising company serving exploiting links through web 

sites that overlap significantly with those covered by the #1 

site.  

Site ranking based on number of hosted exploit-URLs  

 

Figure 8. Top 15 exploit sites ranked by connection counts, among the 426 SP1-UP exploit sites  

 

Site ranking based on number of hosted exploit URLs 

Figure 9. Top 122 sites ranked by the number of exploit-URLs, among the 426 SP1-UP exploit sites  



Figure 9 illustrates the top 122 sites hosting more than 

one exploit URL. Unlike Figure 6, which highlights   



mostly exploit provider sites, Figure 9 highlights many 

content provider sites that host a large number of exploit 
pages containing a similar type of content. Again, the top 

four sites stand out: the #1 site is a content provider of video 
game cheats information for multiple game consoles. The 

#2 site (which also appears as the third entry in Figure 8) 

hosts a separate URL for each different web site from which 
it receives traffic. The #3 site is a content provider that has 

a separate entry page for each celebrity figure. The #4 site 

is a content provider of song lyrics with one entry page per 

celebrity singer.   

5. Discussions  

Now that the effectiveness of the HoneyMonkey system 
is widely known [HM], it is expected that exploit sites will 

start adopting techniques to evade HoneyMonkey detection. 

We discuss three types of potential evasion techniques and 
our countermeasures. Since it has become clear that a 

weakness of the HoneyMonkey is the time window between 
a successful exploit that allows foreign code execution and 

the subsequent execution of the HoneyMonkey exploit 

detection code, we have developed and integrated a tool 
called Vulnerability-Specific Exploit Detector (VSED), 

which allows the HoneyMonkey to detect and record the 
first sign of an exploit. Such a detector only works for 

known vulnerabilities though; detecting zero-day exploits of 

totally unknown vulnerabilities remains a challenge. The 

VSED tool will be discussed in Section 5.4.  

5.1. Identifying HoneyMonkey Machines  

There are three ways for an exploit site to identify 

HoneyMonkey machines and skip exploits.   

(1) Targeting HoneyMonkey IP addresses: The 
easiest way is to black-list the IP addresses of 

HoneyMonkey machines. We plan to run the HoneyMonkey 
network behind multiple ISPs with dynamically assigned IP 

addresses. If an exploit site wants to black-list all IP 

addresses belonging to these ISPs, it will need to sacrifice a 
significant percentage of its infection base. One market 

research study of ISP client membership [ISP] shows that 

the top 10 US ISPs service over 62% of US Internet users.  

(2) Performing a test to determine if a human is 

present: Currently, HoneyMonkeys do not click on any 
dialog box. A malicious web site could introduce a onetime 

dialog box that asks a simple question; after the user clicks 
the OK button to prove he’s human, the web site drops a 

cookie to suppress the dialog box for future visits. More 

sophisticated web sites can replace the simple dialog box 
with a CAPTCHA Turing Test [ABL04] (although this 

would raise suspicion because most non-exploiting sites do 
not use such tests). We will need to incorporate additional 

intelligence into the HoneyMonkeys to handle dialog boxes 

and to detect CAPTCHA tests when we see web sites 

starting to adopt such techniques to evade detection.  

(3) Detecting the presence of a VM or the 

HoneyMonkey code: Malicious code could detect a VM by 
executing a series of instructions with high virtualization 

overhead and comparing the elapsed time to some external 
reference [VMC+05]; by detecting the use of reserved x86 

opcodes normally only used by specific VMs [L05]; by 

leveraging information leaked by sensitive, non-privileged 
instructions [RP]; and by observing certain file directory 

contents known to be associated with UML (User-Mode 

Linux) [CDF+04] or a specific hardware configuration, 
default MAC address, or I/O backdoor associated with 

VMware [HR05].  

Most VM-detection techniques arise due to the fact that 

the x86 processors are not fully virtualizable. Fortunately, 
both Intel [VT] and AMD [PVT] have proposed architecture 

extensions that would make x86 processors fully 

virtualizable, and thus make detecting a VM more difficult. 
In the meantime, we can adopt antidetection techniques that 

target known VM-detection methods [CDF+04,VMC+05]. 
As VMs are increasingly used as general computing 

platforms, the approach of detecting HoneyMonkeys by 

detecting VMs will become less effective.  

Alternatively, we developed techniques that allow us to 

also run HoneyMonkey on non-virtual machines so that the 
results can be cross-checked to identify sophisticated 

attackers. We implemented support to efficiently checkpoint 

our system (both memory and disk state) when it is in a 
known-good state, and roll back to that checkpoint after an 

attack has been detected. To checkpoint memory, we utilized 
the hibernation functionality already present in Windows to 

efficiently store and restore memory snapshots. To support 

disk checkpoints, we implemented copy-on-write disk 
functionality by modifying the generic Windows disk class 

driver which is used by most disks today. Our copyon-write 
implementation divides the physical disk into two equally 

sized partitions. We use the first partition to hold the default 

disk image that we roll back to when restoring a checkpoint, 
and the second partition as a scratch partition to store all disk 

writes made after taking a checkpoint. We maintain a bitmap 

in memory to record which blocks have been written to so 
we know which partition contains the most recent version 

of each individual block. As a result, no extra disk reads or 
writes are needed to provide copy-on-write functionality 

and a rollback can be simply accomplished by zeroing out 

the bitmap. To provide further protection, we can adopt 
resource-hiding techniques to hide the driver from 

sophisticated attackers who are trying to detect the driver to 

identify a HoneyMonkey machine.  

Some exploit sites may be able to obtain the 
“signatures” of the HoneyMonkey logging infrastructure 

and build a detection mechanism to allow them to disable 



the logging or tamper with the log. Since such detection 

code can only be executed after a successful exploit, we can 
use VSED to detect occurrences of exploits and highlight 

those that do not have a corresponding filecreation log. 
Additionally, we are incorporating log signing techniques to 

detect missing or modified log entries.  

We note that some classes of exploits require writing a 

file to disk and then executing that file for running arbitrary 

code. These exploits cannot escape our detection by trying 
to identify a HoneyMonkey machine because our file-based 

detection actually occurs before they can execute code.  

5.2. Exploiting without Triggering 

HoneyMonkey Detection  

Currently, HoneyMonkey cannot detect exploits that do 
not make any persistent-state changes or make such changes 

only inside browser sandbox. Even with this limitation, the 

HoneyMonkey is able to detect most of today’s Trojans, 
backdoors, and spyware programs that rely on significant 

persistent-state changes to enable automatic restart upon 
reboot. Again, the VSED tool can help address this 

limitation.  

HoneyMonkeys only wait for a few minutes for each 

URL. So a possible evasion technique is to delay the exploit. 

However, such delays reduce the chance of successful 
infections because real users may close the browser before 

the exploit happens. We plan to run HoneyMonkeys with 

random wait times and highlight those exploit pages that 
exhibit inconsistent behaviors across runs for more in-depth 

manual analysis.  

5.3. Randomizing the Attacks  

Exploit sites may try to inject nondeterministic 

behavior to complicate the HoneyMonkey detection. They 
may randomly exploit one in every N browser visits. We 

consider this an acceptable trade-off: while this would 

require multiple scans by the HoneyMonkeys to detect an 
exploit, it forces the exploit sites to reduce their infection 

rates by N times as well. If a major exploit provider is behind 
more than N monitored content providers, the 

HoneyMonkey can still detect it through redirection 

tracking in one round of scans.  

Exploit sites may try to randomize URL redirections by 

selecting a random subset of machines to forward traffic to 
each time, from a large set of infected machines that are 

made to host exploit code. Our node ranking algorithm 
based on connection counts should discourage this because 

such sites would end up prioritizing themselves higher for 

investigation. Also, they reveal the identities of infected 
machines, whose owners can be notified to clean up the 

machines.  

5.4. Vulnerability-Specific  Exploit 

 Detector (VSED)  

To address some of the limitations discussed above and 
to provide additional information on the exact 

vulnerabilities being exploited, we have developed a 

vulnerability-specific detector, called VSED, and integrated 
it into the HoneyMonkey. The VSED tool implements a 

source-code level, vulnerability-specific intrusion detection 
technique that is similar to IntroVirt [JKD+05]. For each 

vulnerability, we manually write “predicates” to test the 

state of the monitored program to determine when an 
attacker is about to trigger a vulnerability. VSED operates 

by inserting breakpoints within buggy code to stop 

execution before potentially malicious code runs, in order to 
allow secure logging of an exploit alert. For example, VSED 

would detect a buffer overflow involving the “strcpy” 
function by setting a breakpoint right before the buggy 

“strcpy” executes. Once VSED stops the application, the 

predicate examines the variables passed into “strcpy” to 

determine if an overflow is going to happen.  

To evaluate the effectiveness of VSED for detecting 
browser-based exploits, we wrote predicates for six recent 

IE vulnerabilities and tested them against the exploitURLs 
from both the suspicious list and the popular list. Although 

we do not have a comprehensive list of predicates built yet, 

we can already pinpoint the vulnerabilities exploited by 
hundreds of exploit-URLs. One limitation of VSED is that 

it cannot identify zero-day exploits of unknown 

vulnerabilities.   

6. Related Work   

There is a rich body of literature on honeypots. Most 

honeypots are deployed to mimic vulnerable servers waiting 
for attacks from client machines [H,P04,J04,KGO+05]. In 

contrast, HoneyMonkeys are deployed to mimic clients 

drawing attacks from malicious servers.  

To our knowledge, there are three other projects related 

to the concept of client-side honeypots: email quarantine, 
shadow honeypots, and Honeyclient. Sidiroglou et al. 

[SK05] described an email quarantine system which 
intercepts every incoming message, “opens” all suspicious 

attachments inside instrumented virtual machines, uses 

behavior-based anomaly detection to flag potentially 
malicious actions, quarantines flagged emails, and only 

delivers messages that are deemed safe.  

Anagnostakis et al. [ASA+05] proposed the technique 

of “shadow honeypots” which are applicable to both servers 

and clients. The key idea is to combine anomaly detection 
with honeypots by diverting suspicious traffic identified by 

anomaly detectors to a shadow version of the target 
application that is instrumented to detect potential attacks 

and filter out false positives. As a demonstration of client-



side protection, the authors deployed their prototype on 

Mozilla Firefox browsers.  

The two client-side honeypots described above are both 

passive in that they are given existing traffic and do not 
actively solicit traffic. In contrast, HoneyMonkeys are 

active and are responsible for seeking out malicious web 
sites and drawing attack traffic from them. The former has 

the advantage of providing effective, focused protection of 

targeted population. The latter has the advantages of staying 
out of the application’s critical path and achieving a broader 

coverage, but it does require additional defense against 

potential traps/black-holes during the recursive redirection 
analysis. The two approaches are complementary and can be 

used in conjunction with each other to provide maximum 

protection.  

In parallel with our work, the Honeyclient project [HC] 
shares the same goal of trying to identify browserbased 

attacks. However, the project has not published any 

deployment experience or any data on detected 
exploitURLs. There are also several major differences in 

terms of implementation: Honeyclient is not VM-based, 
does not use a pipeline of machines with different patch 

levels, and does not track URL redirections.  

Existing honeypot techniques can be categorized using 
two other criteria: (1) physical honeypots [KGO+05] with 

dedicated physical machines versus virtual honeypots built 
on Virtual Machines [VMW,UML]; (2) lowinteraction 

honeypots [P04], which only simulate network protocol 

stacks of different operating systems, versus high-
interaction honeypots [J04], which provide an authentic 

decoy system environment. HoneyMonkeys belong to the 

category of high-interaction, virtual honeypots.  

In contrast with the black-box, state-change-based 
detection approach used in HoneyMonkey, several papers 

proposed vulnerability-oriented detection methods, which 

can be further divided into vulnerability-specific and 
vulnerability-generic methods. The former includes Shield 

[WGS+04], a network-level filter designed to detect worms 

exploiting known vulnerabilities, and IntroVirt [JKD+05], a 
technique for specifying and monitoring vulnerability-

specific predicates at code level. The latter includes system 
call-based intrusion detection systems [FHS+96,FKF+03], 

memory layout randomization [ASLR,XKI03], non-

executable pages [AA] and pointer encryption [CBJ+03]. 
An advantage of vulnerabilityoriented techniques is the 

ability to detect an exploit earlier and identify the exact 
vulnerability being exploited. As discussed in Section 5.4, 

we have incorporated IntroVirt-style, vulnerability-specific 

detection capability into the HoneyMonkey.  

7. Summary  

We have presented the design and implementation of 

the Strider HoneyMonkey as the first systematic method for 

automated web patrol to hunt for malicious web sites that 
exploit browser vulnerabilities. Our analyses of two sets of 

data showed that the densities of malicious URLs are 1.28% 
and 0.071%, respectively. In total, we have identified a large 

community of 741 web sites hosting 1,780 exploit-URLs. 

We proposed using topology graphs based on redirection 
traffic to capture the relationship between exploit sites and 

using site ranking algorithms based on the number of 

directly connected sites and the number of hosted exploit-
URLs to identify major players. Our success in detecting the 

first-reported, in-the-wild, zero-day exploit-URL of the 
javaprxy.dll vulnerability provided the best demonstration 

of the effectiveness of our approach by monitoring easy-to-

find content providers with well-known URLs as well as top 
exploit providers with advanced exploit capabilities. 

Finally, we discussed several techniques that malicious web 
sites can adopt to evade HoneyMonkey detection, which 

motivated us to incorporate an additional vulnerability-

specific exploit detection mechanism to complement the 

HoneyMonkey’s core black-box exploit detection approach.  
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