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Reverse Engineering Network Protocols
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Find out what application-layer “language” is spoken by a server
Implementation

— Message formats

— Protocol state machine

Slow manual process
Do it automatically!




Reverse Engineering Network Protocols:
Security Applications
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Black-box fuzzing
Deep packet inspection
Intrusion detection

Reveal differences in server implementations
— server fingerprinting
— testing/auditing
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Reverse Engineering Network Protocols:
Sources of Information
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* Network traces
— limited information (no semantics)

« Server binaries
— static analysis
— dynamic analysis
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Our approach
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Mostly dynamic analysis (+ static analysis)
Use dynamic taint analysis to observe the data flow

Observe how the program processes (parses) input
messages

Analyze individual messages

Generalize to a message format for messages of a given
type (i.e. HTTP get, NFS lookup..)

Classification of messages into types is currently done
manually
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Dynamic Taint Analysis
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* Run unmodified binary in a monitored
environment (based on gemu, valgrind, ptrace..)

» Assign a unique label to each byte of network input

* Propagate the labels in shadow memory
— for each instruction, assign labels of input to output destinations

— also track address dependencies (example: lookup table-based
toupper() function)




_abel Input:

G E T / HIT| T P| /|1 0 \r \n|\r \n
0 1 345 9 10 1112 13|14 15|16/ 17
Propagate Labels:
EAX BL push %esi
push %ebx
G mov  (%eax),%bl
L — 0 sub  $0x1,%ecx
c G E
0| 1
Tainted data affects program flow:
cmp  $0x0a,%bl
e 93

Is (something derived from) byte 0 equal to \n'?




Message Format Analysis
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« Structure-forming semantics
— enough information to parse a message out of a network data flow
— variation between messages

« Additional semantics
— keywords, file names, session ids,..
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Structure-Forming Semantics
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« Length fields

— and corresponding target fields, padding

* Delimiter fields
— and corresponding scope fields

 Hierarchical structure
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Detecting Length Fields (1/2)
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Length fields are used to control a loop over input data
Leverage static analysis to detect loops

Look for loops where an exit condition tests the same taint
labels on every iteration

Need at least 2 iterations
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Detecting Length Fields (2/2)
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The tricky part is detecting the target field!
Look at labels touched inside length loop
Remove labels touched in all iterations

May need to merge multiple loops (example: memcpy uses 4-
byte mov instructions, but may need to move 1-3 bytes
individually)

Some bytes may be unused
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Detecting Delimiters
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Delimiter is one or more bytes that separate a field or
message

— Observation: all bytes in the scope of the delimiter are compared
against a part of the delimiter

Delimiter field detection

— Create a list of taint labels used for comparisons for each byte value,
merge consecutive labels into intervals

Intervals indicate delimiter scope,
— nesting gives us a hierarchical structure
— recursive analysis to “break up” message
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Additional Semantics
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Protocol keywords

File names

Echoed fields (session id,cookie,..)
Pointers (to somewhere else in packet)
Unused fields
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Detecting Keywords
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* A keyword is a sequence of (1 or 2 byte) characters which is
tested against a constant value

— adjacent characters being successfully compared to non tainted
values are merged into a string

— take delimiters into account

« |deally, we would want to check it is being tested against
values which are hard coded in binary
— trace taint from entire binary

« Currently, we just check the string (of at least 3 bytes) is
present in the binary
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Generalization (1/3)
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 Message alignment
« Based on Neediman-Wunsch
« Extended to a hierarchy of fields
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Generalization (2/3)
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Needleman-Wunsch

Dynamic programming
algorithm for string

ABCDE ABDF

alignment alignment
Computes alignment which

minimizes edit distances A B C D E
Also provides edit path AB - D F
between the strings

Scoring function (for match, generalization
mismatch, gap)

A B C? D EF
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Generalization (3/3)
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Hierarchical Needleman-Wunsch
Operate on a tree of fields, not on a string of bytes

To align two inner nodes (complex fields) recursively call NW
on the sequence of child nodes
To align two leaf nodes, take into account field semantics

— alength field only matches another length field
— a keyword only matches same exact keyword

Simple scoring function: +1 for match, -1 for mismatch or
gap




Generalization: More Semantics
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Sets of keywords (i.e. keep-alive OR close..)

Length field semantics

— encoding: endianess

— compute target field length T from length L: T=A*L+C
Pointer field semantics

— encoding: endianess

— offset: relative or absolute

— offset value is A*L+C

Repetitions

— generalize a?a? to a*
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Evaluation
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« 7 servers (apache,lighttpd,iacd,sendmail,bind,nfsd,samba)
« 6 protocols (http, irc, smtp, dns, nfs, smb)

* 14 message types (
— http get
— irc nick, user
— smtp mail, helo, quit,
— dns IPv4 A query
— rpc/nfs lookup, getattr, create, write

— smb/cifs negotiate protocol request, session setup andX request, tree
connect andX request




Session ID
2 bytes

B: any byte
T. any printable ascii byte

DNS A IPV4 query

B000100000000

Sequence

Length
1 byte

N

0000010001

0001: constant byte values in hex

>

Target
A=1,C=0




HTTP GET line

Scope

"' (space)

Scope
l/l

HTTP/1.1

Sequence

Sequence

B

Automatic Network Protocol Analysis



Parsing
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 The message format allows us to produce a parser
« Successfully parses real-world messages of same type
— all structural information was successfully recovered

* Rejects negative examples
— different message types from same protocol
— hand-crafted negative examples
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Test Case Length | Target | Padding | Pointer | Delimiter | Keyword | File | Repetition Total
apache 0 0 0 0 4/5 6/6 1/1 1/2 12/14 (86%)
lighttpd 0 0 0 0 4/5 117 1/1 1/2 13/15 (87%)
ircnick 0 0 0 0 1/1 1/1 0 0 2/2 (100%)
ircuser 0 0 0 0 2/2 1/1 0 0 3/3 (100%)
smtphelo 0 0 0 0 1/2 1/1 0 0 2/3 (67%)
smtpquit 0 0 0 0 1/1 1/1 0 0 2/2 (100%)
smtpmail 0 0 0 0 3/5 3/3 0 0 6/8 (75%)
dnsquery 1/1 1/1 0 0 0 0 0 1/1 3/3 (100%)
nfslookup 4/5 4/4 2/2 0 0 0 1/1 0 11/11 (92%)
nfsgetattr 3/4 3/3 1/1 0 0 0 0 0 7/8 (88%)
nfscreate 4/5 4/4 2/2 0 0 0 0 0 10/11 (91%)
nfswrite 4/6 414 2/2 0 0 0 0 0 10/12 (83%)
smbnegotiate 2/2 22 1/1 0 1/1 10/10 0 0/1 16/17 (94%%)
smbtree 2/3 22 0 1/1 2/2 3/3 0 10/11 (91%)
smbsession 8/9 8/8 0 117 2/2 2/2 0 0 27/28 (96%)

Table 2. Field detection resulis: correctly identified fields / total fields in message format.
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Conclusions
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Reverse engineer application layer network protocols
Recover a message format

Validate format by parsing real world messages
Tested on common servers and protocols
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Questions?
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