Secure Systems Lab

Automatic Network Protocol Analysis

Gilbert Wondracek, Paolo Milani Comparetti, Christopher Kruegel
and Engin Kirda

{gilbert,pmilani}@ seclab.tuwien.ac.at
chris@ cs.ucsb.edu
engin.kirda®@ eurecom.fr

Technical University Vienna

Reverse Engineering Network Protocols

Secure Systems Lab

Technical University Vienna

Find out what application-layer “language” is spoken by a server
Implementation

— Message formats

— Protocol state machine

Slow manual process
Do it automatically!

Reverse Engineering Network Protocols:
Security Applications

Secure Systems Lab

Black-box fuzzing
Deep packet inspection
Intrusion detection

Reveal differences in server implementations
— server fingerprinting
— testing/auditing

Technical University Vienna

Reverse Engineering Network Protocols:
Sources of Information

Secure Systems Lab

* Network traces
— limited information (no semantics)

« Server binaries
— static analysis
— dynamic analysis

Technical University Vienna

Our approach

Secure Systems Lab

Mostly dynamic analysis (+ static analysis)
Use dynamic taint analysis to observe the data flow

Observe how the program processes (parses) input
messages

Analyze individual messages

Generalize to a message format for messages of a given
type (i.e. HTTP get, NFS lookup..)

Classification of messages into types is currently done
manually

Technical University Vienna

Dynamic
taint analysis
environment

server

» client

| Execution traces

Execution | S
trace > —J for individual messages
Tree of
fields
» analysis >

— Message

gpea format

. allgnrr_ien’F/

B generalization

Dynamic Taint Analysis

Secure Systems Lab
Technical University Vienna

* Run unmodified binary in a monitored
environment (based on gemu, valgrind, ptrace..)

» Assign a unique label to each byte of network input

* Propagate the labels in shadow memory
— for each instruction, assign labels of input to output destinations

— also track address dependencies (example: lookup table-based
toupper() function)

_abel Input:

G E T / HIT| T P| /|1 0 \r \n|\r \n
0 1 345 9 10 1112 13|14 15|16/ 17
Propagate Labels:
EAX BL push %esi
push %ebx
G mov (%eax),%bl
L — 0 sub $0x1,%ecx
c G E
0| 1
Tainted data affects program flow:
cmp $0x0a,%bl
e 93

Is (something derived from) byte 0 equal to \n'?

Message Format Analysis

Secure Systems Lab

« Structure-forming semantics
— enough information to parse a message out of a network data flow
— variation between messages

« Additional semantics
— keywords, file names, session ids,..

Technical University Vienna

Structure-Forming Semantics

Secure Systems Lab

« Length fields

— and corresponding target fields, padding

* Delimiter fields
— and corresponding scope fields

 Hierarchical structure

Technical University Vienna

Detecting Length Fields (1/2)

Secure Systems Lab

Length fields are used to control a loop over input data
Leverage static analysis to detect loops

Look for loops where an exit condition tests the same taint
labels on every iteration

Need at least 2 iterations

Technical University Vienna

Detecting Length Fields (2/2)

Secure Systems Lab

The tricky part is detecting the target field!
Look at labels touched inside length loop
Remove labels touched in all iterations

May need to merge multiple loops (example: memcpy uses 4-
byte mov instructions, but may need to move 1-3 bytes
individually)

Some bytes may be unused

Technical University Vienna

Detecting Delimiters

Secure Systems Lab

Delimiter is one or more bytes that separate a field or
message

— Observation: all bytes in the scope of the delimiter are compared
against a part of the delimiter

Delimiter field detection

— Create a list of taint labels used for comparisons for each byte value,
merge consecutive labels into intervals

Intervals indicate delimiter scope,
— nesting gives us a hierarchical structure
— recursive analysis to “break up” message

Technical University Vienna

0 4 8 12 16 20 24
GET ... HTTP/1.1\An
'GET : /index,html: HTTP/1. I\r\n.

. . scan for "\r" delimit‘er: "y
: scan for"." -
. delimiter: " "
. scan for"/" *
Initial Intervals callmiter: \
nmn [0!23]
gt [4,15] delimiter: "/"
Y
o

Additional Semantics

Secure Systems Lab

Protocol keywords

File names

Echoed fields (session id,cookie,..)
Pointers (to somewhere else in packet)
Unused fields

Technical University Vienna

Detecting Keywords

Secure Systems Lab

* A keyword is a sequence of (1 or 2 byte) characters which is
tested against a constant value

— adjacent characters being successfully compared to non tainted
values are merged into a string

— take delimiters into account

« |deally, we would want to check it is being tested against
values which are hard coded in binary
— trace taint from entire binary

« Currently, we just check the string (of at least 3 bytes) is
present in the binary

Technical University Vienna

Generalization (1/3)

Secure Systems Lab

 Message alignment
« Based on Neediman-Wunsch
« Extended to a hierarchy of fields

Technical University Vienna

Generalization (2/3)

Secure Systems Lab

Needleman-Wunsch

Dynamic programming
algorithm for string

ABCDE ABDF

alignment alignment
Computes alignment which

minimizes edit distances A B C D E
Also provides edit path AB - D F
between the strings

Scoring function (for match, generalization
mismatch, gap)

A B C? D EF

Technical University Vienna

Generalization (3/3)

Secure Systems Lab

Technical University Vienna

Hierarchical Needleman-Wunsch
Operate on a tree of fields, not on a string of bytes

To align two inner nodes (complex fields) recursively call NW
on the sequence of child nodes
To align two leaf nodes, take into account field semantics

— alength field only matches another length field
— a keyword only matches same exact keyword

Simple scoring function: +1 for match, -1 for mismatch or
gap

Generalization: More Semantics

Secure Systems Lab

Sets of keywords (i.e. keep-alive OR close..)

Length field semantics

— encoding: endianess

— compute target field length T from length L: T=A*L+C
Pointer field semantics

— encoding: endianess

— offset: relative or absolute

— offset value is A*L+C

Repetitions

— generalize a?a? to a*

Technical University Vienna

Evaluation

Secure Systems Lab

Technical University Vienna

« 7 servers (apache,lighttpd,iacd,sendmail,bind,nfsd,samba)
« 6 protocols (http, irc, smtp, dns, nfs, smb)

* 14 message types (
— http get
— irc nick, user
— smtp mail, helo, quit,
— dns IPv4 A query
— rpc/nfs lookup, getattr, create, write

— smb/cifs negotiate protocol request, session setup andX request, tree
connect andX request

Session ID
2 bytes

B: any byte
T. any printable ascii byte

DNS A IPV4 query

B000100000000

Sequence

Length
1 byte

N

0000010001

0001: constant byte values in hex

>

Target
A=1,C=0

HTTP GET line

Scope

"' (space)

Scope
l/l

HTTP/1.1

Sequence

Sequence

B

Automatic Network Protocol Analysis

Parsing

Secure Systems Lab

 The message format allows us to produce a parser
« Successfully parses real-world messages of same type
— all structural information was successfully recovered

* Rejects negative examples
— different message types from same protocol
— hand-crafted negative examples

Technical University Vienna

Test Case Length | Target | Padding | Pointer | Delimiter | Keyword | File | Repetition Total
apache 0 0 0 0 4/5 6/6 1/1 1/2 12/14 (86%)
lighttpd 0 0 0 0 4/5 117 1/1 1/2 13/15 (87%)
ircnick 0 0 0 0 1/1 1/1 0 0 2/2 (100%)
ircuser 0 0 0 0 2/2 1/1 0 0 3/3 (100%)
smtphelo 0 0 0 0 1/2 1/1 0 0 2/3 (67%)
smtpquit 0 0 0 0 1/1 1/1 0 0 2/2 (100%)
smtpmail 0 0 0 0 3/5 3/3 0 0 6/8 (75%)
dnsquery 1/1 1/1 0 0 0 0 0 1/1 3/3 (100%)
nfslookup 4/5 4/4 2/2 0 0 0 1/1 0 11/11 (92%)
nfsgetattr 3/4 3/3 1/1 0 0 0 0 0 7/8 (88%)
nfscreate 4/5 4/4 2/2 0 0 0 0 0 10/11 (91%)
nfswrite 4/6 414 2/2 0 0 0 0 0 10/12 (83%)
smbnegotiate 2/2 22 1/1 0 1/1 10/10 0 0/1 16/17 (94%%)
smbtree 2/3 22 0 1/1 2/2 3/3 0 10/11 (91%)
smbsession 8/9 8/8 0 117 2/2 2/2 0 0 27/28 (96%)

Table 2. Field detection resulis: correctly identified fields / total fields in message format.

Related Work

Secure Systems Lab

Technical University Vienna
Network traces

— M. Beddoe. The Protocol Informatics Project. Toorcon 2004

— C. Leita, K. Mermoud, M. Dacier. ScriptGen: An Automated Script Generation
Tool for Honeyd. ACSAC 2005

— W. Cui, V. Paxson, N. Weaver, R. Katz. Protocol-Independent Adaptive
Replay of Application Dialog. NDSS 2006

— W.Cui, J.Kannan,H.J.Wang: Discoverer: Automatic Protocol Reverse
Engineering from Network Traces

Static and dynamic analysis

— J. Newsome, D. Brumley, J. Franklin, and D. Song. Replayer: Automatic
Protocol Replay by Binary Analysis. ACM CCS 2006.

Dynamic taint analysis

— J. Caballero and D. Song. Polyglot: Automatic Extraction of Protocol Format
using Dynamic Binary Analysis. ACM CCS 2007

— Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic Protocol Format Reverse
Engineering through Context-Aware Monitored Execution. NDSS 2008.

Conclusions

Secure Systems Lab

Reverse engineer application layer network protocols
Recover a message format

Validate format by parsing real world messages
Tested on common servers and protocols

Technical University Vienna

Questions?

Secure Systems Lab

Technical University Vienna

