

BGP Origin Authentication

The Problem

- ◆ Any AS can inject any prefix
 - Mistake (most commonly)
 - * Malicious
- **◆ Effective DoS attack**
- No automated way of excluding bogons
- Need mechanism to differentiate between bogons and legit prefixes

Different Problems

- ◆ Anyone can masquerade as another AS
- Anyone can tamper with advertisements
- ◆ Valid problems
- ◆ Need practical solutions
- ♦ Not this talk

Impractical problems

- **◆ Compromise of a BGP speaker**
- ◆ Global Byzantine computations are intractable
- Not this talk

Authenticate the AS path?

- ◆ AS path performs two functions
 - Prevents routing & forwarding loops
 - Differentiates between paths
- Attacks
 - * DoS
 - Add AS number
 - Delete AS number (causing a loop)
 - Shift traffic
 - Move traffic towards or away

Authenticate the AS path?

- ◆ Threat environment
 - Must be a transit ISP
 - Global advertisement provides auditing
 - Transit ISPs can attack the data stream too
 - Hard to hide from traceroute
- **◆ Is this a problem worth solving?**
- ◆ At what cost?

Our Approach

- Encode prefixes in DNS
- ◆ Use DNSSEC to provide authentication
- ◆ Have BGP look up each prefix in DNS
- Paths to prefixes fall into three classes
 - Authenticated
 - Unauthenticated
 - Authentication failures (bogon)

The Easy Part: The AS RR

- **♦** Syntax:
 - <name> AS <AS number> <p
- **♦ Semantics:**
 - * The prefix represented in <name> can be advertised with origin <AS number> with the given prefix length> or longer

An Example

- ◆ An AS RR: 125.128.bgp.in-addr.arpa. AS 47 16
- ◆ Prefix 128.125/16 is allocated to AS 47
- **◆ Longer prefixes also match!**

On the BGP side

- BGP does a lookup for each prefix
- ◆ Compare results against each path
- **◆ Performance issues:**
 - * BGP speakers can cache relevant RR's
 - Entire allocation tree fits on secondary storage
 - Cache can persist across reboots

Fun with BGP

- ◆ If there's a matching AS RR
 - And the origin doesn't authenticate
 - BOGON!!!
 - Log prefix, origin
 - Select a different path
 - Withdraw it, if it has been advertised
 - Generate SNMP trap, ring bells, send pages, wake the dead, etc.

More fun with BGP

- ◆ If there's a matching AS RR
 - And the origin authenticates
 - Authenticated paths may be preferred over unauthenticated paths
 - Authentication has a lifetime min TTL of all RRs
 - Authentication should be rechecked before lifetime expires

Even more fun with BGP

- ◆ If there's no authentication information
 - Paths are unauthenticated
 - Paths are useable
 - Same as today -- eases migration
 - Exception: authenticated less-specific prefixes are preferred over unauthenticated more-specific prefixes

Circular DNS dependency

- ◆ If there is an authenticated path, it is preferred to an unauthenticated path
- Only the authenticated path is announced
- ◆ Transitivity holds: the authenticated path always wins and propagates
- Only holds if domains authenticate the origin

Migration

- ◆ Inaction results in the status quo
- Action results in increased protection
- Database configured by address assignors
- ◆ Transit providers must deploy new code
- ♦ No (intractable) flag days
- Security improves with additional deployment

Aggregation

- ♦ How do we deal with aggregates?
- ◆ Include aggregates in bgp.in-addr.arpa
- ◆ Looks just like any other prefix, where the owner is the aggregator

The Hard Part: DNS

- ♦ How do we encode prefixes and prefix allocation?
- Awkward on non-octet boundaries
- Use the classless in-addr hack
- **♦** Root is bgp.in-addr.arpa. (or ipv4.nlri.ietf.org., or ... ????)
- ◆ Root is administered by ???

Prefix encoding rules

- ◆ A name is
 - <label>.<label> • <label>.bgp.in-addr.arpa
- ◆ Rule 1: Add a label and NS RR for every assignment
- **♦** Rule 2: For non-octet assignments:
 - * The label is <octet>/<length>
 - Add CNAME records for each octet value in the assignment

Advantages

- **♦ Solves 95% of the real problems now**
- ◆ Tractable amount of computation
- ◆ Leverages existing technologies
- Readily implementable
- ◆ Scales linearly with the number of paths in the global routing table
- Straightforward migration path

Forward progress?

- ♦ We need one global solution
- Debate has not selected an alternative
- ◆ Need a practical solution
- Prevent the next incident
- Debate must come to a close soon
- Otherwise:
 - The market will decide
 - After the horse has left the barn

Acknowledgments

- My co-authors
 - * Yakov Rekhter
 - * Tony Bates
 - Randy Bush
- ◆ The Classless in-addr gang
 - * Havard Eidnes
 - Geert Jan de Groot
 - Paul Vixie
- ◆ The DNSSEC folks
- **♦ Jerry Scharf**