
Building Adaptive and Agile Applications Using Intrusion Detectionand
Response

�

JosephP. Loyall, ParthaP. Pal, RichardE. Schantz
BBN Technologies
10 MoultonStreet

Cambridge,MA 02138�
jloyall, ppal,rschantz� @bbn.com

FranklinWebber
410WestGreenStreet,#1

Ithaca,NY
Franklin.Webber@computer.org

Abstract

Traditional Intrusion Detection Systems (IDSs) mostly
work off-line, without any direct runtime interaction or
coordination with the applications (and with other IDSs)
that they aim to protect. Including intrusion detection
and response in the repertoire of an adaptive applica-
tion extends its range of adaptivity and increases its
chances for survival. In this paper we show how intru-
sion detection and response can be used to build agile,
intrusion-aware applications under the Quality Objects
(QuO) adaptive distributed middleware framework.

1. Intr oduction

Most currentintrusiondetectionresearchfocuseson
detectingandrecoveringfrom intrusionsonhostsor net-
works,ratherthansurvivability of theapplicationsrun-
ning on them. Therehasrecentlybeeneffort to enable
intrusiondetectionsystems(IDSs) to interoperate[23],
but for the most part, current IDSs work in isolation
from otherIDSs, the applicationsthat they areprotect-
ing, andthesecuritymanagerswhosepoliciesthey can
influence.

We have developed a framework, Quality Objects
(QuO),for building applicationsthatareawareof their
environmentandcanadaptto changesin it. QuO ap-
plicationscanspecifytheir non-functionalrequirements
(e.g., security, performance,or dependabilityrequire-
ments),measurewhat is being provided, accessinter-
facesfor controlling the desiredlevel of service,and
adaptto changesin levelsof service.While thisresearch
wasoriginally performedin theareasof network quality
of serviceandopenimplementation,we have alsobeen
applying it to the areasof survivableapplicationsand

�
This work is sponsoredby DARPA undercontractsno. F30602-

97-C-0276andF30602-98-C-0187.

security.
UsingtheQuOframework, we supportthefollowing

desirablesystemlevel behaviors to improve thesurviv-
ability of applications:

� The development of intrusion- and security-aware
applications. These applicationscan aid IDSs
andsecuritymanagers,by recognizingapplication-
level patternsof usagethat might indicate intru-
sionsor securitybreaches.QuO includessupport
for insertingprobesthroughoutanapplication’sim-
plementationfor measuringthe level of service
provided. Theseprobescan also gatherinforma-
tion useful to IDSs andsecuritysystems,both for
recognizingintrusionsand for gatheringinforma-
tion abouttheir causesandsources.

� The development of survivable applications. These
applicationscan adaptto changingconditionsin
their environment, including reported intrusions
andchangesin securitypolicies.Thisenablesthem
to avoid potentialintrusions,continuein thefaceof
degradedservice,andrecover from intrusionsand
faults.

� Integration and interfacing of multiple IDSs at the
application level. While many IDSsaregoodatde-
tectingcertaintypesof intrusions,a 1998DARPA
ISO evaluationshowedthatmultiple IDSscover a
larger spaceof potentialintrusions[5]. However,
mostIDSsarenot designedto work in conjunction
with others. An applicationbuilt within the QuO
framework can interfaceto multiple mechanisms
andmanagers,includingmultiple IDSs. QuOpro-
videsa capability, calledsystemconditionobjects,
for providing a commoninterfaceto mechanisms
andmanagersthat have proprietaryinterfaces. In
thismanner, QuOapplicationscanaccessinforma-
tion from multiple IDSsthatdetectdifferenttypes
of intrusions.Let usemphasizethat the idea of in-

1



terfacing uniformly with multiple IDSs at the ap-
plication level is not to come up with a better IDS,
rather to increase the coverage and security of the
application. This is complementaryto the Com-
monIntrusionDetectionFramework (CIDF) effort
[23], which is developinga framework for IDS-to-
IDS communicationwith anaim to perfectthe art
of intrusiondetection.CIDF doesnot provide any
supportfor application-IDScooperation.

� Integrationof IDSs andother resourcemanagers.
IDSs and other managers,such as security pol-
icy managersor dependabilitymanagers,perform
complementaryactivities and could cooperateto
providehigherlevelsof service.For example,ase-
curity policy managercoulduseintrusiondetection
informationprovidedby anIDS to dynamicallyde-
terminewhetherto move to a stricter level of ac-
cesscontrol. Likewise,anIDS coulduseinforma-
tion from a fault detectionor dependabilityman-
ager to determinewhereand what type of intru-
sionsto look for. QuOprovidessupportfor build-
ing applicationsthataccessmanagersin many dif-
ferent complementarydimensions(e.g., security,
intrusiondetection,anddependability)to achieve
higherlevelsof serviceandadaptability.

This paper describesthe QuO framework and our
initial experimentsin building adaptive, agile, surviv-
able applicationsusing it. We describeour experi-
encesto datein integratingIDSs,securitymanagers,and
othermechanismsandmanagers.Section2 providesan
overview of the QuO framework. Section3 describes
the integration of an IDS into adaptive QuO applica-
tions. Section4 describesthe integrationof a depend-
ability managerinto the framework for the purposeof
intrusiondetectionandrecovery. Section5 describesthe
integrationof a securitymanagerinto the QuO frame-
work. Section6 describesexperienceto datefrom these
researchandintegrationefforts. Section7 describesre-
latedresearchprojects.Finally, Section8 presentssome
concludingremarksandfutureplannedactivities.

2. Overview of QuO

Thedistributedobjectcomputing(DOC) paradigmis
themostadvanced,mature,flexible context availableto-
day for the developmentof large-scale,network-based
systems. In DOC, software is broken up into collec-
tions of objectsdispersedthroughoutthe network, and
client objectsinvoke operationson servant objectsto
accomplishthe interactionsandfunctionalityneededto
achievethegoalsof arunningapplication.TheCORBA
DOC model[18] is illustratedin Figure1. A client ob-
jectinvokesamethodcall onaremoteobjectasif it were

a local object. The methodcall is handledby a local
stub,or proxy, which marshalsthedatafor delivery to a
localObjectRequestBroker(ORB).TheORBsendsthe
methodcall acrossthenetwork usinganInter-ORBPro-
tocol,suchastheInternetInter-ORBProtocol(IIOP), to
anORB local to theservantobject. ThatORB delivers
themethodcall to askeleton,whichunmarshalsthedata
anddeliversthemethodcall to theobject’s implementa-
tion. Uponcompletionof themethod’s processing,any
returnvaluesaredeliveredbackto theclient by the re-
verseprocess.

Figure 1. The CORBA Distributed Object
Model

DOC middlewareeffectively hidesmany of thecom-
plexities of distributedcomputingsuchasremoteloca-
tion interoperability, heterogeneity, commonservices,
andsynchronization,exposingonly thefunctionalinter-
facesof components.However, thereare increasingly
moredistributedapplicationsthatmustcontrolor react
to how servicesaredelivered,not just whatservicesare
delivered. Applicationssuchasnationalsecurity, mili-
tary, healthcare,medical,multimedia,andfinancialsys-
temsoften have critical requirements,suchassecurity,
dependability, andrealtimeperformance.DOC middle-
warefalls short in providing supportfor theserequire-
ments(asdoesall otherforms of middleware)because
it hidesthe detailsnecessaryto specify, measure,and
control quality of service(QoS) and doesnot provide
supportfor building systemsthat canadaptto changes
that affect QoS.Becauseof this, developersof critical
applicationsoftenfind themselvesprogrammingaround
the distributedobjectinfrastructure,effectively gaining
little or no advantagefrom the middleware. The prob-
lemgetsworsewhenanapplicationis distributedovera
WAN, whichis inherentlymoredynamic,unpredictable,

2



andunreliablethana LAN.

Figure 2. The QuO Remote Method Call
Model

We have developedQuality Objects(QuO), a DOC
framework for developingdistributedapplicationsthat
canspecifytheirQoSrequirements,thesystemelements
that needto be monitoredand controlled to measure
andprovide QoS,andbehavior for adaptingto changes
in QoS. In this way, QuO opensup distributed ob-
ject implementations[10], providing controlof boththe
functionalaspectsof a programandits implementation
strategies,which areoftenhiddenbehindthefunctional
interfaces.QuOprovidesthecapabilitiesfor developing
DOC applicationsthatcando the following in addition
to their functionalbehavior:

� Specify operating regions and service require-
ments.Thiscanincludespecifyingthelevelsof de-
siredsecurityor intrusionawareness(which might
changedynamicallybaseduponchangesin theen-
vironment), operatingmodes,normal and abnor-
mal operatingregions, and known attack signa-
tures.

� Measure environmental and system conditions.
Theapplicationcaninsertandutilize probesin the
systemin orderto measureresources,characteris-
tics,andbehavior. Theapplicationcanalsoreceive
informationfrom IDSs, securitypolicy managers,
andotherpropertymanagers.

� Accessto control interfaces. The applicationcan
pass information to IDSs, security policy man-
agers,andotherpropertymanagersto requestlev-

elsof serviceandto notify of eventsthatmight in-
dicateintrusionsor otherproblems. The applica-
tion canalsoaccesssystemresourcemanagement
controlinterfacesto achieveits desiredlevel of ser-
vice.

� Adapt and reconfigure. The systemcan adapt
to changingconditionsat all levels, coordinated
throughtheQuOmiddleware. For example,in re-
sponseto an intrusionalert from an IDS, a secu-
rity policy managermight respondby tightening
its accesscontrol. Meanwhile, the QuO middle-
warecanreconfigureso that the applicationis us-
ing servant objectsonly on trustedhosts. If this
causesoverloadingof the trustedhosts,the appli-
cationcanadaptby changingto amodein which it
is only performingcritical operationsor is accept-
ing thedegradedperformance.

The QuO functional path, illustratedin Figure 2, is
a supersetof the CORBA functionalpathillustratedin
Figure1.

Theoperatingregionsandservicerequirementsof the
applicationareencodedin contracts, whichdescribethe
possiblestatesthesystemmightbein andactionsto take
whenthestatechanges.

QuOinsertsdelegates in theCORBA functionalpath.
The delegatesproject the sameinterfacesas the stub
(client-sidedelegate)andthe skeleton(server-sidedel-
egate),but supportadaptive behavior uponmethodcall
andreturn. That is, thedelegatechecksthestateof the
system,asrecordedby a setof contracts,andchoosesa
behavior baseduponit.

System condition objects provide interfacesto system
resources,mechanisms,andmanagers.They areusedto
measurethestatesof particularresources,mechanisms,
or managersthatarerelevant to contractsin thesystem
andto passinformationto control interfacesto achieve
thelevelsof desiredservices.Systemconditionobjects
providetheability to accessdifferentIDS or securityin-
terfacesin a consistentmanner. They alsoplay a role in
translatingbetweenapplication-level concepts,suchas
critical operatingmodes,to resourceand mechanism-
level concepts,such as encryptionmethodsor access
descriptions.Higher-level systemconditionobjectscan
interfaceto other, lower-level systemconditionobjects,
forminga treeof systemconditionobjectsthattranslate
mechanismdatainto applicationdata.

QuO provides a suite of Quality Description Lan-
guages(QDL), similar to CORBA’s InterfaceDescrip-
tion Language(IDL), and codegenerators,similar to
the stubandskeletongeneratorsof IDL compilers,for
describingandgeneratingthe componentsof QuO ap-
plications[13], [14]. In addition,QuO providesa run-

3



time kernel,which coordinatescontractevaluationand
provides other runtime QuO services[26]. QuO also
providesanextensive library of instrumentationprobes,
as well as the support to insert them throughoutthe
remotemethodinvocation path, for gatheringperfor-
mance,statistic,andvalidationinformation.

Figure 3. The QuO Gateway

QuO also provides a generalobject gateway com-
ponent,which supportsinterfacing to below-the-ORB
mechanismsandspecial-purposetransports,aswell as
providing a lower level point for object level decision
making.Theobjectgateway, illustratedin Figure3 and
describedin more detail in [20], interceptsIIOP mes-
sagesfrom theclient sideORB anddeliversIIOP mes-
sagesto theserver sideORB (on themessagesend;on
themessagereturntheprocessis reversed).In themid-
dle, it translatestheIIOP into thespecialpurposetrans-
port protocol(e.g.,groupmulticastin a replicated,de-
pendablesystem)or performsappropriateadaptationor
control(e.g.,in anaccesscontrolsystem,authenticating
thesenderandverifying accessrightsto thedestination
object).

3. Integration of IDS with QuO

By integratingIDSswith QuOweaddintrusiondetec-
tion andresponseto therepertoireof QuOapplications’
adaptivity. As a result,agility andsurvivability of QuO
applicationsareenhanced.In this section,we describe
anexperimentdemonstratinghow a commercialIDS, a

simplecustomdevelopedIDS, andapplication-specified
intrusiondetectionareall integratedto provideintrusion
awarenessand adaptive behavior in responseto intru-
siondetectionat theapplicationlevel. This application
is fairly simple,but illustratesanumberof importantca-
pabilities,includingthefollowing:

� Integration of commercial and non-commercial
IDSsusingtheQuOframework.

� An applicationseamlesslyinterfacing to multiple
IDSs, enablingthe IDSs to cooperatethroughthe
application layer and increasingintrusion cover-
age.

� An applicationparticipatingin theintrusiondetec-
tion process,by recognizingconditionsthatcanin-
dicate intrusionsbut that are not detectedby the
IDSs.

� An applicationadaptingto survive potentialintru-
sions,triggeredby outputsof theIDSs.

In contrast,theapplicationcanusethe IDSsasmecha-
nismsto turn on, turn off, or changethe level of intru-
sion detectionprovidedbaseduponits operatingmode
andsecurityneeds.

3.1. Overview of the Experimental Survivable
Application

We developedanexampleapplicationto demonstrate
IDS integrationwith QuO. This experimentalapplica-
tion implementsa simple inventorywith a fixed setof
inventoryitems,as illustratedin Figure4. The inven-
tory data is storedas files in a designateddatadirec-
tory. Two serversmanagethe inventory: onemorese-
cure than the other. The client program,representing
the inventorycontrol system,providesa userinterface
throughwhich userscan identify themselves (i.e., log
in), addor consumeitemsin theinventory, andlog out.
Both servers can respondto requestsfrom the clients,
but the more secureoneauthenticates(using a simple
authenticationscheme)eachrequestandgrantsaccess
only to certainclients. This is an exampleof the alter-
nativebehaviorsthattheQuOmiddlewareis intendedto
mediate.In normalmode,all clientrequestsareserviced
by the non-authenticating(andthereforefaster)server.
As conditionsindicatethat intrusionsare more likely,
the inventorycontrolsystemadaptsto usetheauthenti-
catingserverandthen,eventually, maycutoff all access
to non-privilegedusers.Theclient andserver programs
aresimpleCORBA objects. No intrusiondetectionor
adaptationis programmedinto them. For this example,
all adaptationis built into the QuO middleware layer.
We utilize threeintrusiondetectioninstrumentsin this
example:

4



Figure 4. Storage and Runtime View of the
Inventory Application

� Tripwire, a commercial file system integrity
checker [11];

� FileCounter, a simple,customdevelopeddirectory
accesschecker;and

� Specifications,encodedinto the QuO contractre-
gions,indicatingthe expectedroundtrip response
time rangeand recognizingwhen client requests
are being abnormally delayed(possibly because
they are being intercepted,or becauseof host or
network attacks).Note thatsucha delay, by itself,
is not a good indicator for an intrusion: a benign
network congestioncould causea false positive.
This merelyservesasan exampleof an indicator
of potentialproblemsfor anintrusionawareappli-
cation.

We useTripwire to monitor the file systemsection
that storesthe sourceand executablecodeof this ap-
plicationandFileCounterto monitor thedatadirectory.
Weusesystemconditionobjectsto interfaceto Tripwire
and FileCounter, eachof which normally provides its
own custominterface. Thesesystemconditionobjects
projectvaluesfrom theIDSsto theQuOlayerandpro-
vide commonaccessto the control interfacesprovided
by theIDSs. Tripwire’s systemconditionobject(called
IDSValue) projectsa value to the QuO contractindi-
catingwhetherthe integrity of the codestorehasbeen
violated(in Tripwire’s view). Similarly, FileCounter’s
systemcondition object (called FileAddedOrDeleted)

projectsa valueindicatingto theQuOcontractindicat-
ing whetheradatafile hasbeenlost or added.

Deviation from normal operating behavior often
points toward potential problems. For instance,if a
server returnsa valuethat doesnot make any sensein
the currentcontext, the client may becomesuspicious
that the server hasbeencompromised.Similarly, if it
takes an abnormalamountof time to fulfill a request
to the inventory server, the client may becomesuspi-
ciousthat thereis a problemin the network, a host,or
in the server. It is straightforward to encodesuchnor-
mal operatingrangesin QuO’s contractregionsandto
specify adaptive behavior to trigger when the applica-
tion falls outsidenormal ranges. In this example,we
usethe contractand a simple systemcondition object
(called TimeTaken) to measurethe averageround trip
time of methodcallsandwatchwhetherit falls outside
of the expectedrange. As we statedearlier, theremay
be a variety of causesof this abnormalbehavior, only
someof which aretheresultof intrusions.Determining
the actualcausefalls somewherebetweensystemtrou-
bleshootingandintrusiondetection.

3.2. BasicIntegration Ar chitecture

The example application includes the three system
condition objectsdescribedin Section3.1: IDSValue,
FileAddedOrDeleted,and TimeTaken. IDSValue, il-
lustratedin Figure 5, provides the QuO interface to
Tripwire. Tripwire can be initialized to monitor spe-
cific sectionsof a file systemfor particularattributes,
suchaspermissionsor modificationtimes,of the files
and directoriesin that section. Tripwire computesa
databaseuponinitialization. At runtime,it recomputes
the database,comparesthe newly computeddatabase
againstthe initial one,andpresentsa resultsetthat in-
dicateswhatoccurredin thefile systemsectionbetween
theruns.

In ourexample,wewrapTripwire with aCORBA ob-
ject interfacethat runs Tripwire periodically and ana-
lyzesits output.If thereis any changein thefile system
sectionthis CORBA objectreturnsa value1, otherwise
it projectsavalue0. TheIDSValuesystemconditionob-
ject is hookedto this CORBA object.Oneof its threads
pollsTripwire’sCORBA wrapperto getthelatestvalue.
The other threadrespondsto requestsfrom QuO con-
tractsfor thelatestvalue.

Of course,if theIDS systemwereaCORBA objectal-
ready, thenno CORBA wrapperis necessary. Theother
IDS componentis a CORBA object that monitorsfiles
in a directory. FileCounterproducesa value1 if a file
is addedor deletedin that directory, 0 otherwise. We
have usedthis asa simplecustomdevelopedIDS and
integratedit with QuOalongwith Tripwire, in orderto

5



Figure 5. Interfacing a System Condition Ob-
ject with a COTS IDS

experimentwith multiple IDS inputs.
TheQuOcontractusedin thisexampledefinesthefol-

lowing operatingregions,eachdefinedin termsof the
systemconditionobjectsdescribedabove:

� NORMAL : ���	��
����������� � ������
���� and
��� �"!$#%�'&)(*�%+,� � and ��-.�/&���0�1212��1'3546�7��&���89��1"+
�2�

� TIME SUSPECT : �)���:
������������ ;<+
������
=��� and ��� �"!$#%�'&)(*�6!?> + �2� and
��-.��&���0�121 ��1'354��"��&���89��1@+A� �

� ACCESSSUSPECT: ��� �"!$#%�'&)(*�6!?>B+DC�� xor
��-.��&���0�121 ��1'354��"��&���89��1@+,C��

� INTRUSIONLIKELY : ���2�"!?#%�'&�(E�6!?>F+GC�� and
��-.��&���0�121 ��1'354��"��&���89��1@+,C��

Theapplicationadaptsits behavior basedon thecur-
rentregionasfollows:

� NORMAL region: client requestsareforwardedto
thenon-authenticatingserver.

� TIME SUSPECTregion: A warning messageis
displayedto the usernotifying of the unusualde-
lay andurging cautionin usingthe inventorysys-
tem.Theclient’s requestsarestill forwardedto the
non-authenticatingserver.

� ACCESSSUSPECTregion: A warning message
is displayedto the userstatingthata potentialac-
cessviolation is detectedandthat requestsmayor

maynot begranted.Clients’ requestsarenow for-
wardedto the authenticatingserver, which grants
accessonly to privilegedusers.

� INTRUSIONLIKELY region: A warningmessage
is displayedstatingthatit is highly likely thatthere
wasan intrusionthatcouldhave compromisedthe
codeanddatastoreof theapplication,andall client
requestsare returnedwithout making any remote
call. This implies that only someinventoryoper-
ations(i.e. that could be handledlocally, for ex-
ampleaqueryaboutaninventoryitemcouldbean-
swered,with somedegreeof accuracy, basedonthe
valuelastseen)areavailableatthisregion. Onecan
extendthe rangeof availableoperationsby using
varioustechnologiessuchasobjectcaching[27] or
maintaininga local replicaof theinventoryserver.

Figure 6. Intrusion Aware Inventory Applica-
tion and Its Runtime Behavior

In addition,if at any time thereturnvalueis negative
(undernormalcircumstances,theservershouldneverre-
turn a negative value)that valueis reportedto the user
and the contractregion is switchedto ACCESSSUS-
PECT. All of theseadaptive behaviors arespecifiedin
QuO’s specificationlanguages.Figure6 presentsa pic-
torial representationof thefull IDS awareinventoryap-
plicationaftertheQuO-IDSintegration.

6



4. Integration of QuO and Other Property
Managers

Therearenumeroustoolsandmechanisms,whichwe
generically refer to as property managers,that man-
agelow level systemresources.Thesepropertyman-
agersprovide the capabilities that QuO applications
mustmeasureandcontrol in orderto achieve andadapt
to levels of servicein the system. For example, we
have developeda bandwidthmanagementsystemthat
usesRSVPto reservenetwork bandwidth,providing im-
provednetwork responsefor the application[1]. Simi-
larly, we have built an availability examplearoundthe
Proteusdependabilitymanagementsystem[3], which
usesgroupcommunication,replication,andfault recov-
ery to provide higherlevelsof availability to theappli-
cation.Theseintegratedpropertymanagerscanbeused
to developadaptable,survivableapplicationsin thefol-
lowing ways:

� They can provide information indicating anoma-
lous behavior and its causes. In general,more
preciseinformation meansimproved adaptive re-
sponse. For example, unusualdelay (which we
have usedasan indicatorof a potentialproblem)
couldbecausedby thenetwork, by acompromised
object,a crashedobject,a compromisedhostor a
crashedhost.Givenadditionalinformation,theap-
plicationcouldadaptintelligently.

� They could provide the applicationmore adapta-
tion opportunities.For example,if it is thenetwork
thatis thesourceof anabnormaldelay, theQuOap-
plicationcanattemptto reservebandwidth,if such
a manageris available.

We have begun integratingthe Proteusdependability
manager[19] into the QuO-IDS exampledescribedin
Section3, in orderto illustratehow otherpropertyman-
agersworking in concertwith IDSs andadaptableap-
plicationscanproducemoreflexible, survivableappli-
cations.

The QuO-IDS integration example as describedin
Section3, althoughsurvivablein thefaceof sometypes
of intrusions,is hardlydependable.If oneof theserver
objectsdies,thewholeapplicationdies. UsingthePro-
teusdependabilitymanager, it is possibleto make the
applicationmore dependablein the sensethat it can
toleratea certainnumberand type of faults. Proteus
achievesthat by replicatingthe server objectson mul-
tiple hosts.However, in thecourseof its fault recovery,
Proteususuallyhidesfaultsfrom the application. That
is, when an object crashes,Proteusrestartsit and up-
datesits state,to maintaina level of dependabilitytrans-
parentto theapplication.In thecontext of a survivable,

intrusion-awareapplication,faultmaskingmayhidepo-
tentialcluesfor intrusion.

In conjunctionwith our research,the University of
Illinois hasdevelopeda fault notification interfacefor
Proteus. Using this interface we have developed a
CORBA object,calledFaultObserver, that receivesno-
tification from Proteusaboutfaultssuchas the unsuc-
cessfulstart of a replica, crashof a replica,andcrash
of a host. Eachnotificationconsistsof a setof fault in-
formationwhich canbe storedandanalyzedto recog-
nizepatternsof failuresthatmight indicateanintrusion.
Thefollowing aretwo examplesconditionsthatFaultO-
bservercurrentlyrecognizes:

� POTENTIAL INTRUSIONOFHOSTx: this indi-
catesthateitherthehostnamedx crashedor replica
startattemptson this hostwereunsuccessful.

� POTENTIAL COMPROMISE OF OBJECT o:
this indicatesthat eithera replicaof objecto has
crashedor attemptsto start a replica of objecto
havebeenunsuccessful.

Figure 7. Integrating Proteus in the Context of
Intrusion Detection and Response

Figure7 shows threeSystemConditionsthatwehave
hooked up to the FaultObserver object. Each of the
top two projectsthevalueof thePOTENTIAL INTRU-
SIONconditionsfor oneof thetwo replicationhostsand
the bottomoneprojectsthe valueof the POTENTIAL
COMPROMISEconditionfor a serverobject.

7



Let usconsidera simpleclient-serverapplicationthat
usesProteusto replicatetheserverandin addition,also
maintainsa non-replicatedserver. Replicationprovides
the fault toleranceanddependability, whereasthe non-
replicatedservermakesit possiblefor theapplicationto
bypassthe replicationmechanismif it choosesto. A
contractfor this applicationmay includethe following
regionspredicatedon the systemconditionobjectsde-
scribedabove:

� HOST SUSPECT: the HOST INTRUDED condi-
tion is truefor oneor bothreplicationhosts.

� SERVER SUSPECT: the OBJECT COMPRO-
MISED conditionis truefor thenon-authenticating
server.

Theapplication’sadaptivebehavior mayinclude:

� If theapplicationis in theSERVER SUSPECTre-
gion, the client’s requestswill be redirectedto the
differentnon-replicatedserverobject.

� If the applicationis in HOST SUSPECTregion,
Proteuswill be asked not to placereplicasin the
intrudedhost(s).

In addition to the notificationof crashfaults,which
Proteuscurrentlyprovides,the University of Illinois is
alsoworkingonproviding notificationfor othertypesof
faults,suchastiming andvaluefaults,thatcouldprove
usefulfor a survivableapplication.

5. Integration of QuO and Security

The survival of a QuO applicationdependson more
thanjust QuO.Attackson QuO’s environment,includ-
ing operatingsystems,networks, and the CORBA im-
plementation,all have the potentialto completelydis-
ableQuO andany applicationit supports.We assume
thattheenvironmenthassomeresistancetosuchattacks.
We do not assume,however, that the environmentof-
fersuncircumventablesecurity, becausesuchsecurityis
not commonlyavailable. We rely on the environment
to slow down attackers and make their attacksvisible
to IDSs. QuO applicationscan then respondto many
attacksby adaptingand reconfiguring,asdescribedin
previoussections.

To enhancethedefensesof aQuOapplicationwealso
offer accesscontrol. The applicationdesignercanuse
accesscontrol at the CORBA level to ensurethat only
authorizedusersandprogramsmayinvoke theapplica-
tion and that unauthorizedinterferencewith the appli-
cation’s internalmechanismsis not possible.QuOinte-
gratesaccesscontroltechnology, in theform of Network
Associates’OO-DTE,for this purpose.

5.1. Object-Oriented DomainTypeEnforcement
(OO-DTE)

OO-DTE [24] is an object-oriented,policy-driven
mechanismfor fine-grainedaccesscontrolin distributed
systems.It is policy-drivenbecauseit basesaccesscon-
trol decisionson a single,explicit, written policy gov-
erninganentiredistributedapplication.Theapplication
developerdescribesthe accesscontrolsonce,andOO-
DTE enforcesthesecontrolsconsistentlyatall locations
wherethe applicationruns. This approacheliminates
theneedfor a developerto setoperatingsystemaccess
controlsmanuallyoneveryhost.

OO-DTEis object-orientedbecauseit controlsaccess
in terms of objectsand the clients that use them. It
is fine-grainedbecauseit allows control over accessto
eachobjectandeachobjectmethodindividually. The
protectionit offers is thereforemoreflexible than that
offeredby firewalls, for example.

OO-DTEdoesnot assumethatanapplication’s com-
ponentsare all trusted to the samedegree. Instead,
eachclient andobjectmustauthenticateeachotherus-
ing cryptographicmeans(currentlySSL[16]).

5.2. ProtectingQuO Applications

QuO applicationsusethe OO-DTE mechanismsdi-
rectly for protection. The developerwrites a security
policy that controlsboth the accessof usersto the ap-
plicationandaccessof applicationcomponentsto each
other. The securitypolicy refersto methodsdeclared
in CORBA IDL, andin this way, it is like QuO’s other
specificationlanguages.Thesecuritypolicy mustcover
all of the interfacesusedin the application,including
thoseusedby QuOcallbacksandby QuOdelegatesfor
adaptivebehaviors.

5.3. ProtectingQuO Infrastructur e

TheQuOinfrastructure,consistingof QoScontracts,
systemconditionobjects,anda kernel,is built from the
sameCORBA mechanismsas QuO applications. Just
asapplicationclientsuseCORBA to invokemethodson
applicationobjects,so QuO delegatesuseCORBA to
invoke methodsfor accessingsystemconditionobjects,
for initializing contracts,and for causingthe kernel to
evaluatecontracts.

The QuO infrastructureis thereforesubject to the
samekinds of attackas is every application. For ex-
ample,a maliciousprogramcould try to trigger QuO’s
adaptationmechanismsat the wrong time by changing
thevalueof a systemcondition,or to disableQuOalto-
getherby changingQoScontracts.We protecttheQuO
infrastructureusingOO-DTE accesscontrol just asfor
applications.TheQuOinfrastructurecodemustusean

8



ORB or ORBs with OO-DTE enabled(in fact, if this
werenot so, OO-DTE would not work becausethe in-
frastructureandthedelegatescouldnotestablishmutual
authentication)andthesecuritypolicy mustdescribeac-
cesscontrolfor infrastructuremethods.Thepolicy must
prohibit thedelegatesfrom damagingthe infrastructure
but still give themtheaccessthey needfor adaptation.

Theneedto protecttheQuOinfrastructurehasimpli-
cationsfor the designof QuO. We assumethat threats
to QuO comefrom applicationsoftware andnot from
codewithin the QuO infrastructurewe supply. Then
QuO mustnot allow applicationsoftwareto run in the
sameprocessaddressspaceas the QuO infrastructure.
OO-DTE cannotprotectQuO from maliciouscodein
the sameaddressspacebecausethat codemay bypass
CORBA altogetherand directly accessQuO codeand
datastructures. So the infrastructurewe supply with
theQuOdistribution canbeconsideredpartof a trusted
computingbase(TCB) [4] andall untrustedextensions
to that infrastructureand applicationsare outsidethis
TCB andmustrunin otheraddressspaces.For example,
theQuOkernelcannotberun securelyin thesamepro-
cessasanapplicationclient,eventhoughto dosowould
enhanceperformance.

5.4. Dynamic AccessControl

Accesscontrol, just like other QoS propertiesman-
agedby QuO,mayneedto bechangedat runtime. For
example,if anIDS notifiesQuOof a possibleintrusion,
it maybedesirableto go into analertmodethatallows
the intruder to be moreeasily identified. Nonessential
processesmay be stopped,accesscontrols tightened,
andotherQoSattributessetto preestablishedvalues.In
this exampleand others,the securitypolicy is simply
oneaspectof QoS.

Therearecurrently two waysto changeaccesscon-
trolsdynamicallyin QuO:

1. usingOO-DTE’spolicy distribution tools;

2. usingQuO’sQDL languages.

For thefirst approach,a new policy is pushedfrom a
centralsecuritypolicy managercomponentto all OO-
DTE interceptors,which then begin implementingit.
For thesecondapproach,QuO’sspecificationlanguages
areusedto specifyanalternatebehavior in whichaccess
to somemethodis denied,asillustratedin theadaptable,
survivableexamplein Section3.

The approachof changingaccesscontrolsis prefer-
able. It appliesglobally, whereasthe secondapproach
is purelylocal to thedelegatesaffectedby thespecifica-
tion. Thefirstapproachisalsomoretrustworthythanthe
second,wherethe codeimplementingthe accesscon-

trol runsin a delegatein theclient’s addressspace,and
thereforemaybecircumventedif theclient is malicious.

6. Experienceto Date
Although this paperreportson work in progress,we

have to this point developedsomeexperienceaboutthe
natureof applicationassistedintrusion detection,and
thefeasibility of theapproachto survivability which in-
tegratestogethera numberof morelocalizedprotection
andsecuritymechanismsto achievemoreeffectivecov-
erage. In this sectionwe discussfour of theseareas:
usingmultiple complementaryIDSs,integratingoff the
shelf IDSs, integrating securitypropertymanagement,
andapplicationstrategies that can complementinfras-
tructurebaseddetectionandprotectionmechanisms.

6.1. Multiple, Complementary IDSs and Man-
agers

It hasbeenshown from an experimentconductedby
MIT Lincoln Laboratoryfor DARPA thatmultiple IDS
systemscanbemoreeffectivein identifyingrealattacks.
MIT LL evaluateda numberof IDSs,testingthemon a
numberof different typesof attacks,andscoringeach
accordingto the numberof attacksthat it detectedand
the numberof falsealarmsit raised. The resultsindi-
catedthat while noneof the IDSs overwhelminglyde-
tectedmostof the attacks,the (hypothetical)combina-
tion of thebestdetectorsfor eachattackresultedin more
than two ordersof magnitudereductionin falsealarm
rateswhile improving detectionaccuracy overcommer-
cial andGovernmentkeyword-basedsystems[5]. This
providesthemotivationfor amodelwheretherearemul-
tiple IDSs operatingconcurrently, and the needto or-
ganizeandintegratetheir operationto achieve intended
applicationorientedimprovementsin survivability.

Oneof the strengthsof theQuOframework is that it
providessimplified supportfor interfacing to multiple
managersandmechanisms.Partof ourcurrentdevelop-
mentandexperimentationinvolvesintegratingmultiple
managersandmechanisms.Thefirst examplewedevel-
oped,describedin Section3, combineda commercial
off the shelf IDS with a customdeveloped(but simpli-
fied) onetailoredfor the specificneed. We arenow in
the processof developinga demonstrationapplication
that usesthe Proteusdependabilitymanagerin combi-
nation with the Tripwire IDS. This has two potential
applicationsurvivability benefits. First, fault detection
informationcollectedroutinelyaspartof dependability
supportcanbe usedto aid the intrusiondetectionsys-
tem,andsecond,thereconfigurabilityof replicationas-
setscanbeusedto helprecoverfromdetectedintrusions.

Theexamplesthatwehavedeveloped,despitehaving
limited interactionbetweenmanagers,have delivered

9



theexpectedbenefits.Somemanagers,suchasmultiple
IDSs,securitypolicy managers,anddependabilityman-
agersarecomplementaryandcanproducehigherlevels
of servicewhenusedtogether.

6.2. Integrating COTS IDSs

If the conceptof usingmultiple specialpurposeIDS
systemsin concertis to be viable andextensible,then
weneedto beableto takeoff theshelfIDS systemsand
easilyinserttheminto variousapplicationcontexts. To
test our approachto this type of integration, we used
the exampledescribedin section3. The collection of
intrusiondetectionsystemsavailableto uswaslimited,
largely to thosesufficiently matureunderdevelopment
as part of the DARPA Information Survivability pro-
gram,andthoseinexpensively availablecommercially.
Fromthesewechosetwo to work with: Tripwire,acom-
mercially available ID discussedearlier (and success-
fully integratedwith ourconceptexample),andJAM, an
experimentalID underdevelopmentwithin theDARPA
program.

JAM [25] is essentiallya classifiersystemthat em-
ployslearningandmeta-learningtechniquesto build and
refinetheclassifier. JAM hasbeenusedsuccessfullyto
learnintrusionpatternsin systemtraces[5].

Oneof themajorproblemswe encounteredin trying
to integrateJAM with QuO is a mismatchof modesof
operation.JAM currentlyoperatesin a batchmode.Al-
thoughit is possibleto askit to classifya datasetin an
interactivemanner, thecurrentversiondoesnot provide
any easyway to do it. Off-line usageprovidesonly a
smallexperimentalfootprint to complementthecurrent
runtimeadaptationin QuO,eitherasa sourceof inputs
for contractevaluationor asa mechanismto provide its
service.BecauseJAM is gearedtowardsstandaloneus-
agewith a GUI andnot embeddedusageasenvisioned
in integratinginto aQuOenvironment,it did nothavean
appropriateAPI which couldeasilybeusedto integrate
into QuO’ssystemconditionconstructs.Additionally, it
turnsout to be a complex job to createthe datadefini-
tion anddatasetsthat JAM would needin the context
of and training for a new applicationsuchas integrat-
ing with QuO.Becauseof theseissues,the experiment
to integrateJAM asoneof the ID systemsin our adap-
tiveapplicationcontext hasbeenpostponed,pendingthe
additionof onlineusageinterfacesto JAM.

In general,the issueswe encounteredin integrating
with Tripwire and in trying to useJAM fall into two
broadcategories:

� InterfaceRequirements:How doesan application
interfacewith a COTS IDS? The bestpossibility
would bea runtimeserviceprovidedby theCOTS
IDS. A programmableAPI would bethenext best

choice. The minimal requirementis that it should
be possibleto run the IDS from a CORBA object
andcommunicateresultsin andout. A runtimeser-
viceor aprogrammableAPIsmakethis taskeasier,
but humanorientedinterfaceshave beenencapsu-
latedsuccessfullyaswell, mostoftenwith lessflex-
ibility .

� Integration Architecture: What is an appropriate
level of integration?Wethink thatthewaywehave
architectedthe integrationby meansof a CORBA
wrapperthat actsas a peerof a QuO component
is a generalpatternof usagethat will be repeated
with otherCOTS systems.Dependingon thelayer
in which the QuO componentoperates,the COTS
systemmayprovideinputsto contractevaluationor
mayprovide someservice.If theCOTS systemis
alreadya CORBA objectitself, no CORBA wrap-
perwill beneeded.

6.3. Integrating Security Property Management

Basedonourexperiencethusfarwith usingOO-DTE
in QuO,wecanmakeseveralobservations.

First, we learnedthat incorporatingOO-DTE access
control into QuO was straightforward. BecauseOO-
DTE is implementedasCORBA interceptors,integrat-
ing it requiredonly minimal changesto QuOcode.Us-
ing OO-DTEsuccessfullywaslargelyamatterof setting
upthepolicy andcryptographiccertificatescorrectlyfor
eachapplication.

Second,weexpectthatusingOO-DTEwill no longer
be straightforward in the presenceof mechanismsthat
supportotherproperties.For example:

� Althoughaccesscontrolin thepresenceof faulttol-
erantreplicationis conceptuallysimple (just give
each replica the sameaccessrights), the actual
implementationappearsharder. In addition to
handlingapplication-level invocations,thereplicas
mustrun somereplicacoordinationprotocol. It is
not yet clearwhataccessrightsarerequiredin this
protocol.

� Using accesscontrol in the presenceof a realtime
ORB [21] will mean porting the accesscontrol
mechanismsto analternativeORBandensuringin-
teroperabilitybetweenORBs.

Third, building security-awareQuOapplicationswill
meanallowing applicationsto have directaccessto the
securitypolicy to inspectit andpossiblyto modify it.
Currentlythisaccessis notpossible.To makeit possible
we mustencapsulatethe OO-DTE policy in a CORBA
objectanddefineaccessmethodsfor the policy. Once

10



thatis done,theaccessrightsthemselvesmustbeaccess
controlledaccordingto somemeta-level securitypolicy.

6.4. Applications Participating in Intrusion De-
tection

Our work with theQuOframework, variousproperty
managers,and the integration of ID and securityhas
shown that many of the QoSpropertieswith which an
applicationis concernedare the sameQoS properties
thatcanindicateanintrusionor attack.For example,by
definition denialof serviceattackswill manifestthem-
selvesby anapplicationlosingsomeserviceuponwhich
it is dependent.Likewise, flooding attacks,attackson
particular hosts, networks, or processescan manifest
themselvesaschangesin the systemconditionsmoni-
toredby QuOapplications.

We illustrated in our exampleapplicationdescribed
in Section3 that QuO applicationscanspecifynormal
andabnormalpatternsof behaviors in their regionsand
recognizewhenthesystemis operatingoutsidethesere-
gions.Many of these,especiallyif codedcarefully, can
indicatepatternsof attack. Slow service,loss of net-
work resources,abnormalresponsesby server objects,
etc. canall indicatepotentialattacks. The application
can aid IDSs by alerting them toward potential intru-
sionsthatshouldbeanalyzedor by indicatingconditions
in which multiple IDSsshouldbedeployed.

In addition,QuO’s systemconditionobjectsand in-
strumentationnormally usedfor bottleneckidentifica-
tion and to drive resourcemanagementdecisions,can
also be usedto collect systeminformation over time
thatmight recognizeintrusionsthataredifficult to rec-
ognizefrom smallwindowsor groupsof events,suchas
slow degradationsin service.This informationcanfeed
into off-line analysiscapability, suchas that currently
providedby JAM. Oneweaknessof anomalydetection
IDSs is that they canbe trainedby intrudersover time
to recognizeanomalousbehavior asnormal. An appli-
cationcouldaid in detectingthesetypesof intrusionsby
collectinginformationindicatingslow, deliberatedegra-
dationsof serviceor changesin behavior patterns.

Finally, we have also shown, in the exampleappli-
cationdescribedin Section4, that otherpropertyman-
agersandmechanismscanbeusefulin intrusiondetec-
tion. We have concentratedour initial efforts on using
theProteusdependabilitymanager, which in normalus-
age would attemptto mask faults that could indicate
intrusions,to collect information about fault patterns,
asa meansof helpingrecognizeintrusions. However,
other mechanisms,such as resourcemanagement,re-
altime scheduling,and instrumentation,could also be
focusedon the job of intrusion detection. We intend
to continuetheseexperiments,by using Proteus,OO-

DTE, and combinationsof IDSs in concert to create
moreintrusion-aware,adaptive,survivableapplications.

7. RelatedWork

7.1. OO-DTE

Section 5.1 describesthe OO-DTE accesscontrol
technologythatweareusingin QuO.Otherrelatedtech-
nologies,however, arealsounderdevelopmentat Net-
work Associates:

� an alternateimplementationof OO-DTE that de-
pendson a modifiedUnix kernelfor greatersecu-
rity assurance;

� analternateimplementationof OO-DTEthatoffers
coarsergranularityaccesscontrolbut dependsona
firewall for enforcement.

Enhancementsto OO-DTEthatwouldsupportmulticas-
ting are also underconsideration.Eachof theseOO-
DTE technologiesofferspossibleimprovementsto QuO
security.

7.2. Intrusion DetectionSystemResearch

Therearenumerousresearcheffortsdevelopingintru-
sion detectionsystems.Most of theseareanomalyde-
tectionsystems,misusedetectionsystems,or a combi-
nationof the two. Anomaly detectionsystemsidentify
thenormalbehavior of asystem,oftenthroughtraining,
anddetectbehavior thatdeviatesfrom normal. Misuse
detectionsystemsdetectknown patternsof attack,such
asexploitation of known securityholesor recognition
of virussignatures.For example,Columbia’sJAM is an
agent-basedmisusedetectionsystemthat usesknown
patternsof fraudulentuse of transactionsystemsand
modelsof anomalousor erranttransactionbehaviors to
protectfinancialinformationsystems[25]. MCNC’s Ji-
Nao is ananomalydetectionsystemthat identifiesnor-
mal profilesof network routingandmanagementproto-
cols andmonitorsthe executionof protocolsin routers
and switchesto recognizedeviations from the normal
profile [9]. SRI’s Emerald systemis a combination
anomalyandmisusedetectionsystem[17]. UC Davis
hasdevelopedaprototypecalledGrIDS [22] thatusesa
graphbasedapproachto detectanomalousactivities on
hostcomputersandnetwork traffic betweenthem.

Most of theseIDSs work by examining patternsof
systemcallsor network traffic. In almosteverycase,the
IDS is working on behalf but completelyindependent
of the applications,with no interactionor involvement
from the applications. In contrast,we are examining
the ways in which the interactionandcooperationbe-
tweenIDSs,applications,andotherpropertymanagers

11



canimproveboththedetectionby theIDSsandthesur-
vivability of the applications.In a slightly relatedway
researchersatRSTCorp.areusingapplicationprogram
behavior profilesfor intrusiondetection[8].

Computational immunology is a special case of
anomalydetectionbasedon an analogywith biologi-
cal immunesystems.In this approach,an IDS creates
a knowledgeof “self” throughtraining, with the intent
of distinguishingthat “self” from “other”, i.e., system
attackers. Work in this areais beingdoneat the Uni-
versity of New Mexico [7] and ORA. The latter have
developedaCORBA immunesystemthatdefines“self”
in termsof correlationsbetweenmethodinvocations.

7.3. QoS/Quorum

Therearea numberof othercomplementaryresearch
efforts in QoSfor distributedsystems,many beingper-
formed under the auspicesof DARPA’s Quorumpro-
gram. Similar to the Universityof Illinois’ andBBN’s
work in dependability[3], the Eternalproject is exam-
ining the useof replicationand group communication
in CORBA applications[15]. The DIRM [1] project
createda capability for distributed applicationsto re-
serve network bandwidthin wide-areanetworks, and
adaptduring runtimeto changingnetwork resourcere-
quirementand availability. The Darwin [2] project
concentrateson network resourcemanagementandthe
QoSME[6] projectdevelopeda Quality of Service(in
thenetwork context) managementenvironment.Finally,
the TAO [21] andTime-triggeredMethodObjects[12]
projectsare examining the realtimeaspectsof QoS in
distributedsystems.

7.4. CIDF

TheCommonIntrusionDetectionFramework (CIDF)
effort [23], sponsoredby DARPA, is developinga com-
mon data format and encodingschemefor communi-
catingintrusionevent, analysis,andresponseinforma-
tion betweenIDSs and IDS components. CIDF’s ID
dataformat,calledGeneralizedIntrusionDetectionOb-
jects(GIDOs),canrepresentsystemevents(suchassys-
tem log entries),the resultsof event analysisby IDSs
(suchas the recognitionof a potential intrusion), and
responsesto events in a standardformat that can be
transportedcompactlyandunderstoodby otherCIDF-
compliantcomponents.An InternetEngineeringTask
Force (IETF) working group, the IETF Intrusion De-
tectionWorking Group(IDWG), hasgrown out of the
CIDF effort. CIDF concentrateson the interactionand
cooperationbetweenIDS components.Our researchis
complementaryto this,by examiningtheinteractionbe-
tweenIDSs andapplicationsandIDSs andotherprop-
erty managers.

8. Conclusionsand Further Work

This work is at the intersectionof threedistinct but
relatedthemes. First, is the integratedresourceman-
agementtheme,underthe organizingparadigmof im-
proved Quality of Service,onedimensionof which is
concernedwith securityattributes.Thesecondis adapt-
ableapplicationbehavior, motivatedprominentlyby the
changingoperatingenvironmentsandQoSrequirements
frequentlyfoundin modern,highly internetworkeddis-
tributedapplications.Third is the advancementof im-
proved infrastructurefor identifying, isolating and re-
spondingto informationattacksleadingto moresurviv-
ableapplications.We describedexperimentalresultsin
conceptdemonstrationslinking thesethree ideasas a
meansof describingthe technicalconceptsunderlying
each.

Our interim conclusionsto date are along eachof
thesethreads,andhave reinforcedthe original notions
thatled to this work:

1. Securityissuescanindeedbe developedandcon-
trolled within a commonQoS umbrella, making
it both more feasibleand practical to coordinate
securitystrategy alongwith resourcemanagement
strategiesfor othercommonattributessuchasde-
pendabilityandrealtimeperformance.

2. Adaptive behavior, along with infrastructureto
supportit, is bothfeasibleandpractical,asameans
of providing more usersatisfyingapplicationbe-
havior underchangingcircumstancesandrequire-
ments.

3. An environmentwhereapplicationswork in a co-
hesive and complementaryway to the infrastruc-
turecomponentsthatareservicingthemis bothde-
sirableandfeasible,andopensup a widespacefor
tradeoff studiesregardingthe mosteffective com-
plementarycoverageof multiple objectives and
performanceandcostconstraints.

At amoredetailedtechnicallevel, ourconclusionsin-
cludethat theQuOenvironmentcanbeeffectively used
to supportadaptivesecuritypolicy, interoperationof off
theshelf ID systemsfor improvedcoverage,andrecon-
figurableapplicationbehavior, whichcanleadto amuch
moresurvivablesetof applicationservices.

Thereareavarietyof next stepsbeingpursued.Chief
amongtheseare:

1. Trial usageof the experimentalmiddleware and
propertymanagersavailablecurrently, to refineand
evaluateboththesoftwareengineeringandperfor-
manceissuesof QuO and the integratedmecha-
nisms.

12



2. Enablingthe technologyfor developingandpack-
aginguseful, reusableadaptive behaviors, so that
they maybeexportedfrom oneenvironmentto an-
other.

3. Largerscaleexperimentswith multiple,morepow-
erful ID systemsprovidingvaryingdegreesof com-
plementaryandoverlappingcoverage,andthe in-
tegrationwith morepowerful andflexible response
mechanismsto controladaptivereconfiguration.

4. Methodsfor coordinatingapplicationlevel infor-
mation collection and behavior with systemlevel
resourcemanagementpolicies and strategies for
thevariousQoSdimensionsunderinvestigation.

5. Integratingtheindividualviewpointsof thesystem
componentsinto a more cohesive overall system
behavior.

9. Acknowledgements

The authorswould like to acknowledge the other
membersof theQuOteam:JohnZinky, Mark Berman,
David Karr, JamesMegquier, RichardShapiro,David
Bakken, and Rodrigo Vanegas; membersof the Uni-
versity of Illinois Proteusand AQuA teams: William
Sanders,Michele Cukier, andJenniferRen; andmem-
bersof theOO-DTEdevelopmentteamat NAI Labsat
Network Associates:DurwardMcDonell,David Sames,
andGregg Tally - all of whom contributedto the work
describedin this paper.

References

[1] BBN Distributed Systems ResearchGroup, DIRM
project team. DIRM technical overview. Internet
URL http://www.dist-systems.bbn.com/projects/DIRM,
1998.

[2] P. Chandra,A. Fisher, C. Kosak,T. S.Ng, P. Steenkiste,
E. Takahasi,andH. Zhang.Darwin: Resourcemanage-
mentfor value-addedcustomizablenetwork service. In
Proceedings of the Sixth IEEE International Conference
on Network Protocols (ICNP’98), Austin,October1998.

[3] M. Cukier, J. Ren, C. Sabnis,D. Henke, J. Pistole,
W. Sanders,D. Bakken,M. Berman,D. Karr, andR. E.
Schantz.AQuA: An adaptive architecturethatprovides
dependabledistributed objects. In Proceedings of the
17th IEEE Symposium on Reliable Distributed Systems,
pages245–253,October1998.

[4] DOD. Trusted Computer System Evaluation Criteria.
UnitedStateDepartmentof Defense,WashingtonD.C.,
December1985.

[5] Dynacorp IS. Results of the DARPA
evaluation of intrusion detection sys-
tems. Internet URL http://www.dyncorp-
is.com/darpa/meetings/id98dec/Files/MIT-LL1999.

[6] P. Florissi. QoSME: Quality of service
management environment. Internet URL
http://www.cs.columbia.edu/dcc/quosockets/,1998.

[7] S. Forrest,S. A. Hofmeyr, andA. Somayaji.Computer
immunology. Communications of the ACM, 40(10),Oc-
tober1997.

[8] A. K. Ghosh,A. Schwartzbard,andM. Schatz. Using
programbehavior profiles for intrusion detection. In
Proceedings of the Workshop on the State of the Art and
Future Directions of Intrusion Detection and Response,,
February1999.

[9] J. F. Jou, S. F. Wu, F. Gong, W. R. Cleaveland, and
C. Sargor. Architecturedesignof a scalableintrusion
detectionsystemfor the emerging network infrastruc-
ture. Technicalreport,MCNC, Dep. of ComputerSC.
North CarolinaStateUniversity, April 1997. available
from http://www.anr.mcnc.org/JiNao.html.

[10] G. Kiczales. Beyondtheblackbox: Openimplementa-
tion. IEEE Software, January1996.

[11] G. Kim andE. Spafford. The designandimplementa-
tion of Tripwire: A filesystemintegrity checker. In Pro-
ceedings of the 2nd ACM Conference on Computer and
Communications Security, 1994.

[12] K. Kim. Realtimeobject-orienteddistributedsoftware
engineeringand TMO. International Journal of Soft-
ware Engineering and Knowledge Engineering, July
1999. to appear.

[13] J. P. Loyall, D. E. Bakken, R. E. Schantz,J. A. Zinky,
D. Karr, R. Vanegas,andK. R. Anderson.QuOaspect
languagesand their runtime integration. Proceedings
of the Fourth Workshop on Languages, Compilers and
Runtime Systems for Scalable Components, May 1998.

[14] J. P. Loyall, R. E. Schantz,J. A. Zinky, and D. E.
Bakken. Specifyingand measuringquality of service
in distributed object systems. In Proceedings of The
1st IEEE International Symposium on Object-oriented
Real-time distributed Computing (ISORC 98), April
1998.

[15] L. Moser, M. Melliar-Smith,andP. Narasimhan.Con-
sistentobjectreplicationin theEternalsystem.Theory
and Practice of Object Systems, 4(2):81–92,1998.

[16] Netscape Corporation. Secured
socket layer. Internet URL
http://home.netscape.com/security/techbriefs/ssl.html,
1999.

[17] P. G. Neumannand P. A. Porras. Experiencewith
EMERALD to date. In Proceedings of the 1st Usenix
Workshop on Intrusion Detection and Network Monitor-
ing, April 1999.

[18] OMG. CORBA/IIOP 2.3, OMG Technical Document 98-
12-01. ObjectManagementGroup,Framingham.MA,
December1999.

[19] C. Sabnis,M. Cukier, J. Ren, P. Rubel, W. Sanders,
D. Bakken,andD. Karr. Proteus:A flexible infrastruc-
tureto implementfault tolerancein AQuA. In Proceed-
ings of the IFIP International Working Conference on
Dependable Computing for Critical Applications, Jan-
uary1999.

13



[20] R. E. Schantz,J. A. Zinky, D. A. Karr, D. E. Bakken,
J. Megquier, and J. P. Loyall. An object-level gate-
way supportingintegrated-propertyquality of service.
In Proceedings of The 2nd IEEE International Sympo-
sium on Object-oriented Real-time distributed Comput-
ing (ISORC 99), May 1999.

[21] D. Schmidt, D. Levine, and S. Mungee. The design
of theTAO realtimeObjectRequestBroker. Computer
Communications, 21(4),April 1998.

[22] S. Staniford-Chen,S. Cheung,R. Crawford, M. Dil-
ger, J. Frank, J. Hoagland,K. Levitt, C. Wee,R. Yip,
andD. Zerkle. GrIDS -a graphbasedintrusiondetec-
tion systemfor large networks. In Proceedings of the
19th National Information Systems Security Conference,
September1996.

[23] S.Staniford-Chen,B. Tung,andD. Schnackenberg. The
commonintrusion detectionframework. In the Infor-
mation Survivability Workshop, October1998. Position
Paper.

[24] D. F. Sterne,G. W. Tally, C. D. McDonell, D. L. Sher-
man,D. L. Sames,P. X. Pasturel,andE. J.Sebes.Scal-
able accesscontrol for distributed object systems. In
Proceedings of the 8th Usenix Security Symposium, Au-
gust1999.

[25] S. Stolfo, A. Prodromidis,S. Tselepis,W. Lee,D. Fan,
andP. Chan. JAM: Java agentsfor metalearningover
distributed databases.In Proceedings of KDD-97 and
AAI 97 Workshop on AI Methods in Fraud and Risk
Management, 1997.

[26] R. Vanegas, J. A. Zinky, J. P. Loyall, D. Karr, R. E.
Schantz,andD. E. Bakken. QuO’s runtimesupportfor
quality of servicein distributedobjects.Proceedings of
Middleware 98, the IFIP International Conference on
Distributed Systems Platform and Open Distributed Pro-
cessing, September1998.

[27] J.Zinky, D. Bakken,L. O’Brien, V. Krishnamurthy, and
M. Ahmed.PASS- aservicefor efficient largescaledis-
seminationof time varyingdatausingCORBA. In Pro-
ceedings of the 19th International Conference on Dis-
tributed Computing, Austin,June1999.

14


