
Building Certification Paths: Forward vs. Reverse

Yassir Elley, Anne Anderson, Steve Hanna, Sean Mullan, Radia Perlman, Seth Proctor
{yassir.elley, anne.anderson, steve.hanna, sean.mullan, radia.perlman, seth.proctor}@sun.com

Sun Microsystems Laboratories
1 Network Drive

Burlington, MA 01803

Abstract

In general, building and validating a certification path
connecting a trust anchor to a target can be a very time-
consuming process. As such, any optimizations are
valuable. Certification paths are commonly built from the
target to the trust anchor (“building in the forward
direction”) or from the trust anchor to the target
(“building in the reverse direction”). This paper presents
a comparison of these two approaches, analyzes the
advantages and disadvantages of each approach, and
concludes that building in the reverse direction is often
more effective than building in the forward direction.

1. Introduction

Public key cryptography can be used for many
purposes, including checking someone’s signature or
encrypting something only they can read. Several public
key algorithms exist, including RSA [11], ElGamal [5],
and DSA [9]. A variety of protocols use public key
techniques, including IPSec [8], S/MIME [4], and TLS
[3].

Public key cryptography allows two parties to securely
communicate with each other without any prior contact.
However, public key systems depend on securely
establishing the other party’s public key. For example, if
Alice wants to verify the signature on a document she has
received from Bob, she needs to know Bob’s public key.
If Bob’s public key successfully verifies the signature,
then Alice can be sure that the document must have been
signed using Bob’s private key, which only Bob knows. If
Alice is somehow tricked into believing that an
impostor’s public key is Bob’s public key, then the
impostor can sign the document and Alice will verify the
signature using the impostor’s public key and will believe
that the document was signed by Bob. Therefore, Alice
needs to be sure that she has the correct public key for
Bob.

A public key certificate is a signed statement that is
used to establish an association between an identity and a
public key. The entity that vouches for this association
and signs the certificate is the issuer of the certificate and
the identity whose public key is being vouched for is the
subject of the certificate. If Alice has a certificate that
vouches for Bob’s public key and Alice trusts the issuer
of that certificate and knows the issuer’s public key, then
Alice can trust that the public key in the certificate is truly
Bob’s public key, assuming that the signature on the
certificate verifies successfully.

Typically, Alice uses a chain of certificates, also known
as a certification path, which starts with a public key she
trusts (one of her trust anchors) and ends with Bob’s
public key. In order to validate the path, Alice uses her
trusted public key to verify the first certificate in the path.
She extracts the public key and other information
contained in the first certificate, uses it to verify the
second certificate, and continues this process until she
reaches the target certificate vouching for Bob’s public
key. There are many steps involved in validating the
certification path, including verifying the signatures,
ensuring that the subject and issuer names chain correctly,
verifying that none of the certificates have expired or
been revoked, and processing the various other extensions
found in certificates. The PKIX Certificate and CRL
Profile [6] describes a typical validation procedure.

2. Building Certification Paths

If Alice doesn’t already have a valid certification path
from one of her trust anchors to Bob, she must build one.
Building a certification path (also known as discovering
or developing a certification path) is an important topic
with little published research. Silva and Stanton discuss
various techniques for building certification paths in their
paper [12], but do not cover several important issues that
are presented in this paper.

Certificates are often stored in directories. The subject
and issuer names in X.509 [10] certificates are
hierarchical X.500 names, which map directly to directory

entries. A particular certificate can be stored at the
issuer’s directory entry, at the subject’s directory entry, or
at both places. Using these directory entries, we can
attempt to build a certification path connecting a trust
anchor to the target. There are two basic ways of building
certification paths, depending on where the certificates are
stored in the directory.

The PKIX LDAPv2 Schema [1] defines the schema that
is to be used when certificates are stored with LDAP
servers in an LDAPv2 environment [2]. An entity that is
authorized to issue certificates is referred to as a
certification authority (CA), while an end-user that is not
authorized to issue certificates is referred to as an end-
entity (EE). A certificate issued to another CA is referred
to as a CA certificate, while a certificate issued to an end-
entity is referred to as an EE certificate. This schema
requires EE certificates to be stored in the userCertificate
attribute of the subject’s directory entry (“stored with the
subject,” for short). CA certificates must be stored with
the subject in the “forward” element of the
crossCertificatePair attribute and can optionally be stored
with the issuer in the “reverse” element of the
crossCertificatePair attribute. When a certification path is
built from the target to a trust anchor, this is called
building in the forward direction. When a certification
path is built from a trust anchor to the target, this is called
building in the reverse direction.

If certificates are stored with the subject, it is easy to
build in the forward direction (from the target to the trust
anchor). We start by retrieving all the certificates in the
target’s directory entry. Each of these is a possible
candidate certificate. We select one of these certificates,
and then retrieve all the certificates from the directory
entry of this certificate’s issuer. We continue with this
procedure working our way to the trust anchor. If
certificates are only stored with the subject, it is extremely
difficult to build in the reverse direction from the trust
anchor to the target because we have no idea where in the
directory to search for certificates issued by the trust
anchor.

Similarly, if certificates are stored with the issuer, it is
easy to build in the reverse direction (from the trust
anchor to the target). This time, we start by retrieving all
the certificates in the trust anchor’s directory entry and
work our way toward the target. If certificates are only
stored with the issuer, it is extremely difficult to build in
the forward direction (starting with the target). Storing
certificates with the issuer and the subject provides the
greatest flexibility.

For certain trust models, building a certification path is
fairly straightforward because we can take advantage of
constraints inherent to that particular trust model. An
example of this is a top-down hierarchical trust model,
where the trust anchor is typically a root CA at the top of
a hierarchical namespace which issues certificates for

each CA at the next level of the namespace and so on
until the end entities are reached. Since each entity below
the root has exactly one certificate issued for it by its
superior, building in the forward direction from the target
to the trust anchor is more effective than building in the
reverse direction in this trust model. If we start with the
target and build in the forward direction, there is only one
possible candidate certificate at each step of the process,
which greatly simplifies the process of building the
certification path. Building in the reverse direction is
more problematic with this trust model. The fan-out from
the root CA may be substantial with the root CA having
issued many certificates to its subordinates. If we start
with the trust anchor and build in the reverse direction,
there will be many candidate certificates to choose from
at each step of the process, thus making it more difficult
to build the certification path.

For more general trust models, however, we can not
take advantage of these particular constraints. An example
is a cross-certified trust model, where every entity can
issue certificates for every other entity. In this case,
building a certification path can be a very time-consuming
process. We have to follow every certificate issued by the
trust anchor (if building reverse) or issued for the target
(if building forward). There may be many certificates
issued by each entity and there may be many certificates
issued for each entity. Any technique that can be used to
filter out some of those certificates is very valuable.

To this end, it is useful to validate the certification path
as it is being built. This allows us to quickly reject paths
that fail to validate, and then we can backtrack and try
other paths. The PKIX certification path validation
procedure [6] is defined in the reverse direction, starting
with the trust anchor and proceeding to the target. As a
result, it naturally lends itself to building in the reverse
direction. Even when building forward, we can validate
certain parts of the certificates as we are building.
However, certain steps of the validation algorithm are
much less effective when building forward.

3. Name Constraints

One of the certificate extensions that is particularly
useful in filtering out certificates as we are building is the
name constraints extension. “The name constraints
extension … indicates a name space within which all
subject names in subsequent certificates in a certification
path shall be located.” [6] For the purposes of validation,
the certification path is processed in the reverse direction,
starting with the trust anchor and proceeding to the target.

Suppose Alice works at Company A and is trying to
build a certification path to Bob, who works in the eastern
division of Company B. Figure 1 illustrates the hierarchy
of certificates that Alice is dealing with. We have used
DNS names instead of X.500 names to simplify the

diagram and have used NC as an abbreviation for the
name constraints extension.

When building reverse, Alice starts with her trust
anchor (Certificate 1). She then has to choose between
two candidate certificates for the next leg of the path
(Certificates 2 and 3). She can examine the name
constraints in each candidate certificate and reject any
candidate whose name constraints do not allow the target
subject to be reached. In this case, Alice rejects
Certificate 3 because the name constraints in Certificate 3
do not let her reach the target subject (i.e.
bob.east.b.com). After accepting Certificate 2, she
examines Certificate 4 as a candidate for the next leg of
the path. At this point, there are two checks she can make
to determine whether to accept Certificate 4. First, she can
verify whether Certificate 4’s subject is consistent with
the name constraints in Certificate 2. Additionally, she
can make sure that the name constraints in Certificate 4
would allow her to reach the target subject. In this case,
both checks succeed and Alice can accept Certificate 4
and continue building the certification path to Bob.

When building forward, Alice starts with a target
certificate (Certificate 6) and then has to choose between
two candidate certificates for the next leg of the path
(Certificates 4 and 5). If the name constraints in either
candidate do not allow the target subject to be reached,

she will be able to reject that candidate immediately. In
this case, neither candidate will be rejected. Alice may
decide to accept Certificate 5, only to find out in the next
step, when she is examining Certificate 3, that the name
constraints in Certificate 3 do not allow the target subject
to be reached. More generally, when building forward,
Alice may follow some other certificate which will never
even connect to the trust anchor. In this way, she may
keep accepting certificates aimlessly without getting
closer to the trust anchor.

In general, building reverse is more effective than
building forward with regard to processing name
constraints. When building reverse, we are always
“homing in” on the target subject and are rejecting any
candidate certificates that could not possibly lead us to the
target. When building forward, we are not able to "home
in" on the trust anchor, because name constraints only
apply to SUBSEQUENT certificates in the path, not to
preceding certificates in the path.

4. Policy Processing

Another set of certificate extensions that allows us to
filter out certificates as we are building is the set of policy
extensions. The algorithm used to process these policies is
defined by X.509 [10]. A revised policy processing
algorithm is currently being developed by the PKIX
working group [7]. Since this revised algorithm is still a
work in progress, we present our analysis based on the
X.509 standard. Although the details of the algorithms are
different, our conclusions remain the same even with the
revised algorithm.

For an EE certificate, the certificate policies extension
is used by the issuer to specify what policies were
followed when issuing the certificate and for which
purposes the certificate may be used. For a CA certificate,
the certificate policies extension is used by the issuer to
place limits on which policies are considered acceptable
in a certification path which includes this certificate. One
example of a set of certificate policies is a group of trust
ratings which indicate the level of care the issuer has
taken in authenticating the subject before issuing a
certificate for that subject. A HIGH trust rating indicates
that a great deal of care has been taken to properly
authenticate the subject. Perhaps the issuer met the
subject in person and verified his identity using a driver’s
license. MEDIUM or LOW trust ratings correspond to
lower levels of care. Different domains may have
different names for equivalent policies, and the policy
mappings extension can be used to indicate that a
specified policy in the issuer’s domain is equivalent to
another specified policy in the subject’s domain. Thus, a
HIGH trust rating in Company A’s domain may map to a
CONFIDENTIAL trust rating in Company B’s domain.
Users with particular policy requirements can specify a

Issuer: c.com
Subject: east.b.com
NC: *.east.b.com

Certificate 5

Figure 1: Name Constraints Scenario

Issuer: a.com
Subject: a.com

Certificate 1

Issuer: a.com
Subject: b.com
NC: *.b.com

Certificate 2
Issuer: a.com
Subject: c.com
NC: *.c.com

Certificate 3

Issuer: b.com
Subject: east.b.com
NC: *.east.b.com

Certificate 4

Issuer: east.b.com
Subject: bob.east.b.com

Certificate 6

set of initial policies that they find acceptable (or the
special value “any-policy”). They can require that every
certificate must contain an acceptable policy. They can
also prohibit the use of policy mappings in every
certificate. Certificates themselves may also have a policy
constraints extension that requires explicit policies or
inhibits policy mappings after a specified number of
subsequent certificates.

When processing policies, two state variables are used:
user-constrained-policy-set and authority-constrained-
policy-set. The user-constrained-policy-set consists of the
policies that the user currently considers to be acceptable,
while the authority-constrained-policy-set consists of the
policies that the CAs in the certification path currently
consider to be acceptable. The user-constrained-policy-set
is initialized with the user's initial policies and the
authority-constrained-policy-set is initialized with “any-
policy”. There are three reasons that policy processing
could reject a certificate during validation (failure
modes):

1. If explicit policies are required (whether specified by
the user or by a preceding certificate), we must make sure
that at least one member of the user-constrained-policy-
set appears in the certificate's certificate policies.
2. We must replace the authority-constrained-policy-set
with the intersection of itself and the certificate's
certificate policies and we must make sure that the result
is not null.
3. After performing all intersection steps, we must make
sure that the intersection of the authority-constrained-
policy-set and the user-constrained-policy-set is not null.

If none of these failure modes is encountered, the
current certificate’s policy mappings are then processed.
If policy mappings are inhibited (whether specified by the
user or by a preceding certificate), the policy mappings
are not processed at all. However, if policy mappings are
allowed, the user-constrained-policy-set and authority-
constrained-policy-set are augmented as follows. For each
policy mapping in the current certificate, if the user-
constrained-policy-set contains the issuer domain policy
for that policy mapping, then the corresponding subject
domain policy is added to the user-constrained-policy-set.
Similarly, if the authority-constrained-policy-set contains
the issuer domain policy for that policy mapping, then the
corresponding subject domain policy is added to the
authority-constrained-policy-set.

Using our example, let us assume that Alice requires a
certificate policy corresponding to a HIGH trust rating in
every certificate. Figure 2 illustrates the hierarchy of
certificates we are dealing with. We have used CP as an
abbreviation for the certificate policies extension and PM
as an abbreviation for the policy mappings extension.

When building in the reverse direction, we can quickly
reject certificates that do not contain acceptable policies.
In this example, the user-constrained-policy-set is
initialized with {HIGH} and the authority-constrained-
policy-set is initialized with “any”. We start with the trust
anchor (Certificate 1) and must decide between two
candidate certificates for the next leg of the path
(Certificates 2 and 3). We can immediately reject
Certificate 3, because TOP-SECRET has no intersection
with the user-constrained-policy-set. We accept
Certificate 2 because its certificate policies intersect with
both of the state variables (i.e. with the user-constrained-
policy-set and the authority-constrained-policy-set). After
processing Certificate 2, the user-constrained-policy-set
becomes {HIGH,CONF} and the authority-constrained-
policy-set becomes {HIGH,MED,LOW,CONF}. Thus,
we are able to accept Certificates 4 and 6 because CONF
intersects with both of the state variables.

When building in the forward direction, it is much more
difficult to filter out certificates based on their policy
extensions. The main culprit here is policy mappings. If
we examine the failure modes dealing with the user-
constrained-policy-set (failure modes 1 and 3), we
observe that the user-constrained-policy-set can keep
changing and increasing because of policy mappings. As

Issuer: a.com
Subject: b.com
CP: HIGH, MED, LOW
PM: HIGHÈCONF

Certificate 2

Figure 2: Policy Processing Scenario

Issuer: a.com
Subject: a.com

Certificate 1

Issuer: a.com
Subject: c.com
CP: TOP-SECRET

Certificate 3

Issuer: b.com
Subject: east.b.com
CP: CONF

Certificate 4
Issuer: c.com
Subject: east.b.com
CP: TOP-SECRET

Certificate 5

Issuer: east.b.com
Subject: bob.east.b.com
CP: CONF, TOP-SECRET

Certificate 6

a result, when building forward, we must first build the
entire certification path before we can check whether
either of these failure modes has been encountered. To
illustrate this, let us take an example where initial-policies
= HIGH. We start by examining a target certificate
(Certificate 6), which has been issued with certificate
policies of CONF and TOP-SECRET. At this point, we
may think that Certificate 6 can be rejected because
neither of these policies intersect with the initial policy of
HIGH. However, this is only true if policy mappings are
inhibited from the very first certificate. In the general case
where policy mappings are not inhibited, a previous
certificate closer to the trust anchor may have a policy
mapping of the form HIGHÈCONF or HIGHÈTOP-
SECRET, which would augment the user-constrained-
policy-set to be {HIGH,CONF} or {HIGH,TOP-
SECRET}, in which case the candidate certificate is
clearly valid. For this reason, we have to accept
Certificate 6. Similarly, when choosing between
Certificates 4 and 5 for the next leg of the path, we will
not be able to reject either of them. In fact, when policy
mappings are allowed, we can not filter out any
certificates based on these failure modes. This is a major
drawback when building in the forward direction.

With regard to failure mode 2, which deals with the
authority-constrained-policy-set, we can filter out some
certificates when building forward, but still not as
effectively as when building reverse. We observe that the
authority-constrained-policy-set is typically reduced in
the reverse direction and is only augmented by policy
mappings. We also observe that because of this
intersecting nature, the policy mappings of one certificate
only apply to the immediately following certificate
("following” in the reverse sense). When building
forward, we will be maintaining a forward-policy-set state
variable, which is initialized with the certificate policies
in the target certificate. Let us take an example. Assume
we have already found a target certificate that has been
issued with certificate policies of CONF and TOP-

SECRET. Therefore, our forward-policy-set is currently
{CONF, TOP-SECRET}. We are now trying to choose
between several candidates for the next certificate to
prepend to this path. The situation is illustrated in Figure
3.

When deciding whether a candidate certificate should
be accepted or rejected, we need to run the policy
processing algorithm in the reverse direction on the new
path to see if it is feasible. If we accepted Certificate 3,
then after processing Certificate 3 in the reverse direction,
the authority-constrained-policy-set would be
{HIGH,MED,CONF}, which would clearly allow us to
accept the target certificate (Certificate 5). Therefore, we
would accept Certificate 3 when building forward. If we
accepted Certificate 4, then after processing Certificate 4
in the reverse direction, the authority-constrained-policy-
set would be {HIGH,CLASSIFIED}, which would not
allow us to reach the target certificate. Therefore, we
would reject Certificate 4. Similarly, we would accept
Certificate 1 and reject Certificate 2. In general, we will
only accept candidates under either of two conditions:

• if the candidate has a certificate policy which
intersects with the forward-policy-set

• if policy mappings are not inhibited AND the
candidate’s subject domain policy intersects with the
forward-policy-set AND the candidate has a
certificate policy which intersects with the
corresponding issuer domain policy

We refer to the specific certificate policies of the
candidate that meet either of these conditions as the
candidate’s useful certificate policies. After accepting a
candidate certificate, the forward-policy-set is replaced
with the candidate’s useful certificate policies and these
are used to determine which certificates to accept next.
Using our example, after accepting Certificate 3, our new
forward-policy-set would simply be {HIGH}. We would
not include MED in the forward-policy-set because that

Issuer: east.b.com
Subject: bob.east.b.com
CP: CONF, TOP-SECRET

Certificate 5

Issuer: b.com
Subject: east.b.com
CP: CONF

Certificate 1
Issuer: d.com
Subject: east.b.com
CP: CLASSIFIED

Certificate 2
Issuer: e.com
Subject: east.b.com
CP: HIGH, MED
PM: HIGHÈCONF

Certificate 3
Issuer: f.com
Subject: east.b.com
CP: HIGH
PM: HIGHÈCLASSIFIED

Certificate 4

Figure 3: Policy Processing Scenario (Forward Direction)

certificate policy did not meet either of the two conditions
and was therefore not useful in allowing us to reach the
target certificate.

5. Loop Detection

When building a certification path, it is also useful to be
able to detect loops as the path is being built. This allows
us to quickly reject paths that are just looping around
uselessly. At first glance, it may seem that we can detect a
loop by keeping track of the distinguished names of the
directory entries we have visited. If we encountered the
same distinguished name (DN) twice, we would assert
that we had encountered a loop and so we would not
continue building down that path. Unfortunately, simply
comparing DNs is not adequate. This algorithm breaks
down if there is more than one public key associated with
a DN. It could be that a CA with a given DN has two
public keys because it is phasing one of them out. It could
also be that there are actually two different CAs with
different public keys that just happen to have the same
DN. In this case, the path AÈBÈCÈBÈD, where B
and B �DUH�&$V�ZLWK�WKH�VDPH�'1�EXW�GLIIHUHQW�NH\V� �RU
the same CA with two different keys), can be a valid path.
However, using the algorithm where loops are detected if
we encounter the same DN twice, we would have
incorrectly rejected this path after encountering B �

To deal with this situation, we can use the algorithm
that a loop is detected if we encounter the same certificate
twice. This works well in the absence of policy mappings.
However, if policy mappings are present, then it is
possible that the policy mappings in a loop of certificates
may actually allow certificates to be acceptable after
traversing the loop which were not acceptable before
traversing the loop. For example, when building reverse,
we may be faced with the situation illustrated in Figure 4.

Let us assume Alice requires that a HIGH trust rating
appear in every certificate. Therefore, the user-
constrained-policy-set is initialized to be {HIGH}. After
processing Certificate 1, the user-constrained-policy-set
becomes {HIGH, CONF} because this set is only
augmented when a policy that is already in the set is
mapped to another policy. At this point, Certificate 3 is
not acceptable for the next leg of the path because its
certificate policy of Z does not intersect with the user-
constrained-policy-set. Since Certificate 2 is acceptable,
we process Certificate 2, and the user-constrained-policy-
set becomes {HIGH, CONF, TOP-SECRET}. Now, since
the subject of Certificate 2 is a.com, we go back to
Certificate 1 for the second time. If we had been using the
algorithm where loops are detected when the same
certificate is encountered for the second time, then we
would have rejected Certificate 1 at this point. However,
this would have yielded an incorrect result. After
accepting and processing Certificate 1 for the second
time, the user-constrained-policy-set becomes {HIGH,
CONF, TOP-SECRET, Z}. Now that Z has been added to
this set, Certificate 3 has become acceptable for the next
leg of the path. Clearly, in this case, Certificate 1 needed
to appear twice in the path to allow us to reach Certificate
3. Similarly, it is also possible for the authority-
constrained-policy-set to be augmented by policy
mappings in such a way that certificates that were not
acceptable before traversing the loop become acceptable
after traversing the loop. Therefore, we can only assert
that a useless loop has been detected if we encounter the
same certificate twice AND the two state variables (user-
constrained-policy-set and authority-constrained-policy-
set) after processing the certificate for the second time do
not have any different policies than they had after
processing the certificate for the first time. In our
example, this was not the case and we did not have a
useless loop. As a result, Certificate 3, which was not
acceptable after Certificate 1 was processed for the first
time, became acceptable after Certificate 1 was processed
for the second time. Although this may seem an odd case,
we must deal with it properly for the sake of correctness.

Although our algorithm for detecting loops works well
when building reverse, it does not work well when
building forward. The difficulty when building forward is
that we don’t have an accurate representation of the user-
constrained-policy-set and the authority-constrained-
policy-set until we reach the trust anchor because a
certificate near the trust anchor may have policy
mappings that we are unaware of when dealing with
certificates near the target. Since policy mappings are at
the root of the problem, we can come up with an
algorithm when policy mappings are not present. We
observe that the user-constrained-policy-set and authority-
constrained-policy-set are only augmented by policy
mappings. Therefore, when building forward, if policy

Issuer: b.com
Subject: a.com
CP: CONF
PM:CONFÈTOP-SECRET

Certificate 2
Issuer: b.com
Subject: bob.east.b.com
CP: Z

Certificate 3

Issuer: a.com
Subject: b.com
CP: HIGH, TOP-SECRET
PM: HIGHÈCONF,
 TOP-SECRETÈZ

Certificate 1

Figure 4: Loop Detection Scenario

mappings are inhibited or if there are no policy mapping
extensions between occurrences of the same certificate,
then we can detect a loop if we encounter the same
certificate twice. This algorithm when building forward is
not as effective as the algorithm we used when building
reverse. Although it guarantees that we will not reject any
useful loops, we are not able to reject as many useless
loops as we could when building reverse.

6. Signature Processing

Processing signatures is another area in which building
forward is less effective than building reverse. Both
certificates and CRLs need to have their signatures
verified to ensure that they have been signed by the
supposed issuers. When building reverse, we start with
the public key of the trust anchor, which is explicitly
trusted. Therefore, when we are looking for the next
candidate certificate, we can very quickly reject any
candidate whose signature does not verify with our trusted
public key. Similarly, we can quickly reject any candidate
certificate that has been revoked, because we can fetch the
CRL issued by the candidate’s issuer, verify the CRL’s
signature using our trusted public key, and check to see
whether the candidate’s serial number is on that CRL.

When building forward, however, we can not
immediately reject a candidate if it has an invalid
signature, nor can we immediately reject a candidate that
has been revoked. Both of these checks have to be
delayed for one cycle. The reason for this delay is that we
don’t yet have the public key of the candidate’s issuer,
which is needed to verify the candidate’s signature and
also needed to verify the candidate’s revocation status (i.e.
needed to verify the signature on the CRL issued by the
candidate’s issuer). Figure 5 illustrates the situation when
we are building forward.

When building forward, we begin by finding a target
certificate whose subject is bob.east.b.com. There may be
many such certificates to choose from (Certificate 3,
Certificate 3 �� HWF��� 6XSSRVH� WKDW� ZH� FKRRVH� WR� ILUVW
examine Certificate 3 as a candidate. At this point, we can
not check this candidate’s signature nor its revocation
status, because we don’t yet have b.com’s public key. So
we will have to delay this check and tentatively accept
this certificate. This is inefficient because it is quite
possible that this certificate has been revoked or that it has
an invalid signature.

After tentatively accepting Certificate 3, we have to
choose between Certificate 1 and Certificate 2 for the next
leg of the path. When examining Certificate 1, we now
have a candidate for b.com’s public key and we can check
whether this public key is able to verify the signature on
Certificate 3. Now, if the signature verification fails, we
are really not quite sure whether the public key in
Certificate 1 is bad, or the signature on Certificate 3 is
bad. Neither of those pieces of information are known to
be "trusted" a priori. Since we don’t want to reject any
certificate that could possibly be valid, we are going to
have to assume that the public key in Certificate 1 is bad,
remove Certificate 1 from consideration (for now), and
try all of the other certificates pointing to b.com (in this
case, Certificate 2). This is inefficient in the case where
the real culprit was Certificate 3 itself (i.e. the signature
on Certificate 3 was bad). We won't find that out until we
cycle through all the certificates pointing to b.com and
notice that none of them are able to verify the signature
on Certificate 3. Only then will we backtrack, remove
Certificate 3 from consideration, and try another target
certificate (perhaps Certificate 3��

On the other hand, when examining Certificate 1, if the
candidate for b.com’s public key successfully verifies the
signature on Certificate 3, then we can proceed to verify
the revocation status of Certificate 3. We would fetch the
CRL issued by b.com and verify the CRL’s signature
using our candidate for b.com’s public key. If the CRL
signature verification fails, we would try the public key
against other CRLs stored at b.com’s directory entry (if
any). If we were unable to find a CRL whose signature
verified, then we would conclude that we are unable to
determine the revocation status of Certificate 3. Note that
we would not have to examine Certificate 2 in this case.
Since the signature on Certificate 3 verified using the
public key in Certificate 1, then Certificate 2 would only
be useful if it had the same public key as Certificate 1. If
that were the case, then Certificate 2’s public key would
also be unable to verify the signatures on b.com’s CRLs.

Of course, if the signature on b.com’s CRL verified
using the public key in Certificate 1 and Certificate 3’s
serial number was on the list of revoked certificates, then
we would conclude that Certificate 3 has been revoked.
Again, this is inefficient because we are only now finding

Issuer: a.com
Subject: b.com
Public Key: b.com?
Signature:

Certificate 1
Issuer: c.com
Subject: b.com
Public Key: b.com?
Signature:

Certificate 2

Issuer: b.com
Subject: bob.east.b.com
Public Key:
Signature: b.com?

Certificate 3

Figure 5: Signature Processing Scenario

out that Certificate 3 has been revoked. At this point, we
would remove Certificate 3 from consideration and try
another target certificate (perhaps Certificate 3 ��

Even if Certificate 3’s signature and revocation status
successfully verify using the public key in Certificate 1,
we are still not sure if this is really b.com’s public key.
Since the only public key we really trust is the trust
anchor’s public key and since we won't be using that
trusted key until the entire path is built, it is possible that
some malicious user could launch a denial of service
attack by putting many bogus certificates and CRLs in the
directory to slow us down. We would continue accepting
these bogus certificates until we reached our trust anchor,
when we would notice that our trusted public key is
unable to successfully verify the signature on one of these
bogus certificates. When building reverse, we would not
have this particular problem. Even if there were bogus
certificates in the directory, we would never accept any of
them since their signatures would not verify with our
trusted public key.

7. Requesting Revocation

Storing certificates only in the directory entry of the
subject essentially disables building in the reverse
direction, which is a major disadvantage. On the other
hand, one advantage of storing certificates with the
subject has to do with requesting revocation. If Bob
believes that his private key has been compromised, he
needs to inform everyone that has signed a certificate for
the corresponding public key, so that they can revoke
their certificate. If certificates are stored with the subject,
then all certificates issued for Bob’s public key would be
stored in Bob’s directory entry. Therefore, Bob would
know everyone who has signed certificates for his public
key and he would be able to inform them that they should
revoke their certificates. If certificates are stored in the
directory entry of the issuer, then Bob would not be able
to use the directory to figure out who has signed
certificates for his public key and would have to use some
other mechanism to do this.

8. Conclusion

In this paper, we compared building certification paths
in the forward direction (from target to trust anchor) with
building certification paths in the reverse direction (from
trust anchor to target). For certain trust models, such as a
hierarchical trust model, building in the forward direction
is more effective because we can take advantage of the
fact that every entity has only one certificate issued for it
by its superior. For more general trust models, however,
we conclude that building in the reverse direction is more
effective because it allows us to perform superior
validation of the certification path as we are building it,

thereby allowing us to more quickly reject certificates that
are not useful in constructing a valid certification path.
Building in the reverse direction allows us to more
effectively process name constraints, policies, signatures,
and CRL-based revocation. It also allows us to more
effectively detect useless loops of certificates. In order to
allow certification paths to be built in either direction, we
recommend that certificates stored in a directory be
required to be stored with both the issuer and the subject.

9. Bibliography

1. S. Boeyen, T. Howes, P. Richard, “Internet X.509 Public
Key Infrastructure LDAPv2 Schema”, RFC 2587, June
1999.

2. S. Boeyen, T. Howes, P. Richard, “Internet X.509 Public
Key Infrastructure Operational Protocols – LDAPv2”, RFC
2559, April 1999.

3. T. Dierks, C. Allen, “The TLS Protocol Version 1.0”, RFC
2246, January 1999.

4. S. Dusse, P. Hoffman, B. Ramsdell, L. Lundblade, L.
Repka, “S/MIME Version 2 Message Specification”, RFC
2311, March 1998.

5. T. ElGamal, “A Public-Key Cryptosystem and a Signature
Scheme Based on Discrete Logarithms,” IEEE
Transactions on Information Theory, v. IT-31, n. 4, 1985,
pp. 469-472.

6. R. Housley, W. Ford, W. Polk, D. Solo, “Internet X.509
Public Key Infrastructure Certificate and CRL Profile”,
RFC 2459, January 1999.

7. R. Housley, W. Ford, W. Polk, D. Solo, “Internet X.509
Public Key Infrastructure Certificate and CRL Profile”,
Internet Draft (work in progress), <draft-ietf-pkix-new-
part1-02.txt>, July 2000.

8. S. Kent, R. Atkinson, “Security Architecture for the
Internet Protocol”, RFC 2401, November 1998.

9. National Institute of Standards and Technology, NIST FIPS
PUB 186, “Digital Signature Standard,” U.S. Department
of Commerce, May 1994.

10. Recommendation X.509. The Directory: Authentication
Framework. Information technology – Open Systems
Interconnection, June 1997.

11. R.L. Rivest, A. Shamir, L.M. Adleman, “A Method for
Obtaining Digital Signatures and Public-Key
Cryptosystems,” Communications of the ACM, v. 21, n. 2,
February 1978, pp. 120-126.

12. A.R. Silva, M.A. Stanton, “Pequi: A PKIX Implementation
for Secure Communication,” Proceedings of the 1999
International Networking Conference (INET ’99), 1999.

