Chameleon Signatures

Hugo Krawczyk
Dept. of EE, Technion
and IBM Research

Email: hugo@ee.technion.ac.il

Abstract

This paper presents a new tool for enhancing the
confidentiality and privacy of electronic transac-
tions such as the signing of agreements, commaut-
ment to bids, etc. We wntroduce chameleon signa-
tures that provide with an undeniable commaitment
of the signer to the contents of a signed document
(as regular digital signatures do) but, at the same
time, do not allow the recipient of the signature to
disclose the contents of the signed information to
any third party without the signer’s consent.

Chameleon signatures are closely related to the
much researched notion of “undeniable signatures”
but they allow for simpler and more efficient realiza-
tions. In particular, they do not involve the design
and complexity of zero-knowledge proofs on which
traditional undeniable signature schemes are based,
and they are non-interactive without requiring ide-
alized random-oracle assumptions. Chameleon sig-
natures are generated under the standard method
of hash-then-sign, where the hash is implemented
via chameleon hash functions which are character-
1zed by the non-standard property of being collision-
resistant for the signer but collision tractable for the
recipient.

We present simple and efficient implementations
of chameleon hashing and chameleon signatures.
The former are constructed based on standard cryp-
tographic assumptions (e.g., the hardness of factor-
ing or discrete logarithms), while the signature part
can use any digital signature scheme (e.g., RSA or
DSS). We prove the unforgeability of the resultant
chameleon signatures solely based on the unforge-
ability of the underlying digital signature in use.

Tal Rabin
IBM Research

Email: talr@watson.ibm.com

1 Introduction

Typical business relationships between companies
or individuals involve commitments assumed by the
parties in the form of agreements and contracts.
Digital signatures represent the main cryptographic
tool to provide the non-repudiation property re-
quired in case of possible disputes. However, dig-
ital signatures also allow any party to disclose (and
prove!) the other party’s commitment to an out-
sider. This may be undesirable in many business
and e-commerce situations. For example, disclosing
a signed contract to a journalist or a competitor
can benefit one party but jeopardize the interests of
the other; early dissemination of confidential agree-
ments can be used to achieve illegitimate earnings
in the stock market; a losing bidder may want to
prevent disclosure of his bid even after an auction
1s over. These, and many other, examples show
how privacy, confidentiality and legal issues raise
the need to prevent the uncontrolled dissemination
of the contents of some agreements and contracts by
third parties or even by the recipient of a signature.
Yet, also in these cases it is essential to preserve
the non-repudiation property in the event of legal
disputes. In such a case, an authorized judge, or
arbiter, should be able to determine the validity of
a contract, an agreement or commitment.

This paper presents a practical solution to this
problem which we believe will become increasingly
important as large-scale electronic commerce be-
comes prevalent. We expect to see an increased de-
mand for confidential signature tools as more agree-
ments are signed remotely and the risk of massive
disclosure of confidential documents (e.g. via unau-
thorized or malicious postings in the Internet) be-
comes more realistic.

Previous work has dealt with the problem of
bridging between the contradictory requirements of
non-repudiation and controlled dissemination via
the notion of undeniable signatures. This no-

tion was introduced by Chaum and van Antwer-
pen [CA89] and followed by many research works,
e.g. [Cha90, BCDP90, DY91, FOO91, Ped91,
CvHP91, Cha94, Oka94, Mic96, DP96, JSI96, JY96,
GKR97a]. ! The basic paradigm behind this type
of signatures is that verification of a signature re-
quires the collaboration of the signer, so that the
latter can control to whom the signed document is
being disclosed. Thus, a crucial requirement is that
the signature will be non-transferable, 1.e. 1t will
not convey any information on the contents of the
signed document to anyone except for those parties
that engage in some specified protocol directly with
the signer. Such a protocol enables the signer to
confirm a valid signature or deny an invalid one. To
prevent leaking of information these protocols are
based on zero-knowledge proofs. As it is natural to
expect, these additional properties and techniques
add to the complexity of the schemes relative to
regular digital signatures, both conceptually and in
terms of computational and communication costs.

Our paper presents a much simpler implementa-
tion of the notion of undeniable signatures at the ex-
pense of some limitation in its functionality. Yet the
essence of undeniable signatures (i.e., bridging be-
tween non-repudiation and controlled disclosure) is
achieved by our schemes at a significantly lower cost
and complexity. We name this new tool chameleon
stgnatures (the reason for this name will be clear
from the presentation below). The main technical
novelty of chameleon signatures is in departing from
the zero-knowledge paradigm common to all pre-
vious realizations of undeniable signatures (either
interactive or non-interactive). Instead, chameleon
signatures are built much like regular digital sig-
natures, by following the traditional approach of
hash-then-sign. Chameleon signatures simply apply
a regular digital signature scheme (such as RSA or
DSS) to a special type of hashing called chameleon
hash functions. The latter are a functional represen-
tation of chameleon commitment schemes [BCC88],
and can be thought of as collision-resistant func-
tions with a trapdoor for finding collisions.

The basic idea is to build the signature scheme in
such a way that a signature provided by a signer S
to a recipient R gives R the ability to forge further
signatures of S at will. (That is, once R receives a
signature of S on a document m he can produce sig-
natures of S on any other document m’.) Clearly,
this prevents R from proving the validity of S’s sig-

! Interestingly, this type of interactive signatures was al-
ready suggested in 1976 by Michael Rabin based on one-time
signatures [Rab78].

nature to a third party as he could have produced
such a signature by himself. But then what is the
value of such a signature if no one can decide on its
validity or invalidity? We render the scheme valu-
able by providing the signer S with the exclusive
ability to prove that a forged signature is in fact
a forgery. In other words, R can produce forgeries
that are indistinguishable from real signatures to
any third party, but S can prove the forgery to such
a third party if he desires or is compelled (e.g. by
force of the law) to do so. Our method is essentially
non-interactive. A signature is provided as a string
that can be (non-interactively) verified by the recip-
lent, while for denying a false signature, the signer
only needs to provide a short piece of information
as evidence for the forgery.

We can state in short several of the advantages of
our schemes that make them attractive for practical
implementation.

e Full non-interactivity (chameleon signatures
are functions — producing short strings — rather
than full protocols)

e Compatibility with the standard signature ap-
proach of hash-then-sign, and applicability of
standard signature schemes such as RSA and

DSS.

e Efficiency: the computational cost is no more
than twice the cost of RSA or DSS signatures,
and implementation uses standard tools.

e Simplicity: our schemes enjoy both concep-
tual and implementation simplicity; this is
achieved especially by avoiding the use of zero-
knowledge proofs in the construction.

e Standard cryptographic assumptions (exis-
tence of unforgeable signature schemes, and
discrete-log or factoring hardness) suffice for
fully proving the security of our schemes. In
particular, non-interactivity is obtained with-
out recurring to idealized assumptions such as
SHA-1 acting as a random oracle.

e Convertibility: this property is discussed be-
low and has been long considered as an impor-
tant advantage of those undeniable signature
schemes that achieve it. We obtain it in a nat-
ural and efficient way.

CONVERTIBILITY. In the undeniable signature lit-
erature, the property of convertibility has received
a lot of attention. This notion (introduced in
[BCDP90]) represents the ability of the signer to

eventually release a piece of information that con-
verts the undeniable signature into a regular digital
signature with the traditional property that anyone
can verify it without the help of the signer. This can
be a useful property for signatures that loose their
non-transferability requirement after some time, or
after some event (e.g., after a bid is assigned or
a confidentiality period is over). Our schemes for
chameleon signatures provide for simple ways to
achieve convertibility. We present selective and to-
tal conversion techniques. The first means that in-
dividual (selected) signatures can be converted by
providing some information specific to that signa-
ture. Total conversion means that the signer re-
leases some (short) piece of information that con-
verts all the signatures in a pre-specified set into
regular signatures.

RELATION TO UNDENIABLE SIGNATURES. As said
above, chameleon signatures are closely related to
the notion of undeniable signatures and can be seen
as a simple realization of the later. More accu-
rately, chameleon signatures represent a trade-off
between simplicity and full functionality relative to
undeniable signatures. While chameleon signatures
are conceptually simpler and more efficient than
the existing undeniable signature schemes, they
also provide for a more restricted range of appli-
cations (due to their recipient-specific nature and
the fact that they do not hide the recipient’s iden-
tity). Yet, chameleon signatures provide a more
practical alternative to undeniable signatures in
many applications (such as for protecting the con-
fidentiality of agreements as described above), as
well as better analytical properties. One important
characteristic of chameleon signatures is their non-
interactive nature. We note that, as demonstrated
by [Cha, JSI96], one can transform some of the
traditional interactive undeniable signature schemes
into undeniable signatures with non-interactive ver-
ification. This transformation uses idealized ran-
dom oracle techniques (as in [FS86]) to remove in-
teraction and requires the use of chameleon com-
mitment schemes (but applied to the confirma-
tion proof rather than to the signature generation
as in our case). Still many of the advantages of
chameleon signatures mentioned before — such as
simplicity, efficiency and cryptographic assumptions
— hold relative to the schemes of [Cha, JSI96]. On
the other hand, the latter can be used in those appli-
cations covered by traditional undeniable signatures
but not by chameleon signatures.

2 Overview of Chameleon Signatures
2.1 ChameleonHashing

Here we provide a succinct overview of chameleon
hashing, a tool that we use in an essential way in
our signature schemes (see Section 3 for more de-
tails). We start by noting that chameleon hash-
ing are basically non-interactive chameleon commit-
ment schemes as introduced by Brassard, Chaum
and Crepeau [BCC88]. Their use in our context,
however, is not as a commitment protocol but as
a hash function on which a regular signature func-
tion is applied. Viewing them as hash functions
helps in understanding their role in the context of
chameleon signatures, namely, as collision resistant
functions with a trapdoor for finding collisions.

A chameleon hash function is associated with a
pair of public and private keys (the latter called a
trapdoor) and has the following properties.

1. Anyone who knows the public key can compute
the associated hash function.

2. For those who don’t know the trapdoor the
function is collision resistant in the usual sense,
namely, it is infeasible to find two inputs which
are mapped to the same output.

3. However, the holder of the trapdoor informa-
tion can easily find collisions for every given
input.

The actual definition of chameleon hashing, pre-
sented in Section 3, also adds a requirement on
the output distribution of these functions (which, in
particular, need to be randomized). We note that
the name “chameleon” (borrowed from [BCC88])
refers to the ability of the owner of the trapdoor
information to change the input to the function to
any value of his choice without changing the output.

Building on existing chameleon commitments we
describe several constructions of chameleon hash-
ing. We show schemes based on standard crypto-
graphic assumptions, such as the hardness of fac-
toring or computing discrete logarithms. The effi-
ciency of these constructions is similar (or better)
to that of regular digital signatures.

2.2 ChameleonSignatures

Why is chameleon hashing worth considering in
our context? Consider first the standard practice
of applying a regular digital signature (say RSA or
DSS) to a collision resistant hashing of a given mes-
sage (e.g., using the SHA algorithm). Now, replace

the standard hash function with a chameleon hash
Hp where R (for Recipient) is a party holding the
trapdoor information for Hg, and for whom the sig-
nature is intended. The newly obtained signature
scheme has some interesting properties:

1. As in regular digital signatures, the signer S
cannot repudiate (or deny) a signature he gen-
erated since he cannot find collisions in the

hash.

2. The recipient cannot prove to any third party
that a given signature of S corresponds to a cer-
tain message since R could “open” the signed
message in any way he wants as he can find
collision using the trapdoor information of the

hash.?

3. Signatures are recipient-specific, namely, if the
same message 1s intended for two different re-
cipients then the signer needs to sign it twice,
once for each recipient (since the chameleon
hash functions are specific and different for
each recipient).

In other words the signatures are at the same time
non-repudiable (property 1) and non-transferable
(property 2). Non-transferability means, that only
the intended recipient can be convinced of the va-
lidity of a signature, while no third party can be
convinced of that validity (even with the help of
the recipient) or get any other information on the
contents of the signed message. This is the core
property that protects our signatures from the dan-
ger of uncontrolled dissemination. However, how
can the non-repudiation property be implemented
if no third party can determine the validity or inva-
lidity of a signature?

The point is that, following the same principle of
undeniable signatures, a signature as above can be
validated or denied wn collaboration with the signer.
In case of a legal dispute between R and S, the lat-
ter can be summoned to appear before a judge who
can request that S accept the signature as claimed
by R or otherwise deny it. For denying a signa-
ture we show a very simple procedure which draws
on the property that if R presents an invalid sig-
nature then § can show collisions in the chameleon
hash function Hg. This will be sufficient proof of
R ’s cheating (as the function is otherwise collision
resistant for S). On the other hand if R is honest

2In this sense the signature is like an appended message-
independent signature (e.g., a hand-written signature) that
can be “cut-and-pasted” by R from one document to another.

there is no way for S to deny the signature. Further-
more, even if a judge (or other party) who got the
validation (denial) of the signature from the signer,
provides a third party (e.g., a journalist or competi-
tor) with all the information he got from S, there is
still no way for that third party to validate (deny)
the signature.

We call the signatures obtained by following the
above approach chameleon signatures (again the
pictorial name refers to the ability of the recipient to
“open” the signature contents in any desired way).
There are additional technical issues to take care of
(and we do that in the next sections) but the above
description provides a good idea of the essence of
chameleon signatures.

The combination of regular digital signature
schemes and chameleon hashing results in simple
and eflicient constructions of chameleon signatures.
The total cost of such schemes is about twice the
cost of regular digital signatures (e.g. RSA or DSS).
The security of our chameleon signatures is proven
based on standard cryptographic assumptions. In
particular, we prove the unforgeability property
solely on the unforgeability of the underlying dig-
ital signature in use. The non-repudiation prop-
erty is derived from the same assumptions needed
to build chameleon hash functions, e.g., the hard-
ness of factoring or computing discrete logarithms.
The non-transferability property depends also on
the underlying chameleon hash function. Remark-
ably, we can show constructions of chameleon signa-
tures where non-transferability is achieved uncondi-
tronally, namely, the signed message is information
theoretically hidden by the signature string.

3 Chameleon Hashing

Here we present a full definition of chameleon
hashing and briefly describe some implementations
using known chameleon commitment schemes.

A chameleon hash function is associated with a
user R who has published a public (hashing) key, de-
noted HKpg, and holds the corresponding secret key
(the trapdoor for finding collisions), denoted CKpg.
The pair of public and secret keys is generated by
R according to a given generation algorithm. The
public key HKg defines a chameleon hash function,
denoted CHAM-HASHRE(-, -), which can be computed
efficiently given the value of HKg. On input a mes-
sage m and a random string 7, this function gener-
ates a hash value cHAM-HASHR(m, r) which satisfies
the following properties:

Collision resistance There is no efficient algo-

rithm that on input the public key HKg
can find pairs m;,r; and my,ry where
m1 # my such that CHAM-HASHR(mg,71) =
CHAM-HASHR(m2,72), except with negligible
probability.

Trapdoor collisions There is an efficient algo-
rithm that on input the secret key CKg,
any pair msp,r;, and any additional mes-
sage my, finds a wvalue ry; such that
CHAM-HASHR(m1,71) = CHAM-HASHR(mg, 72).

Uniformity All messages m induce the same prob-
ability distribution on CHAM-HASHR(m,r) for
r chosen uniformly at random. (In particular,
from seeing CHAM-HASHR(m,r) for randomly
chosen 7 nothing is learned about the message
m.) This condition can be relaxed to require
that the above distributions are not necessarily
identical for all messages but computationally

indistinguishable [GM84].

In the above definition we do not specify the exact
notions of efficiency and of negligible probability.
These can be modeled by polynomial bounds or be
quantified by explicit (concrete) time and probabil-
1ty bounds. We note that the probability in finding
collisions (in the first condition) depends on the in-
ternal random bits of the collision-finder algorithm
as well as on the random choices of the algorithm
that generates the pair of private and public keys for
the hash (e.g., there may be such pairs where find-
ing collisions is easy but the generation algorithm
will output them with only negligible probability).
Chameleon hash functions are intended to act on
arbitrarily long messages and generate an output
of fixed (or bounded) length. An important prop-
erty of chameleon hashing is presented in the next
lemma, and is easy to verify.
Lemma 1 The composition of a chameleon hash
function and a (regular) collision-resistant hash
function (where the latter is applied first) results in
a chameleon hash function.
Thus, if we have a collision-resistant hash func-
tion that maps arbitrary messages to hash values
of length £, e.g. £ = 160 for SHA-1 [fST95], then it
1s enough to design a chameleon hash function that
hashes elements of length £. We use this fact in
our implementations below as well as in the appli-
cations of these functions to chameleon signatures.
In some cases, even if the chameleon hash func-
tion that we construct directly supports arbitrary
length messages, it will be more efficient to first ap-
ply a (faster) regular collision-resistant function to
the message and then the chameleon hash.

Chameleon commitments. Chameleon hashing
1s rooted in the notion of chameleon commitment
(also called chameleon blobs or trapdoor commit-
ments) which were first introduced by Brassard,
Chaum and Crepeau [BCC88] in the context of zero-
knowledge proofs. Any chameleon commitment
scheme with a non-interactive commitment phase
induces a chameleon hash function, and vice versa.
To see this notice that the collision-resistant prop-
erty of chameleon hashing implies that the function
CHAM-HASHR(m,r) would bind a committer to a
certain value m as he cannot open the commitment
in two different ways. The trapdoor property gives
the “chameleon” property as it enables R (the re-
cipient of the commitment in this case) to open the
hash string hash to any possible pre-image value
m/. The uniformity property prevents a third party,
examining the value hash, from deducing any infor-
mation about the hashed message.

Implementations. Being a central tool in the con-
struction of chameleon signatures it is important to
show efficient constructions of chameleon hashing
based on standard cryptographic assumptions. We
describe several constructions of chameleon hash
functions based on existing chameleon commitment
schemes. In particular, we show an efficient con-
struction based on the hardness of computing dis-
crete logarithms (next subsection), and one based
on factoring (see Appendix A). A scheme based on
claw-free permuations will appear in the full paper.

ChameleonHashing Basedon DiscreteLog

Chameleon Hashing based on discrete log appears
in Figure 1. This solution for chameleon hash-
ing 1s based on a well known chameleon commit-
ment scheme due to Boyar et al. [BKK90] (see also
[BCC88]).

The collision resistance property of the scheme
in Figure 1 (for anyone that does not know z) is
based on the hardness of computing discrete loga-
rithms. The knowledge of z, the trapdoor informa-
tion, enables computing trapdoor collisions, namely,
for any given m,m’ and r all in Z} a value r’ ¢
Z; can be found such that CHAM-HASHy(m,r) =
CHAM-HASHy(m/, r'). This is done by solving for /
in the equation m + zr = m’ + zr' mod q. From
this we can also see that the uniformity property of
CHAM-HASH also holds.

Setup:
An element g of order ¢ in Z;
The private key CKg is z € Z;

Prime numbers p and ¢ such that p = kg + 1, where ¢ is a large enough prime factor

The public key HKg is y = ¢® mod p (p, g, g are implicit parts of the public key)
The function: Given a message m € Z; choose a random value r € Z;
define the hash as cHAM-HASHy(m,r) = ¢™y" mod p

Figure 1. Chameleon Hashing — based on Discrete Log

4 The Basics of Chameleon Signa-
ture Schemes

Here we present in some detail the basic com-
ponents and requirements of a chameleon signa-
ture scheme. As we have stated previously a
chameleon signature is generated by digitally sign-
ing a chameleon hash value of the message. In
Section 4.1 we introduce the basic functions asso-
ciated with a chameleon signature scheme. Then in
Section 4.2 we discuss the limitations of the basic
scheme and motivate the more involved details of
our complete solutions which are presented in Sec-
tion b.

4.1 The basiccomponents

We start by describing the setting for Chameleon
Signatures. The setting defines the players and the
agreed upon functions and keys.

Players: Signer S and recipient R. In addition, we
shall refer to a judge J who represents a party
in charge of settling disputes between S and R,
and with whom § is assumed to collaborate.

Functions: The players agree on:

e A digital signature scheme (e.g., RSA,
DSS) which defines a set of public and
private keys associated with the signer,
and the usual operations of signing, de-
noted by sIGN, and verification, denoted
by VERIFY. That is, SIGN takes as input
a message m and returns the signature
on the message under the signer’s private
key, and VERIFY takes a message and its
signature and uses the signer’s public key
to decide on the validity (or invalidity) of
the signature. We assume this signature
scheme to be unforgeable [GMR88]. (In
practice, this usually requires an appro-
priate encoding of the signed information,
e.g. using a cryptographic hash function.)

e A chameleon hashing function which de-
fines a set of public and private keys asso-
ciated with the “owner” of the hash, and
the operation CHAM-HASH for generating
a hash on a message. In our setting the
“owner” of the hash function will be the
recipient.

Keys: e The signer S has a public and private
signature keys which correspond to the
agreed upon signature scheme, denoted by

VKs and SKg, respectively.

e The recipient R has a public and pri-
vate keys as required by the agreed upon
chameleon hashing scheme. These are de-
noted by HKg and CKRg, respectively.

We can assume that all public keys are regis-
tered with some trusted certification authority
(depending on the legal requirements of a given
application). It must be noted that when a per-
son registers the public data required for the
chameleon hash he must prove that he knows
the trapdoor information (i.e. the correspond-
ing private key) for the hash®.

We now present the three basic stages of a
chameleon signature scheme and their basic imple-
mentation (more complete details are given in sub-
sequent sections).

4.1.1 Chameleon Signing Given a message m,
and keys SKs, and HKp, the signer generates a sig-
nature for m in the following manner: The signer
chooses a random element r and computes hash =
CHAM-HASHR(m,r) and sig = siGNg(hash). The
triple SIG(m) = (m,r, sig) is then transmitted
from S to R.

Note: We stress that it is important in order to

3Proving knowledge of the secret key by the registrant
R is required to avoid the case in which the private key is
chosen by or known only to a third party P. In such a case,
P will get convinced of signatures signed for R since only he
knows the trapdoor information and not R. For a discussion
on this topic see [JSI9E].

guarantee non-transferability (see Section 4.3) that
the values m and r transmitted from S to R are not
part of the information signed under the function
SIGN. The channel between S and R can still be
authenticated as long as that authentication is re-
pudiable — e.g. using a symmetric key MAC scheme
(see also [DNS98]).

4.1.2 Chameleon Verification Given as input
the triple (m,r, sig), and the public keys of both
signer (VKs) and recipient (HKpg) a chameleon
verification is performed as follows. The value
hash is computed as CHAM-HASHR(m,r) and the
string stg is verified using the VERIFY function of
the standard signature scheme under VKs (i.e.,
whether sig is the valid signature of S on hash).
The chameleon verification denoted by CHAM-VER
outputs that the signature is a proper (resp.,
improper) chameleon signature when the signature
verification outputs valid (resp., invalid).

Note: This verification function is sufficient for R
to get assurance of the validity of S’s signature
(i.e., R is assured that S will not be able to later
deny the signature). However, for any other party,
a successful verification represents no proof that
S signed a particular message since R (knowing
CKR) could have produced it by himself.
Terminology: We will use the notation
CHAM-VERp 5(m,r, sig) to denote that the
chameleon verification is applied to the triple
(m,r, stg) using the public keys of R and S. If
the output of this function is “proper” we call
(m,r, stg) an (R,S)-proper triple. (We omit the
pair (R,S) when these values are clear from the
context.)

4.1.3 Dispute In case of a dispute on the validity
of a signature, R can turn to an authorized judge J.
The judge gets from R a triple SIG(m) = (7, 7, 519)
on which J applies the above cHAM-VER function.
This first test, by the judge, is to verify that the
triple is an (R, S)-proper signature on the message
m. If this verification fails then the alleged signa-
ture is rejected by J. Otherwise, J summons the
signer to deny/accept the claim. In this case we as-
sume the signer cooperates with the judge (say, by
force of law). J sends to S the triple SIG(m). If
the signer wants to accept the signature he simply
confirms to the judge this fact. On the other hand,
if § wants to claim that the signature is invalid he
will need to provide a collision in the hash func-
tion, i.e. a value m' # m, and a value ' such that
CHAM-HASHR(m/,r’) = CHAM-HASHg(m,7). No-
tice that S can always present such a pair m/,»’ if

the signature SIG(m) is invalid (since in this case
51§ was originally generated by S with some pair
m, r different than 7, 7). In other words, by claim-
ing a false signature, the recipient R provides S with
a collision in the function CHAM-HASHER. Yet, if
the signature SIG(m) is valid then S cannot find
collisions and the signature cannot be repudiated.
Hence, the validity of SIG(m) is rejected by J if
S can present collisions to the hash function, and
accepted otherwise.

Remark. Note that in the dispute protocol when a
signer decides to accept a signature SIG(m') then
no “proof” is provided to J of this validity (S only
declares acceptance). As a consequence, it could
be the case that the signature is not valid but S
decides to accept it now and maybe to deny it at
a later time. In applications where this situation
1s considered a real concern it can be overcome by
running the denial procedure in two stages: first,
J sends to S the alleged message m’ and signature
stg. If § accepts the signature as valid then it needs
to send to J a value r that J verifies to be equal
to r’. If he claims the signature to be invalid then
the denial procedure is completed as specified above
(that is, J sends 7’ to S and S responds with a
collision).

4.2 Enhancementdo the BasicScheme

The above scheme conveys the main idea of our
constructions but suffers from several limitations
which we need to solve in order to obtain a com-
plete and practical chameleon signature scheme.

The recipient’s identity. In the above scheme
the value hash is taken to be a number without
specification how it was generated or from what
range it was computed. Based on this the following
attack can be mounted by either the signer or the
recipient.

The signer (recipient) will simply claim that the
hash was generated under a different hash function,
and give the specific hash function which would sat-
1sfy the required value. If this attack is activated by
the signer he could generate a “dummy” recipient
and claim that the signature was generated for this
party, which means that the signer could completely
disavow the signature. In the case where the recip-
lent 1s the attacker the effect of the attack is that it
will disable the signer from proving that a claimed
signature 1s a forgery. In order to prove the forgery
the signer needs to provide a collision in the hash
function which is done by using the original signed
value and the new claimed value of the signature.
When both these values were computed under the

same hash they are themselves a collision in the
hash. But now if the recipient changes the hash
function, then the signer does not have a collision.

Thus, in order to disable these attacks the spe-
cific hash function used in the computation must
be added under the signature. Notice that it isn’t
enough to include the information about the hash
within the document being signed, as this can be
changed when the whole document is being forged.
Thus, we need to bind the hash function to the
hashed value by signing (with S’s signature) both
hash and the specifics of the hash, i.e. HKg(and
possibly other information if desired).

This is the reason why the identity of R is not con-
cealed in our schemes. As the recipient can prove
that he is the owner of the hash by showing posses-
sion of the private key. For applications in which
the disclosure of R’s identity is to be avoided this
can be achieved by combining our results with the
techniques of [GKRI7b].

Exposure-freeness. Notice that if a judge J
summons a signer S to deny a forgery SIG(m) =
(7,7, 51g) then it must be that 513 has been gen-
erated by S as the signature on some message m
using a string » for which cHAM-HASHR(m,r) =
CHAM-HASHR(™M, 7). (We are guaranteed of that
since J first verifies SIG(7m) under the chameleon
verification procedure.) If R’s claim is false, S can
always show a collision in the hash function by ex-
posing the real m and r originally used for that
signature. However by doing so S is disclosing in-
formation (i.e., the existence of the signature on m).
This may be undesirable in certain applications. We
will require that the signer will be able to deny a
forgery without exposing the real contents of any
message which he signed, and will make this a prop-
erty of all our chameleon signature schemes. (The
solutions we present achieve this goal in a strong
sense, namely, S can deny the signature by pre-
senting a random message m’ totally unrelated to
the original value m or to any other message signed
by S.) We shall refer to this property as ezposure
freeness. We present a specific example on how to
achieve exposure freeness (Section 5).

Memory requirements. As observed above,
the signer needs to participate in a denial of a signa-
ture only if the 519 component of an alleged signa-
ture SIG(m) corresponds to a signature generated
by him (for R) for some message m. If this signa-
ture is in fact a forgery, in order to deny it in our
schemes, the signer will need to find out what was
the real message corresponding to 525. One solu-
tion is that the signer will store all his signatures

together with the corresponding signed message, as
there is no means of computation by which he can
extract the original message out of the hash. While
this may be practical in some applications it may
be prohibitive in others. We show how to relax this
need by including the storage of this information
in the signature string held by the recipient, thus
this information is implicitly stored by R . (Note
that this is a reasonable approach as R must always
store the signatures and corresponding messages for
the case of eventual disputes.) This is done in the
following manner, the signer will have some private
key, k, under which he encrypts both m and r gen-
erating encg(m,r). This value is signed together
with hash and the identity of R. (We note that it
suffices to encrypt a digest of m computed under
a collision-resistant hash function rather than the
entire message m. In this case S signs by applying
CHAM-HASH to this digest of m rather than to m
itself.) The encryption must be semantically secure
[GM84] and can be implemented using a symmetric
or asymmetric cryptosystem. Note, that if this op-
tion is used then the non-transferability property
discussed below cannot be achieved information-
theoretically.

4.3 Security Requirements

Here we summarize the security properties that
we require from a chameleon signature scheme. For-
mal definitions will be presented in the final version
of this paper.

We shall say that a signature scheme carried out by
a signer S, a recipient R and a judge J, which is
composed of the functions described in Section 4 is
a secure chameleon signature scheme if the following
properties are satisfied. (In what follows we refer as
a third party to any party different than the signer
and recipient.)

Unforgeability. No third party can produce an
(R, S)-proper triple SIG(m) = (m,r, sig) not pre-
viously generated by the signer S. The intended
recipient R can produce an (R, S)-proper triple
(m,r, stg) only for values sig previously generated
by S.

Non-transferability. Except for the signer him-
self, no one can prove to another party that the
signer produced a given triple SIG(m) = (m, r, sig)
for any such triple. This should be true for the re-
cipient and for any third party (including one — say
a judge — that participated in a denial/confirmation
protocol with the signer).

Denial. In case of dispute, if the signer S is pre-
sented with a triple SIG(m) = (m,r, sig) not pro-

Chameleon Signature Generation - CHAM-SIG

Input of Signer: Message m € Z;
private signing key of S, SKs
HKpg of R,i.e. HKp = y(= ¢g* mod p),g,p, ¢

1. Generate the chameleon hash of m by choosing a random r € Z; and computing
hash = CHAM-HASHR(m,r) = ¢™y" mod p

2. Set sig = siGNg(hash, HKR)

Input: SIG(m) = (m,r, stg)
public verification key of S, VKg
HKgp of R,1.e. HKp = vy,9,7,9

proper
improper otherwise

2. output = {

3. The signature on the message m consists of SIG(m) = (m,r, sig).

Chameleon Signature Verification - CHAM-VER

1. Compute hash = CHAM-HASHR(m,r) = g™y" mod p
VERIFY g ((hash, HKR), sig) = valid

Figure 2. Dlog-based Chameleon Signatures — Generation and Verification

duced by him, then S can convince a (honest) judge
J to reject SIG(m).

Non-repudiation. In case of dispute, if the signer
S is presented with a triple SIG(m) = (m,r, sig)
produced by him, then S cannot convince a (honest)
judge J to reject SIG(m).

Exposure freeness. A chameleon signature
scheme is exposure free if the signer can deny a false
signature (i.e., a triple (m,r, sig) not produced by
him) without exposing any other message actually
signed by him.

5 A Full

Scheme

Chameleon Signature

In this section we shall describe, for concreteness,
a specific system for Chameleon Signatures which
fully satisfies the above functionality and security
requirements. The implementation described below
achieves the property of being ezposure-free, i.e. 1n
case of denial the signer will be able to prove the
invalidity of the signature without exposing any of
his signed messages. We omit details of memory
management, namely, whether the message m and
its signature are kept by the signer for possible dis-
putes or whether an encryption of the hashed mes-
sage 1s added to the signature. The techniques for
solving these additional issues, described in Section
4.2, are independent of the type of chameleon hash
used and can be easily incorporated here.

The Chameleon Hashing which will be employed
in this specific solution is the discrete log based
chameleon hashing described in Section 3. In ad-
dition to the cHAM-HASH function we will use the
functions SIGN and VERIFY as defined by some spe-
cific signature scheme (e.g., DSS or RSA with the
appropriate encoding of the signature arguments as
discussed in Section 4.1), and for which S generates
a pair of private and public keys.

Based on the above we can define the function
CHAM-SIG for chameleon signature generation, and
the function CHAM-VER for chameleon verification,
these are described in Figure 2. The construction
follows the basic scheme of Section 4.1 with the in-
corporation of the specifics of the Chameleon Hash
under the signature. We remark that the message
m used as input to the signature can be first hashed
using a collision-resistant hash function (e.g., SHA-
1) and the result of this hashing used as the input
to the chameleon hash function (see Lemma 1).*

As was described in Section 4.1 in case of dispute
the signer will be presented with a triple SIG(m') =
(m', 7', sig) which passes the CHAM-VER verifica-

4Typically, this will result in several layers of hashing.
First a collision-resistant hashing of the message is computed;
then, the chameleon hashing is applied to this value; finally,
the resultant chameleon hash value and other items to be
signed are input to some standard encoding procedure (usu-
ally based on hash functions as well) for the specific digital
signature scheme in use.

Input: a forgery SIG(m') = (m/,r', sig)

2. S computes z = ":,_—_":I mod g.

4. Output (m, 7).

Generate Collision

1. S retrieves the original values m,r used to compute sig.
It holds that g™y" mod p = ¢"™ ¥" mod p, while m # m/

3. S chooses any message m € Z, and computes 7 =

%The retrieval of m and r can be done out of S’s archives or using the encryption technique described in Section 4.2.

a

mtzr—m mod q
T

Figure 3. Generating Collisions — Discrete Log based

tion, 1.e. sig is a possible signature generated by
the signer for the message m/. The signature will be
considered invalid if the signer can provide a colli-
sion in the hash function. Furthermore, disavowing
the signature should be achieved without exposing
the original message which the signer signed. In
our discrete-log based solution, once the recipient
has presented a forgery (which passes the chameleon
verification) then not only will the signer be able to
disavow the specific signature but he will also be
able to expose R ’s private key z. Knowledge of z,
in turn, enables the signer to disavow all other mes-
sages which he signed using this chameleon hashing,
since by knowing the trapdoor one can find arbi-
trary collisions. The protocol carried out by the
signer for extracting the secret key and producing a
random collision in the hash is described in Figure
3.

Theorem 1 Assuming a secure digital signature
scheme and the hardness of computing discrete
logs, the above procedures form a chameleon sig-
nature scheme satisfying the properties of non-
transferability, unforgeability, non-repudiation, de-
nial, and exposure freeness.

Proof.

Non-transferability. Given a signature SIG =
(m,r, sig) generated by the signer S for a re-
cipient R, the recipient cannot convince a third
party of its validity. This is due to the fact
that for every possible message m/, R can com-

pute a value r’ At mizr—m' 09 g such that

CHAM-HASHR(m,r) = CHAM-HASHp(m/,7’)

(Section 3). Thus, (m',r’,sig) is an (R, S)-

proper signature. Furthermore, since for ev-

ery possible message m' there exists exactly
one value r’ that produces a proper triple

(m/, 7', stg) then nothing is learned about the

value of m from seeing the signature string stg.

10

Thus non-transferability is achieved uncondi-
tionally, i.e. in the information theoretic sense.
In addition, no third party can prove the valid-
1ty of the signature as it may be assumed that
he is in collusion with the recipient.

Unforgeability. No third party can generate an
(R, S)-proper triple SIG(m) = (m,r,sig)
which has not been previously generated by the
signer S, as this requires either to break the un-
derlying digital signature scheme, or to find col-
lision in the chameleon hash function which, in
turn, implies computing the secret trapdoor in-
formation of R . The recipient cannot generate
an (R, S)-proper triple SIG(m) = (m,r, sig)
with a component sig which has not been pre-
viously signed by the signer as this requires to
break the underlying digital signature scheme.

Non-repudiation. Given an (R, S)-proper triple
SIG(m) = (m,r, sig) generated by the signer,
under the specified hash key, g, y, p the signer
cannot generate another (R, S)-proper triple
SIG(m') = (m/,r’,sig) for m # m' as this
would be equivalent to computing the secret
trapdoor information z, which we assume to
be infeasible by the hardness of the discrete log
problem.

Exposure freeness. Since we assume the underlying
digital signature to be unforgeable, the signer S
may be required to deny a signature only for a
triple SIG(m') = (m/, 7', sig) which is (R, S)-
proper but not originally generated by S. In
this case, S must possess another proper triple
SIG(m) = (m,r, sig) that he really signed. Us-
ing these values S extracts the secret trapdoor
information as described in Figure 3 . Given
this trapdoor the signer can deny the signature

by presenting a collision using any message of
his choice or by presenting the trapdoor itself.
Clearly, the exposure of the recipients trapdoor
to the signer should serve as an additional de-
terrent for the recipient from producing forg-
eries.

6 Convertibility

The notion of convertibility of undeniable signa-
tures was introduced by Boyar, Chaum, Damgard
and Pedersen [BCDP90]. The idea is that an un-
deniable signature will be transformed into a reg-
ular publicly verifiable (non-repudiable) signature
by publishing some information. There are also
variations to the notion of convertibility, i.e. com-
plete and selective. Complete convertibility trans-
forms all the signatures generated under the same
key, while selective convertibility transforms only
a single signature. Secure solutions to the prob-
lem of convertible undeniable signatures appear
in Damgard and Pedersen [DP96] and Gennaro,
Krawczyk, and Rabin [GKR97a].

In Section 4.2 we introduced a method in order
to circumvent the need for the signer to store the
message. Using this same technique we can en-
able convertibility. The mechanism was that the
signer includes under his signature an encryption of
the signed message®. To enable convertibility the
signer needs to encrypt the message using a public
key encryption. Furthermore, the signer will com-
mit to the encryption public key that he is using
by signing this public key together with the encryp-
tion of the message (this prevents problems sim-
ilar to those pointed out in [AN95] when signing
an encryption). Thus, the signer is committed to
some encryption string. However, the contents of
the encrypted string cannot be learned by any third
party due to the semantic security of the encryption.
Now, we can achieve selective convertibility by hav-
ing the signer expose the random bits used for the
specific probabilistic encryption of the signed mes-
sage, and complete convertibility by exposing the
decryption key. (This commitment is unique given
the one-to-one nature of the encryption function.)

Acknowledgments

We would like to thank Mihir Bellare, Ivan
Damgard, Shimon Even and Daniele Micciancio for
helpful discussions.

5In a sense, this solution can be seen as dual to the so-
lution in [DP96] that is based on the idea of encrypting a
signature while here we sign an encryption.

11

References

[AN95] R. Anderson and R. Needham. Ro-
bustness principles for public key pro-
tocols. In Crypto 95, pages 236-247,

1995. LNCS No. 963.
[BCC88] G. Brassard, D. Chaum,

C. Crépeau. Minimum disclosure
proofs of knowledge. JCSS, 37(2):156—
189, 1988.

and

[BCDP90] J. Boyar, D. Chaum, I. DamgR ard, and
T. Pedersen. Convertible undeniable sig-
natures. In Crypto ’90, pages 189-205,

1990. LNCS No. 537.

[BKK90] J. F. Boyar, S. A. Kurtz, and M. W.
Krentel. A discrete logarithm implemen-
tation of perfect zero-knowledge blobs.

Journal of Cryptology, 2(2):63-76, 1990.

[CA89] David Chaum and Hans Van Antwer-
pen. Undeniable signatures. In Crypto
'89, pages 212-217, 1989. LNCS No.

435.
[Cha)

David Chaum. Private Signatures and
Proof Systems. US Patent 5,493,614 is-

sued 02/20/1996.
[Cha90]

D. Chaum. Zero-knowledge undeniable
signatures. In Burocrypt ’90, pages 458—

464, 1990. LNCS No. 473.
[Cha94]

David Chaum. Designated confirmer
signatures. In Eurocrypt '94, pages 86—

91, 1994. LNCS No. 950.

[CvHP91] D. Chaum, E. van Heijst, and B. Pfitz-
mann. Cryptographically strong undeni-
able signatures, unconditionally secure
for the signer. In Crypto ’91, pages 470-

484, 1991. LNCS No. 576.
[Dam87]

I. Damgard. Collision free hash func-
tions. In Burocrypt ’87, pages 203-216,

1987. LNCS No. 304.
C. Dwork, M. Naor, and A. Sahai. Con-

current zero-knowledge. In Proc. 30th

STOC, pages 409-418. ACM, 1998.

[DNS98]

[DP96] I. Damgard and T. Pedersen. New con-
vertible undeniable signature schemes.

In Eurocrypt ’96, pages 372-386, 1996.
LNCS No. 1070.

[DY91]

[FOO91]

[FS86]

[£ST95]

[GKR97a]

[GKRO7b]

[GM84]

[GMR88]

[IS196]

[TY96]

[Mic96]

Y Desmedt and M. Yung. Weaknesses of
undeniable signature schemes. In Crypto
91, pages 205-220, 1991. LNCS No.
576.

A. Fuyjioka, T. Okamoto, and K. Ohta.
Interactive bi-proof systems and unde-
niable signature schemes. In Eurocrypt
91, pages 243-256, 1991. LNCS No.
547.

A. Fiat and A. Shamir. How to Prove
Yourself: Practical Solutions to Iden-
tification and Signature Problems. In

Crypto '86, pages 186-194, 1986. LNCS
No. 263.

National Institute for Standards and
Technology. Secure Hash Standard,
April 17 1995.

R. Gennaro, H. Krawczyk, and T. Ra-
bin. RSA-based Undeniable Signatures.
In Crypto 97, pages 132-149, 1997.
LNCS No. 1294.

R. Gennaro, H. Krawczyk, and
T. Rabin. Undeniable Certificates.
Manuscript, 1997.

S. Goldwasser and S. Micali. Probabilis-
tic encryption. JCSS, 28(2):270-299,
April 1984.

Shafi Goldwasser, Silvio Micali, and
Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-
message attacks. SIAM J. Computing,
17(2):281-308, April 1988.

M. Jakobsson, K. Sako, and R. Impagli-
Designated verifier proofs and
their applications. In Eurocrypt ’96,
pages 143-154, 1996. LNCS No. 1070.

azzo.

M. Jakobsson and M. Yung. Proving
without knowing: On oblivious, agnos-
tic and blindfolded provers. In Crypto

’96, pages 201-215, 1996. LNCS No.
1109.
M. Michels. Breaking and repair-

ing a convertible undeniable signature
scheme. In ACM Conference on Com-
puter and Communications Security,

1996.

12

Tatsuaki Okamoto. Designated con-
firmer signatures and public-key encryp-
tion are equivalent. In Crypto ’94, pages
61-74, 1994. LNCS No. 839.

[Oka94]

[Ped91] T. Pedersen. Distributed provers with
applications to undeniable signatures.
In Burocrypt 91, pages 221-242, 1991.
LNCS No. 547.

[Rab78] M. Rabin. Digitalized Signatures. In

R. Demillo and et.al, editors, Foun-
dations of Secure Computations, pages

155-165. Academic Press, 1978.

A Chameleon Hashing Based on Fac-
toring

We present an implementation of Chameleon
Hashing based on factoring. It is a specific an
efficient implementation of a general construction
based on claw-free permutations which was intro-
duced by Goldwasser, Micali and Rivest [GMR88]
for building regular digital signatures, and used by
Damgard [Dam87] to build collision resistant hash
functions.

Choose primes p = 3 mod 8 and ¢ = 7 mod 8 and
compute n = pq.

Input: Message m = m[l]...m[k]
HKgr = n as defined above
Choose random value r € Z; ;
hash :=r? mod n
forz=11tok
hash := 4™ hash? mod n

Figure 4. Chameleon Hashing — Based on Fac-
toring

Computation analysis. The number of opera-
tions required to compute this chameleon hash is
|m| squarings and up to |m| multiplications (by
4) mod n. Typically, for our application, m is a
hashed message and then the expected number of
multiplications will be |m|/2, and |m| itself about
160 bit-long only. Thus the total cost is significantly
lower than a full long exponentiation mod n and,
in particular, than an RSA signature. Note, that
the above function (if we take m[1] to be the most
significant bit of m and m[k] the least significant)

computes to CHAM-HASH(m, r?) = 4m(r2)2|m|.

