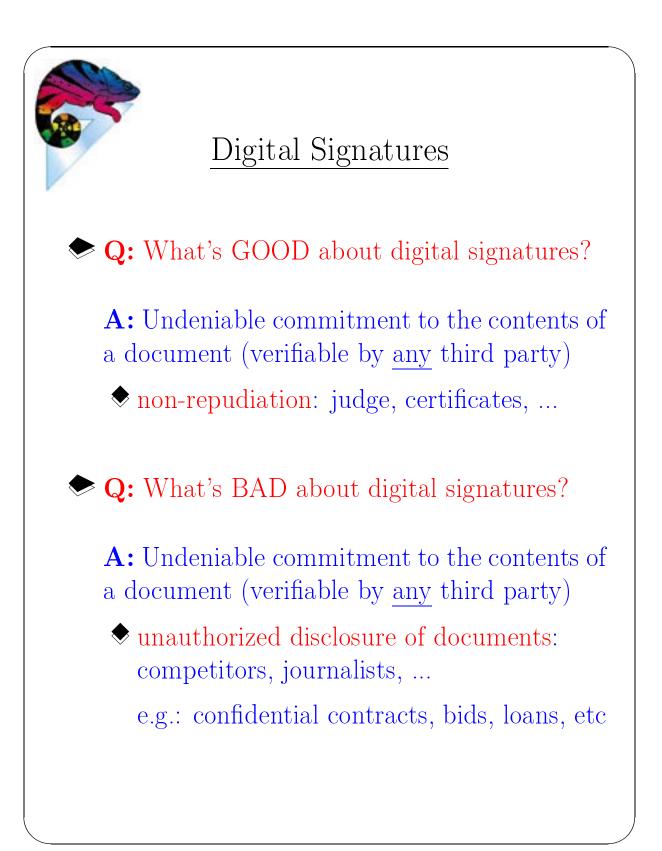


Hugo Krawczyk Tal Rabin

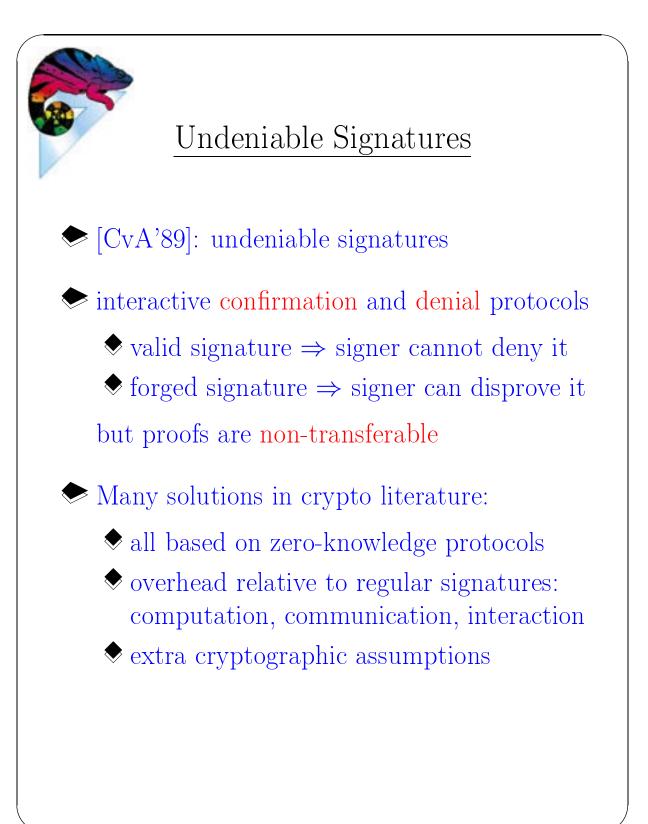
IBM T.J. Watson Research Center

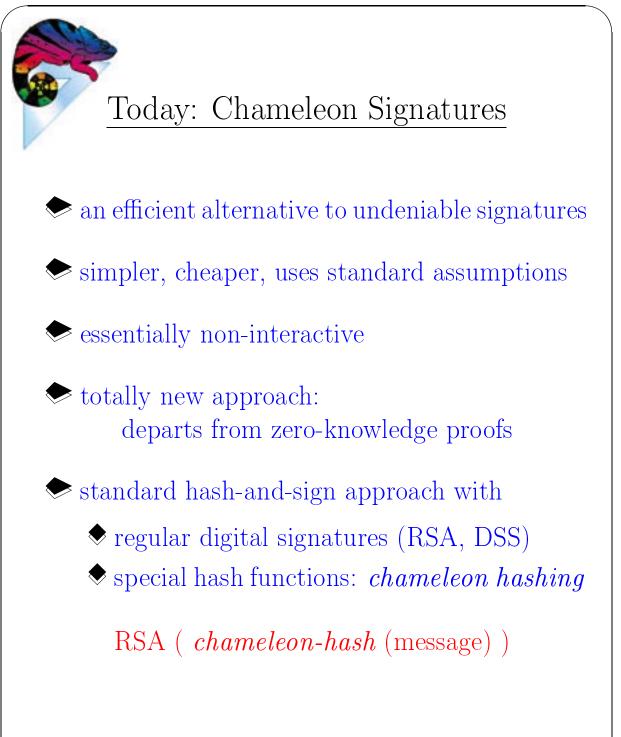


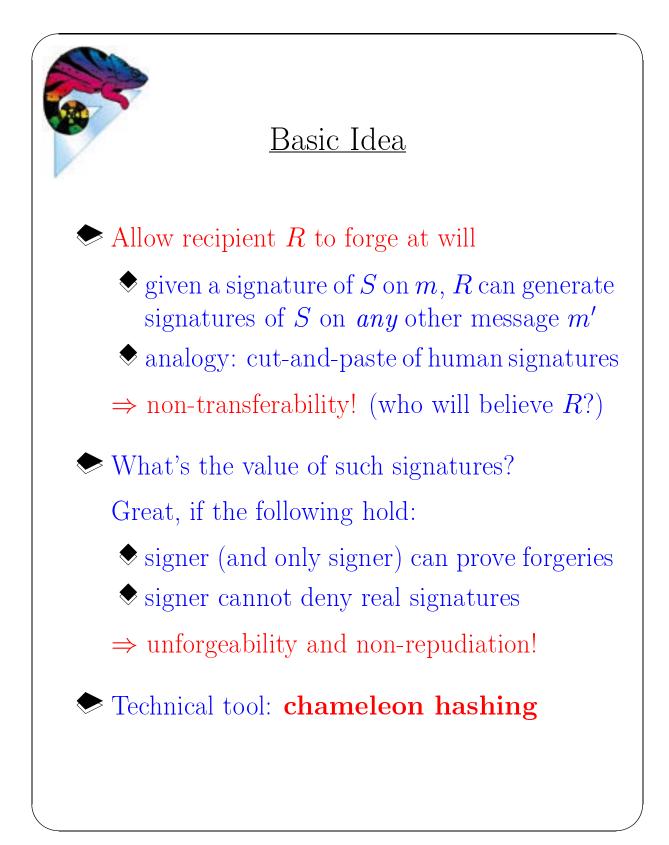
Controlled Verification of Signatures

Conflicting requirements:

- \blacklozenge Prevent disclosure to unauthorized parties
- \clubsuit Be able to prove to a judge (to settle disputes)
- **Q:** Possible?
- A: Yes, if verification requires signer's action [CvA'89]







	<u>"Cut-and-Paste attack"</u>
Heptiu	Ltd. will supply 30 workstations m-NNY to Crooks Corp. between Jan- nd August 1999.
	John XYZ
	John XYZ
	Ltd. will invest 30 million dollars in 6 Corp. between January and June

Reminder: collision-resistant hashing

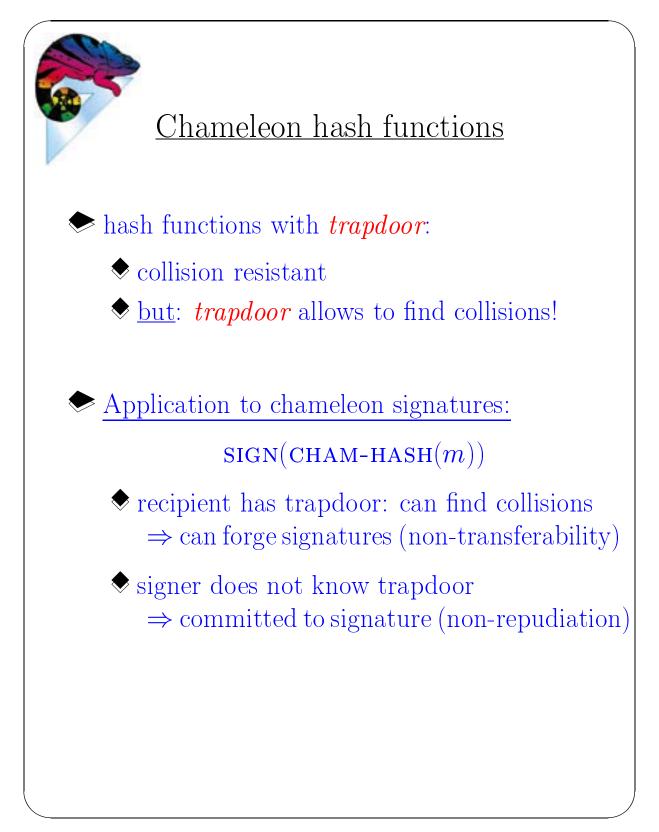
 \blacklozenge no one can find two messages that are hashed to the same value

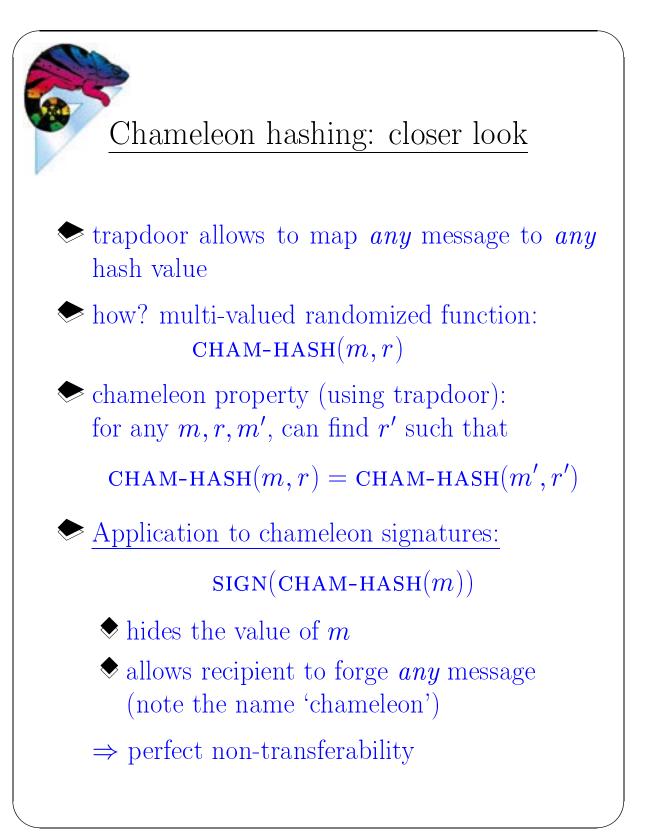
• instead of SIG(m) can do SIG(HASH(m))

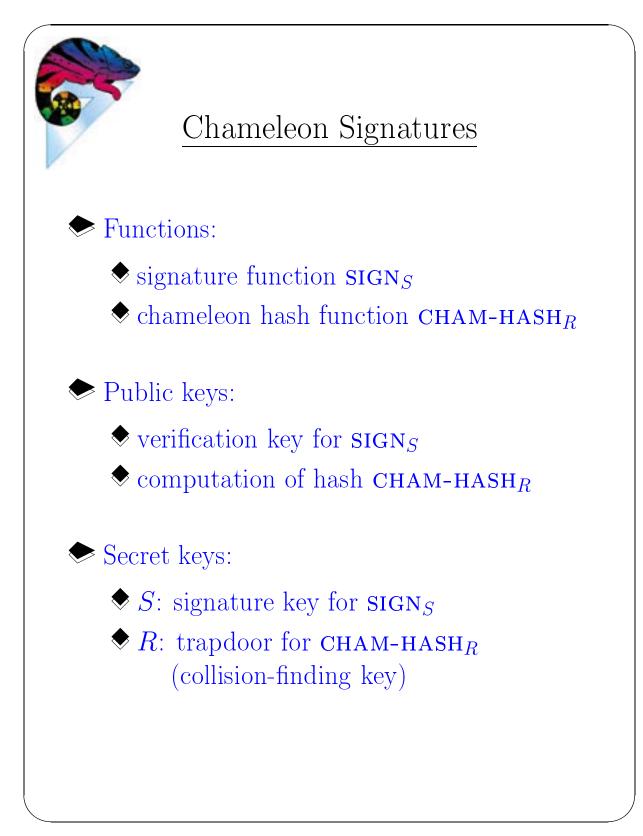
 \blacklozenge resistance to collisions preserves unforgeability and non-repudiation

Note:

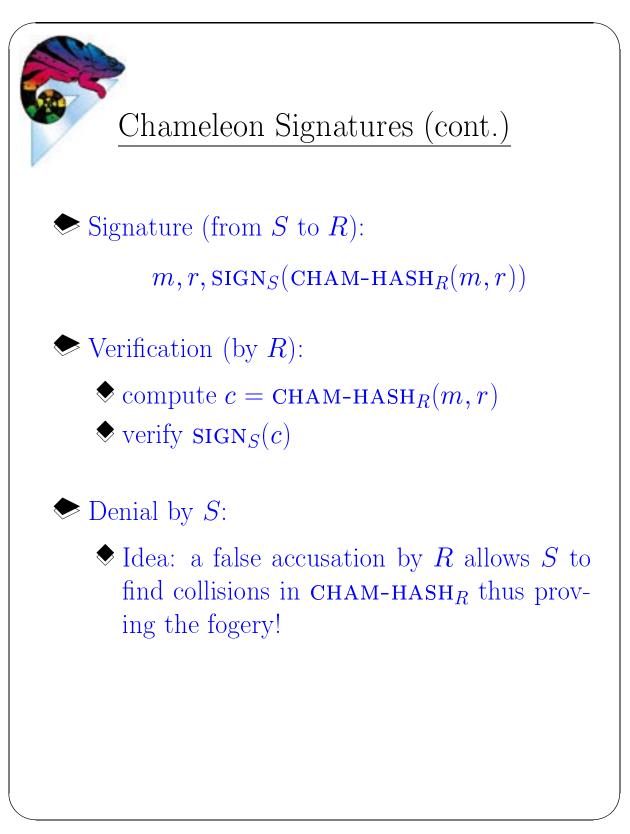
- if signer can find collisions then it can deny signatures
- if recipient can find collisions then it can forge signatures

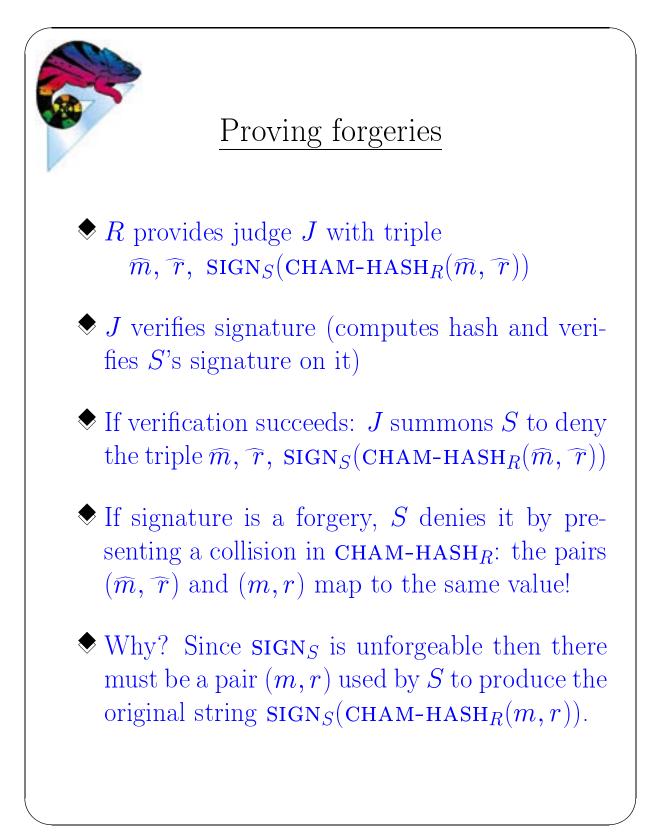


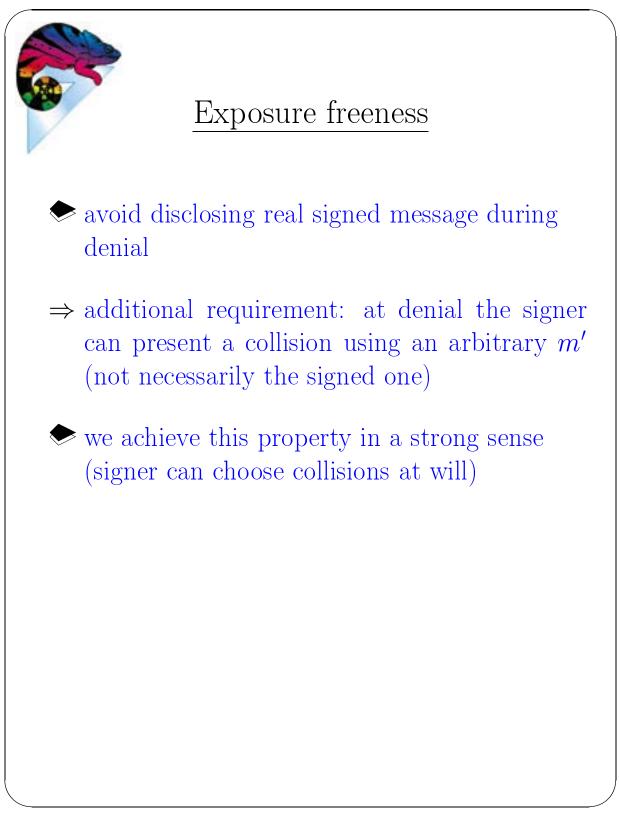




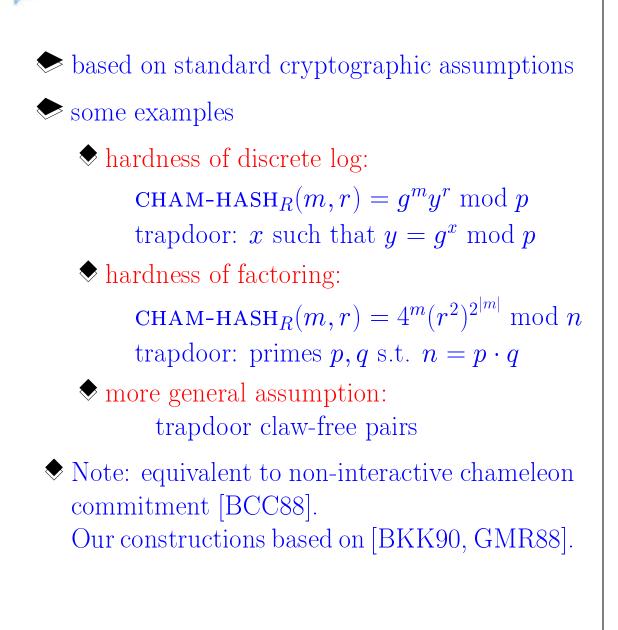
Page 10 of 17







Implementation of Chameleon Hashing



Discrete-log based Chameleon Hashing

Definition:

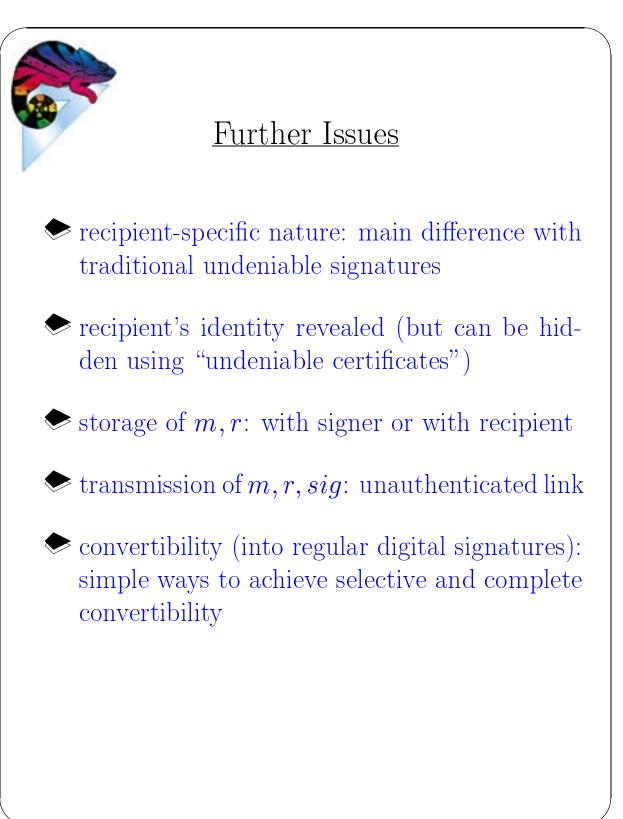
- \blacklozenge primes p, q, p = kq + 1; g of order q in Z_p^*
- \blacklozenge trapdoor: $x \in Z_q^*$; public key: $y = g^x \mod p$
- ♦ hash: given m, choose random $r \in Z_q^*$ and compute CHAM-HASH_y $(m, r) = g^m y^r \mod p$
- \diamond collision: m, r, m', r' with $g^m y^r = g^{m'} y^{r'} \pmod{p}$

Properties:

Collision resistance: $finding collisions \Rightarrow computing disc-log (of y)
g^m y^r = g^{m'} y^{r'} \mod p \Rightarrow x = \frac{m - m'}{r' - r} \mod q.$

chameleon trapdoor: given m, r, m' can find $r' \text{ as } r' = \frac{m + xr - m'}{x} \mod q$

denial: given collision (m, r) and $(\widehat{m}, \widehat{r})$ can find $x = \frac{m - \widehat{m}}{\widehat{r} - r} \mod q$ and with x can find collision with any other m' (exposure free).



Summary and Conclusions

