
Continuous Assessment of a Unix

Con�guration: Integrating Intrusion

Detection & Con�guration Analysis

A. Mounji B. Le Charlier,

ASAX Project

Institut d'Informatique,

FUNDP,

Namur - Belgium,

E-mail: famo, bleg@info.fundp.ac.be

URL:

http://www.info.fundp.ac.be/~cri/DOCS/asax.html

Contents

1. Con�guration Analysis Systems

2. Intrusion Detection Systems

3. Architecture of the Integrated System

4. Con�guration Analysis Language

5. Speci�cation of the Inference Engine

6. Implementation

7. Performance Evaluation

8. Conclusions and Future Works

Con�guration Analysis

Systems

� Check the presence of vulnerabilities in the

con�guration

� What can potentially be done to the system?

� Can be based on Predicate Logic

{ Existing Systems are snapshot oriented

(Eg.:, Kuang, NetKuang)

{ ASAX: Declarative, Real-time.

Eg.:

become(User, root) :-

replace(User, /etc/passwd).

Intrusion Detection Systems

� Observe user actions

� What has actually been done to the system?

� A Rule-based Language approach is power-

ful:

if cond then action

� Example System: ASAX

� Can be made more powerful by taking advan-

tage of the knowledge about the state of the

con�guration

Architecture of the Integrated

System

Trigger new

Detection rules

Fact Base

Initializer

Analysis

Configuration

Datalog

generation

Trail

Analysis

RUSSEL
Dynamic

Fact

Base

Audit Trail

Enabling

Alarms,

... ...

Audit

Security Procedures

Ei

Updates derived facts

Updates basic facts

Audit

System

Audit data

RUSSEL Language (Example)

rule detect root access(Username: string);

begin

if (event = 7 or event = 23)

/* exec(2) or execve(2) */

and �le owner id = 0 /* root */

and uid = uid(Username)

and illegalSetUID(�le name) = 1

--> println('Suspicious Execution of the

setUID program', �le name,

' By User ', Username,

'At Time ', gettime(time))

�;

trigger o� for next

detect root access(Username)

end.

Con�guration Analysis

Language

� Goal: represent the security state of a Unix Con-

�guration using Predicate Logic

� Specialized version of Datalog:

{ constants: users, groups, �le names

{ built-ins (ex: homeDir(amo, /users/amo))

{ Deductions: (incremental evaluation)

hr, �i = r� (instance of a rule)

{ a fact f contributes to hr, �i i�

h� :- a1�, ...,ai�1�, f�, ai+1�, ..., an�

Con�guration Analysis

Language (Example)

write(U, F) :- worldWrite(F).

write(U, F) :- groupWrite(F, Group),

inGroup(U, Group).

write(U, F) :- parentDir(D, F), write(U, D).

inGroup(U, G) :- groupMember(U, G).

inGroup(U, G) :- groupMember(V, G), become(U,V).

become(U, V) :- parentDir(D, F),

write(U, F),

homeDir(V, D).

become(U, root) :- write(U, /etc/passwd).

become(U, root) :- write(U, /etc/group).

become(U, root) :- write(U, /etc/rc).

become(U, root) :- write(U, /etc/aliases).

Interfacing ASAX with

Datalog

Trigger (resp. cancel) a detection rule as the

con�guration changes:

� on new fact name(X1, ..., Xn)

trigger o� for next rule name(X1, ...,

Xn)

� on dispose fact name(X1, ..., Xn)

cancel rule name(X1, ..., Xn)

Update the fact base by monitoring critical

events:

� is fact(fact name(X1, ..., Xn))

� assert(fact name(X1, ..., Xn))

� retract(fact name(X1, ..., Xn))

� commit

Interfacing ASAX with

Datalog: Example

1. Datalog

on new become(U, root)

trigger o� for next detect root access(U).

on dispose become(U, root)

cancel detect root access(U).

2. RUSSEL

if

grp read(path, gid, mode) = 1

-->

begin

assert(groupRead(gid, path));

commit

end

�

Speci�cation of the Inference
Engine

� Given

{ a set of basic facts BF

{ a set of rules SR

� we de�ne the set of derived facts DF and

the set of deductions SD corresponding to

BF and SR as the smallest sets such that:

r 2 SR;

r � h : �a1 ; :::; an ;

f1 ; :::; fn 2 BF [DF ;

� = mgufa1 = f1 ; :::; an = fng

9>>>=
>>>;
)

h� 2 DF and

r� 2 SD

� and we note hSD, DFi = Ded (BF, SR).

Incremental Update of the
Fact Base

Upon occurrence of an event, we compute:

� ��: basic facts to be retracted.

� �+: basic facts to be added.

Example:

rename ~amo/.cshrc to ~amo/.login

� �� =

fparentDir(~amo, ~amo/.cshrc),

worldWrite(~amo/.cshrc)g

� �+ =

fparentDir(~amo, ~amo/.login),

worldWrite(~amo/.login)g

Incremental Update of the
Fact Base

Given

� a set of rules SR, a set of basic facts BF and

hSD, DFi = Ded(BF, SR)

� �� and �+

Compute Ded((BF n��) [�+, SR)

This is done incrementally, in 2 steps:

1. compute (SD�, DF�) = Ded(BF n��, SR)

from ��, SD, DF and BF

2. compute Ded((BFn��) [�+, SR)

from �+, SD�, DF� and BFn��

Retracting a list of facts

For each removed fact:

� for each deduction to which it contributes

{ remove deduction

{ decrement ref. count of implied fact

{ if ref. count = 0 recursively remove the

fact

Retracting a list of facts

Retract ded(��)

begin

� := ��;

while (� 6= ;) do

begin

Remove(�, f);

Sup ded := list ded(f);

while (Sup ded 6= ;) do

begin

Remove(Sup ded, d);

f0 := Fact(d);

SD := SD n fdg;

if (Nb ded(f0) = 0)

then � := � n ff0g

end;

DF := DF n ffg

end

end.

Adding a list of facts

Generate ded(�+)

begin

� := �+;

while (� 6= ;) do

begin

Remove(�, f);

FB := FB [ffg;

� := rule match(f);

while (� 6= ;) do

begin

Remove(�, (r, i));

Gen ded fact(r, i, f, �)

end

end

end.

Gen ded fact(r, i, f, �)

begin

Let r � h -: a1, ..., an;

Let � = mgu(ai, f);

Gen case(r, �, i, 0, �)

end.

Adding a list of facts (continued)

Gen case(r, �, i, j, �)

begin

Let r � h :- a1, ..., an;

if (j = n+1) and (r� 62 SD) then

begin

SD := SD [fr�g;
if (h� 2 BF [DF) then

begin

DF := DF [fh�g;
� := � [fh�g

end

else increment ref(h�)

end

else if (j = i) then Gen case(r, �, i, j+1, �)

else begin

list facts := find all facts(aj�);

while (list facts 6= ;) do

begin

Remove(list facts, f0);

� := mgu(f0, aj�);

if (� 6= fail)

then Gen case(r, ��, i, j+1, �)

end

end

end.

Implementation

� Predicate: list of rules where it appears in

the body

� Fact: (its predicate, array of args, ref count,

list of deductions to which it contributes)

� Deduction: (array of facts contributing to it,

the implied fact)

� Hash code to ensure unicity of representation

f1 f2

f2

f3

f3

1argvf1: 1argv 1argv argv

f2

d3

f2: f3: f4:

d1d3d1 d2 d2

d1:

d2:

d3:

2

Performance Evaluation

� Detection Rules:

Rules Exploitation
1 Setuid program writes another setuid
2 Programs writing to executable �les
3 lpr overwrites a �le outside of /var/spool
4 Execution of known attack programs (crack, cops, etc)
5 Creation of setuid programs
6 Creation of a device �le using mknod()
7 Writing non owned �les
8 Execution of a suspicious setuid program
9 Illegal read access to /dev/kmem or /dev/mem
10 Linking an at job to root mail box
11 Copying a shell in root mail box when empty

� Audit Trail Description:

#Users #Grps #Rec #SRec Size Time Rate
Mb hh:mm:ss

128 23 173;828 5;641 14:5 MB 25 : 35 : 42 1:89

Performance Evaluation

(continued)

� Fact Base Initialization:

#Facts #Deds Size IFB UFB UPR
Kb sec sec msec

5084 5721 568 26.52 62 0.36

� Audit Trail Analysis:

type usr sys total #RPS
sec sec sec

Integrated 458.47 95.63 554.10 313.71
Not Integrated 4062.70 106.70 4169.10 41.00

Conclusions and Future Works

Conclusions:

� Integrating Intrusion Detection with Con�g-

uration Analysis achieves:

{ A continuous assessment of the con�gu-

ration.

{ A dynamically adaptive IDS wrt the con-

�guration

� Computationally feasible

Future Works:

� Further extend current deductive rules

� Further tuning of the system

ASAX package, and papers available at:

http://www.info.fundp.ac.be/~cri/DOCS/asax.html

