Continuous Assessment of a Unix
Configuration: Integrating Intrusion
Detection & Configuration Analysis

A. Mounji B. Le Charlier,

ASAX Project

Institut d’'Informatique,
FUNDP,
Namur - Belgium,

E-mail: {amo, ble}@info.fundp.ac.be
URL:
http://www.info.fundp.ac.be/"cri/DOCS/asax.html



Contents

. Configuration Analysis Systems

. Intrusion Detection Systems

. Architecture of the Integrated System

. Configuration Analysis Language

. Specification of the Inference Engine

. Implementation

. Performance Evaluation

. Conclusions and Future Works



Configuration Analysis
Systems

e Check the presence of vulnerabilities in the
configuration

e What can potentially be done to the system?

e Can be based on Predicate Logic

— EXxisting Systems are snapshot oriented
(Eg.:, Kuang, NetKuang)

— ASAX: Declarative, Real-time.
Eg.:

become(User, root) :-
replace(User, /etc/passwd).



Intrusion Detection Systems
e ODbserve user actions
e \What has actually been done to the system?

e A Rule-based Language approach is power-
ful:

If cond then action
e Example System: ASAX

e Can be made more powerful by taking advan-
tage of the knowledge about the state of the
configuration



Architecture of the Integrated
System

Audit Trall
Audit [ _ )
System El
Audit data l
generation - . ~ Al ams,
Audit ——  Enabling
Trall Security Procedures
Updates basic facts And ysIS
kRUSS*EL )
Trigger new

Detection rules

Updates derived facts /Cc)nfi gurati on
Analysis
Fact Base
Initializer ( Datalog )




RUSSEL Language (Example)

rule detect_root_access(Username: String);
begin
if (event = 7 or event = 23)
/* exec(2) or execve(2) x/
and file_owner_id = 0 /* root */
and uid = uid(Username)
and illegalSetUID(file_.name) = 1
—--> println(’Suspicious Execution of the
setUID program’, file_name,
> By User ’, Username,
’At Time ’, gettime(time))
fi;
trigger off for_next

detect_root_access(Username)

end.



Configuration Analysis
Language

e Goal: represent the security state of a Unix Con-
figuration using Predicate Logic

e Specialized version of Datalog:
— constants: users, groups, file names
— built-ins (ex: homeDir(amo, /users/amo))

— Deductions: (incremental evaluation)
(r, o) = ro (instance of a rule)

— a fact f contributes to (r, o) iff
ho - ajo, ...,a;_10, fo, 3i4+10, ---, Ano



Configuration Analysis
Language (Example)

write(U, F) :- worldWrite(F).
write(U, F) :- groupWrite(F, Group),
inGroup (U, Group) .
write(U, F) :- parentDir(D, F), write(U, D).
inGroup (U, G) :- groupMember (U, G).
inGroup (U, G) :- groupMember(V, G), become(U,V).
become (U, V) :- parentDir(D, F),
write(U, F),
homeDir(V, D).
become (U, root) :- write(U, /etc/passwd).
become (U, root) :— write(U, /etc/group).
become (U, root) :- write(U, /etc/rc).

become (U, root) :- write(U, /etc/aliases).



Interfacing ASAX with
Datalog

Trigger (resp. cancel) a detection rule as the
configuration changes:

e on_new fact_.name(Xy, ..., Xn)
trigger off for_next rule_name(Xi, ...,
Xn)

e on_dispose fact_name(Xy, ..., Xn)
cancel rule_.name(Xy, ..., Xp)

Update the fact base by monitoring critical
events:

e is_fact(fact_name(Xy, ..., Xn))
e assert(fact_.name(Xy, ..., Xn))

e retract(fact_name(Xq, ..., Xn))

e commit



Interfacing ASAX with
Datalog: Example

1. Datalog
on_new become(U, root)
trigger off for_next detect_root_access(U).

on_dispose become(U, root)
cancel detect_root_access(U).

2. RUSSEL
if

grp read(path, gid, mode) = 1

-=>

begin
assert (groupRead(gid, path));
commit

end

fi



Specification of the Inference
Engine

e Given
— a set of basic facts BF
— a set of rules SR
e we define the set of derived facts DF and

the set of deductions SD corresponding to
BF and SR as the smallest sets such that:

r € SR, )
r=h:—ay,...,an, ho € DF and
i, fn € BFUDF, = ro e SD
o= mgu{a; = f1,...,an = fn} |

e and we note (SD, DF) = Ded (BF, SR).



Incremental Update of the
Fact Base

Upon occurrence of an event, we compute:
e A~ : basic facts to be retracted.
e AT: basic facts to be added.

Example:
rename “amo/.cshrc tO “amo/.login

o AT =
{parentDir(~amo, ~amo/.cshrc),

worldWrite(~amo/.cshrc) }

e AT =
{parentDir(~amo, ~amo/.login),

worldWrite(~amo/.login)}



Incremental Update of the
Fact Base

Given

e a set of rules SR, a set of basic facts BF and
(SD, DF) = Ded(BF, SR)

e A~ and AT

Compute Ded((BF \A~)UAT, SR)

This is done incrementally, in 2 steps:

1. compute (SD—, DF~) = Ded(BF \A~, SR)
from A—, SD, DF and BF

2. compute Ded((BF\A~)U AT, SR)
from AT, SD~, DF~ and BF\A~



Retracting a list of facts

For each removed fact:

e for each deduction to which it contributes
— remove deduction
— decrement ref. count of implied fact

— if ref. count = O recursively remove the
fact



Retracting a list of facts

Retract_ded (A7)

begin
A = A,
while (A #= () do
begin
Remove (A, f);
Sup ded := list ded(f);
while (Sup.ded # () do
begin
Remove (Sup_ded, d);
f/ := Fact(d);
SD := SD \ {d};
if (Nb.ded(f’) = 0)
then A := A\ {f'}
end;
DF := DF \ {f}
end

end.



Adding a list of facts

Generate_ded(lk4')

begin
A = Zk*';
while (A #= () do
begin
Remove (A, f);
FB := FB U {f};
. := rulematch(f);
while (, # ) do
begin
Remove(, , (r, i));
Gen ded fact(r, i, f, A)
end
end
end.

Gen_ded fact(r, i, £, A)
begin
Let r = h -: ai, ..., an;
Let o0 = mgu(a;, £f);
Gen case(r, o, i, 0, A)
end.



Adding a list of facts (continued)

Gen case(r, o, i, j, A)

begin

Let r =h :- a3, ..., an;

if (j = n+1l) and (ra & SD) then
begin

SD := SD U {ra};
if (hao € BF U DF) then
begin
DF := DF U {ha};
A := A U {ha}
end
else increment ref (ho)
end
else if (j = i) then Gen case(r, o, i, j+1, A)
else begin
list facts := find_all_facts(ajod;
while (list_facts # ()) do

begin
Remove (list facts, f');
o := mgu(f’, a;a);

if (o # fail)
then Gen case(r, oo, i, j+1, A)
end
end
end.



f1:

Implementation

e Predicate: list of rules where it appears in

the body

e Fact: (its predicate, array of args, ref count,

list of deductions to which it contributes)

e Deduction: (array of facts contributing to it,

the implied fact)

e Hash code to ensure unicity of representation

d1: g
d2: a
d3;

awlil]  relawlil] alaglil]  talawl2]]
P g B e 4 I P e




Performance Evaluation

e Detection Rules:

Y
S
D
0

Ezxploitation

Setuid program writes another setuid

Programs writing to executable files

Ipr overwrites a file outside of /var/spool

Execution of known attack programs (crack, cops, etc)
Creation of setuid programs

Creation of a device file using mknod()

Writing non owned files

Execution of a suspicious setuid program

HEOONOCOPPWNH

= O

Illegal read access to /dev/kmem or /dev/mem
Linking an at job to root mail box
Copying a shell in root mail box when empty

e Audit Trail Description:

ZUsers | #Grps | #Rec #SRec | Size Time Rate
Mb hh:mm:ss
128 23 173,828 | 5,641 145 MB | 25:35:42 | 1.89




Performance Evaluation

(continued)

e Fact Base Initialization:

#Facts | #Deds | Size | IFB UFB | UPR
Kb sec sec msec
5084 5721 568 | 26.52 | 62 0.36
e Audit Trail Analysis:
type usr Sys total | #RPS
S€eC S€eC S€eC
Integrated 458.47 95.63 554.10 | 313.71
Not Integrated | 4062.70 | 106.70 | 4169.10 41.00




Conclusions and Future Works

Conclusions:

e Integrating Intrusion Detection with Config-
uration Analysis achieves:

— A continuous assessment of the configu-
ration.

— A dynamically adaptive IDS wrt the con-
figuration

e Computationally feasible

Future Works:

e Further extend current deductive rules

e Further tuning of the system



ASAX package, and papers available at:

http://www.info.fundp.ac.be/ cri/D0OCS/asax.html



