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Abstract

The GSS-API [20, 21] offers security services indepen-
dent of underlying mechanisms. A possible GSS-mechanism
is the Simple Public Key Mechanism (SPKM) specified in
[1]. In this paper we will focus on the credential manage-
ment for SPKM. If more than one connection is needed, the
standard credential management requires either to cache
the secret keys in insecure storage or to make the user en-
tering a password to access the long term secret keys for
every new GSS-connection. For environments in which nei-
ther one is acceptable we propose a Secure Single Login
(SSLogin) variant which works with temporary asymmetric
keys and combines security and user comfort.

1 Introduction

The GSS-API [20, 21] ”offers security services to callers
in a generic fashion, supportable with a range of underlying
mechanisms and technologies and hence allowing source-
level portabiltiy of applications to different environments”.
Possible GSS mechanisms are e.g. the well known Kerberos
V5 [18, 22] based on symmetric cryptography, the Simple
Public Key Mechanism [1] or SECUDE [7, 9]. The latter
may be viewed as an SPKM variant tailormade for the SAP
R/3 TM environment.

To set up a secure (i.e.authentic, integer, confidential
and non-repudiable) communication the initiator (client)
and the target (server) have to establish aGSS-context,
like discussed in section 2 more detailed. Note, that non-
repudiation requires the application of digital signatures, i.e.
public key algorithms. During context establishment the
communication partners verify the peer’s identity and au-
thorization and agree on a common session key, which can
be used for confidentiality and integrity purposes during the
actual communication. To proof the identity one has to ac-
quirecredentials. In Kerberos these credentials are so called

tickets with limited lifetime. In public-key based mecha-
nisms like SPKM, which is discussed in section 3 more de-
tailed, and SECUDE the credentials are the secret keys and
certificates for the public keys. The secret keys are stored in
a personal security environment(PSE), which is ’opened’,
i.e. made accessible, by entering a password. In practice
the PSE usually is a smartcard or a PKCS#5 (see [31]) en-
crypted file. This credentials have to be available whenever
a new GSS-connection is requested, i.e. a GSS-context is
to be established. This means, that either the PSE has to be
open for a long time or the user has to enter the password
everytime a new connection is set up. If this no problem,
this is the most obvious way to provide access to the secret
keys and, while not specified in [1], X.509 v3 / PKIX certifi-
cation for the related public keys, which is briefly discussed
in section 4.

However if keeping the PSE open for a long time bears se-
curity problems or multiple entering of the password is not
possible for usability reasons the proposed SSLogin variant,
as discussed in section 5, is preferable. To implement this
SSLogin we need to specify a slightly different credential
management (see section 6), which allows the end user to
certify its owntemporary keys. In section 7 we will com-
pare the discussed variants in terms of security, usabilty and
performance.

2 GSS-API Context Establishment

In this section we will briefly recall the relevant topics of
the GSS-API. Thus we focus on the calls and tokens for
context establishment and credential management, rather
than per-message-, and support calls. For a comprehensive
treatment we refer to [20, 21, 34].

Like mentioned in the introduction the communication part-
ners have to aquire credentials, before they establish a GSS-
context. This is done by calling
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GSS Acquire cred
In:

(
desiredname INTERNAL NAME
lifetime req INTEGER
desiredmechs SET OF OBJECT

IDENTIFIER
� � �

)
Out:

(
outputcred handle CREDENTIAL HANDLE
� � �

)

In our case, i.e. the client wants to establish an SPKM-
GSS-context,desirednameis the clients (user-) name, the
lifetime req is in seconds , e.g. 86400 for one day andde-
sired mechsis f1 3 6 1 5 5 1variantg, wherevariant
equals 1 (for SPKM with random numbers) or 2 (for SPKM
with secure timestamps), like specified in [1].

BesidesGSS Acquire cred there are functions to destroy
the credentials after use (GSS Release cred), construct
credentials incrementally (GSS Add cred) and gather in-
formation about credentials
(GSS Inquire cred, GSS Inquire cred by mech).

As soon as the credential is available the client may call

GSS Init sec context
In:

(
claimantcred handle CREDENTIAL HANDLE
input contexthandle CONTEXT HANDLE
targ name INTERNAL NAME
mechtype OBJECT IDENTIFIER
mutual req flag BOOLEAN
lifetime req INTEGER
input token OCTET STRING
� � �

)
Out:

(
major status INTEGER
outputcontexthandle CONTEXT HANDLE
output token OCTET STRING
mutualstate BOOLEAN
lifetime rec INTEGER
� � �

)

Hereclaimantcred handle is the handle to the credential
obtained byGSS Acquire cred. Since we are just at the

beginning of context establishment, there is no context and
thus input contexthandleis NULL. The targ nameis the
name of the server to connect to and themechtype is like
above. If mutual authentication is required, which is rec-
ommended, themutual req flag is TRUE. Finally the de-
sired context lifetime, i.e.lifetime reqand theinput tokenis
handed over. Since there is no preceeding tokeninput token
is NULL.

The output of this call consists of themajor status, a han-
dle to the context to be established, theoutput token to
be passed to the server, themutualstateflag and thelife-
time rec, which indicates the ’time to live’ in seconds. Since
we requested mutual authentication themutualstate-flag is
set and themajor statusis GSSS CONTINUE NEEDED.
The client knows, that theoutput tokenhas to be passed to
the server.

Note, that the presented interface description is not at all
complete. We confine ourselves to a rather small subset
which is needed to explain how a typical mutual authen-
tication works.

After the server also got his credential by calling
GSS Acquire cred he can use this handle, NULL asin-
put contexthandleand the received token to call

GSS Accept sec context
In:

(
acceptorcred handle CREDENTIAL HANDLE
input contexthandle CONTEXT HANDLE
input token OCTET STRING
� � �

)
Out:

(
major status INTEGER
src name INTERNAL NAME
outputcontexthandle CONTEXT HANDLE
mutualstate BOOLEAN
lifetime rec INTEGER
output token OCTET STRING
� � �

)

Since themutualstate-flag is set, theoutput token has
to be passed back to the client. For the server how-
ever the contex establishment is finished, becausema-
jor status is GSSS COMPLETE. The client again calls
GSS Init sec context with the received token. Now the
major statusis GSSS COMPLETE. The context establish-
ment is finished, both peers access the parameters and keys
of the negotiated security context via theircontexthandle.
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If something went wrong during this context establishment,
if the ’time to live’ is up or the context will not be needed
anymore it may be deleted withGSS Delete sec context.

3 Simple Public Key Mechanism

In this section we will briefly recall the most basic facts
about SPKM. Like in the previous section we will focus on
the context establishment rather than the per-message calls.
The credential management will be discussed in section 4.
For a comprehensive treatment we refer to [1].

SPKM permits the negotiation of the algorithms to be used
for integrity (I-algs) and confidentiality (C-algs) purposes,
oneway functions for subkey derivation (O-algs) and (K-
algs) for key establishment. Note, that the initial negoti-
ation in SPKM might be enhanced by concepts presented
in [3]. The I-algmd5WithRSAEncryption and the K-alg
RSAEncryption defined in [29] are specifiedmandatory,
while other algorithms arerecommendedor optional. In
SPKM there are two different variants specified. SPKM-1
uses random numbers for replay detection during authenti-
cation and SPKM-2 requests the presence of secure times-
tamps. Since these secure timestamps might not be avail-
able in some environments and mutual authentication is rec-
ommended, we briefly recall the well known Three-Way-
Authentication specified in [13] or [11] section 10.4.

The initiator (client) wants to authenticate to the target
(server) and vice versa. The clientC and the serverS
are in possesion of their own credentials, i.e. the se-
cret keys for encryptionSeC /SeS and signaturesSsC /SsS
and the corresponding certificatesCertPeC ; CertPsC and
CertPeS ; CertPsS containing the respective public keys.
The credential management is discussed in the following
sections more detailed. For authentication we need an
encryption-Cip = ENC(M;Pe) and decryption algo-
rithm M = DEC(Cip; Se), e.g. RSAEncryption and
a signature-Sig = SIG(h(M); Ss) and verification al-
gorithmh(M) = V ER(Sig; Ps), like md5WithRSAEn-
cryption. FurthermoreRC andRS are random numbers
generated by the client and server respectively. The symbol
j denotes concatenation, e.g.RC jS is the clients random
number concatenated with the servers identity. The authen-
tication procedure typically works like this:

(1) C generatesRC , M = RC jSjC and signs
F = SIG(h(M); SsC)

(2) C ! S : M;F;CertPeC ; CertPsC
(3) S verifiesCertPeC ; CertPsC , checks if the

identitiesS andC are ok
and verifiesh(M) = V ER(F; PsC)

(4) S generatesRS , a random session-keyKCS ,
N = CjRS jRC jKCS and
computesG = ENC(N;PeC)

andH = SIG(h(N); SsS)

(5) S ! C : G;H;CertPeS ; CertPsS
(6) C verifiesCertPeS ; CertPsS ,decryptsG,

checksC andRC , stores the session
keyKCS, verifies the signatureH and
computesI = ENC(RS ; P eS)

(7) C ! S : I

(8) S finally decryptsR0

S = DEC(I; SeS)

and checks, whetherRS = R0

S

Note, that if the client knows the certificate for the server’s
encryption keyCertPeS prior to (1), he can instead of send-
ing the plain messageM in (2) sendE = ENC(M;PeS)

for even more security. Of course the server has to decrypt
E in (3), i.e.M 0 = RC jS = DEC(E; SeS). Furthermore
[1] covers the possibility that the initiator remains anony-
mous. In this case, the client does not send his identity C
in step (1) and the tokens are MACed instead of signed. As
before, the content of the exchanged tokens presented here
is not complete. For a comprehensive treatment we refer to
[1].

4 Standard Credential Management - X.509

In this section we will focus on the credential manage-
ment for SPKM. In [1] there is not very much said about
this problem.

”The key management employed in SPKM is in-
tended to be as compatible as possible with both
X.509 [11] and PEM [15], since these represent
large communities of interest and show relative
maturity in standards.”

In this section we will treat this topic with more scrutiny.
Before we will discuss the public key management more
detailed, we will briefly recall how the secret keys are han-
dled.

Since thesecret signature keyrepresents theowners iden-
tity for a long time, possibly many years, it has to be pro-
tected very carefully. This secret key is stored right after
key generation in a secure environment (PSE), usually on a
tamperproof smartcard. Ideally the key generation itself is
performed inside the card, which is not possible with every
card, because key generation, especially for RSA keys, is a
very time consuming operation. If no chipcard is available
to house the secret key it may be symmetrically encrypted
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with a key derived from the entered password, like specified
in PKCS#5 [31]. In any case the secret keys and other sensi-
tive information like the trusted public root key and in some
cases the latest Certificate Revocation List, or its hash-value
should only be accessible after entering the password. The
time available for this access, before the PSE will be closed
again, should be as short as possible, that no attacker will
have the opportunity to obtain the secret key easier than in-
verting the oneway function. If, for usability reasons, it is
not possible to make the user entering the password every-
time the secret key is needed to establish a new GSS-context
we propose to use the SSLogin mechanism discussed in sec-
tion 5.

Before the keys can be used the public key has to be cer-
tified, by a trusted Certification Authority (CA). The cer-
tification request may be proceeded using PKCS#10 [32].
A certification request consists of the user’s distinguished
name, the public key, and optionally a set of attributes, col-
lectively signed with the corresponding secret key. This cer-
tification request is sent to a CA, which verifies the signa-
ture and transforms the request into an X.509 public key cer-
tificate which is handed back to the user and may be stored
in a public X.500 Directory. This Directory contains cer-
tificates and certificate revocation lists (CRL) and may for
example be accessed via the Lightweight Directory Access
Protocol (LDAP) [35].

The certificate format X.509 v1 [11] and the related pub-
lic key infrastructures [15] showed out to be deficient and
too restrictive for broad application. Especially the rigid hi-
erarchical model with Internet Policy Registration Author-
ity (IPRA), Policy Certification Authorities (PCA) and CAs
and the name subordination rule proposed in RFC1422, as
well as the missing possibility to extend the certificates by
application specific information turned out to be unsuit-
able for a lot of environments. Therefore ISO/IEC defined
the X.509 v3 format [12], which overcomes this problems
by providingcertificate extensionsto the X.509 v1 format.
Note, that the v2 format equals the v1 format extended
by some specifications to make the Directory access eas-
ier. The extensions relating tocertificate policiesobviate
the need for PCAs and theconstraint extensionsmake the
name subordination rule unnecessary. An extension field
consists of an extension identifier, a criticality flag and a
DER-encoding of a data value of an ASN.1 type associated
with the identified extension. Some extensions specified in
[12] have to benon-critical. In all other cases, e.g. the
five discussed below, the criticality isat the option of the
certificate issuer. In X.509v3 no certificate extensions are
forced to be critical. ”If an extension is flagged critical and
a certificate-using system does not recognize the extension
field type or does not implement the semantics of the exten-

sion, then that system shall consider the certificate invalid.”
[12]

Since X.509 v3 is designed to achieve maximum flexibility,
it was necessary to complement [12] with a more concrete
profile tailormade for internet application [8]. We will see,
that this PKIX profile, which is still in draft status,almost
fits our needs. Because a comprehensive treatment would
be beyond the scope of this work, we will only present the
extensions in [8] which are affected by our proposal.

� Subject Alternative Name
This extension provides the possibility to associate ad-
ditional identities with thesubjectreferenced in the
subject distinguished name. If this extension is present
and the subject distinguished name is empty this ex-
tension should be critical. Possible name types are

– rfc822Name (email adress)

– dNSName

– X400Address

– directoryName

– ediPartyName

– uniformResourceIdentifier
or any

– otherName

� Issuer Alternative Name
This extension allows to associate additional identities
with the issuerof a certificate. The designated name
types and the criticality flags are like above.

� Basic constraints
The basic constraints extension allows to distinguish
between an end user- and a CA-certificate. There is
a boolean flag ’cA’ which is set to FALSE by default.
If this cA-flag is FALSE, the certificate belongs to an
end user. Since this extension is recommended to be
critical an end user cannot act as a CA without notice.
If an end user, i.e. cA=FALSE, signs a certificate it
will not be valid. Optional the length of the verification
path may be limited to ’pathLenConstraint’.

� Key usage
This extension allows to restrict the usage of the key
contained in the certificate and is recommended to be
critical. The information is represented in a BitString,
where the bits are as follows:

(0) digitalSignature
(1) nonRepudiation
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(2) keyEncipherment
(3) dataEncipherment
(4) keyAgreement
(5) keyCertSign
(6) cRLSign
(7) encipherOnly
(8) decipherOnly

If only one user key pair is available, (0) through (4)
are set, while the CA’s certificate has (5) and (6) set. If
the user has more than one key pair, (0) and (1) is set
for the signature key and the bits (2) through (4) are
set for the encryption key. If (4) is set, it is possible
to restrict the usage of the key to enciphering (7) or
deciphering (8). In any case a user key wouldnever
have (5) or (6) set. Thus it is impossible for a user to
act as a CA without notice.

� Extended key usage
Here it is possible to restrict the key usage even fur-
ther by explicitly specifyingKey Purposes. This ex-
tensions may be used in addition to or in place of the
basic purposes indicated in theKey usageextension
field. This extension field was not present in the X.509
recommendations [12] and the PKIX profile [8] until
recently. Experiences in deploying the base standard
showed, that there are situations, in which it is nec-
essary to specify the key usage somewhat more con-
crete. In the next section we will see, that the conflicts
between our proposed credential management (in an
earlier version of this paper) and the base X.509 stan-
dard may now be elegantly resolved by introducing a
tailormadeExtended key usagefield.

Thename extensionsare thought to improve the name map-
ping for different environments, like Email, X.400 mail or
EDI for example.

The basic constraintsextension is very important, since
it enables the distinction between end user- and CA-
certificates. It obviates the need for the name subordination
rule in X.509 v1. Therefore it has to be critical, i.e. the
certificate verification will fail, if this extension is not rec-
ognized or if the certificate is certified (signed) by an end
user. While the conservative evaluation of this extension is
very important and totally sensible in general, we need to
evaluate this extensiona little more relaxedto implement
our proposed SSLogin, like discussed in the next sections.

5 Secure Single Login

In SPKM the secret keys have to be available for every
context establishment, like pointed out in section 3 and 4.
Since a client usually requests multiple GSS-connections to

different servers at different times, the PSE has to be kept
open for a long time or the user has to enter the PIN for ev-
ery new connection. To overcome this problem we propose
to use the SSLogin variant, which combines security and
user comfort. It works withtemporary asymmetric keysin-
stead of the more valuable long term keys. The philosophy
of SSLogin is equal to Kerberos’ [18], where we use tem-
porary keys (tickets) with limited lifetime to authenticate. If
an attacker manages to access the memory or the harddrive
he will only get the temporary secret keys instead of the
valuable long term keys. If this disclosure is recognized the
temporary certificate may be revoked. Note, that the Dis-
tributed Authentication Security Service (DASS) [14] also
proposes the use of ”self-certificates”. However the main
purpose of self-certification there is to implement a ”smooth
key rollover”, if the keys have to be changed.

We propose the following operations for Secure Single Lo-
gin:

1. Entering the PIN andopening the PSEto access the
long term secret keys

2. Generation of temporary key(s)

3. Self-Certificationof the temporary public key(s) with
the long term signature key

4. Closing the PSE

Note, that in some environments a further benefit of SSLo-
gin might be that it only requires a certifiedsignaturekey.
However, if two key pairs are available, the security can be
further enhanced:
The first GSS-context could be established as usual with the
long term keys and the temporary secret key(s) generated in
2. could be PKCS#5 encrypted with the symmetric session
key negotiated in the first context establishment. In this case
we have to set up a handle to this special context and take
care, if this context is to be deleted.

Furthermore it is possible to parallelize this two steps. I.e.
the temporary key(s) may be generated, while one is wait-
ing for the peer’s response.

If we use temporary RSA-keys we only have to generate
one key pair which can be used for signatures and encryp-
tion. However it is well known, that the generation of
an RSA key pair is a rather time consuming task. Two
large (strong) primesp andq have to be found. The pub-
lic modulusn = pq and the public exponente has to be
computed by inverting the random secret keyd modulo
'(n) = (p � 1)(q � 1). The bottleneck in this proce-
dure is to find the two primes. Since it is not possible to
use multiple pairs(e1; d1), ... (ei; di) with the same mod-
ulus n, because of the common modulus attack [33, 5],
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we have to perform the tedious search for good primes ev-
erytime we generate a temporary key pair. Therefore we
recommend to usediscrete logarithm based systems, like
e.g. ElGamal-encryption [6] and DSA-signatures [25] for
SSLogin-SPKM. In this case we only have to search for a
suitable prime once. The actual key generation for a tem-
porary key, which is typically performed every day, consists
of a simple exponentiation of the generating elementg with
the random secret key. That is why we propose to extend the
list of recommendedalgorithms in [1] by the two following
algorithms defined in [27]

1. elGamal ALGORITHM
PARAMETER NULL ::= f1 3 14 7 2 1g

2. dsaWithSHA1 ALGORITHM
PARAMETER DSAParameters ::=f 1 3 14 7 3 27g

Note, that a valid alternative might be the application of the
DSA-variant proposed by Nyberg and R¨uppel [26], which
features message-recovery. The most time consuming part
in these algorithms is the modular exponentiation. There-
fore the time required for context establishment may be sig-
nificantly reduced by applying someprecomputation vari-
ant, like [4, 19] for exponentiation of the generating element
g. Note, that these precomputation variants arenot applica-
ble to RSA-type cryptosystems.

Since there is no known weakness in using the same primep

for ElGamal encryption and DSA signatures, we may save
some time and memory by doing so. In this case only the
parametersge for ElGamal encryption andgs for DSA sig-
natures are different, becausege usually is of orderp � 1,
while the order ofgs is q, a 160 bit prime factor ofp � 1.
Also, one might think of using the analogous algorithms
based onelliptic curves, like proposed in [24, 17] and cur-
rently standardized in [10].

Note, that theself - certification in step 3. violates the
PKIX-profile [8], because an end user is not allowed to
sign certificates. In the proposed SSLogin-SPKM however
it is essential, that this self-certification is allowed. It would
take too long for a user to contact a trusted certification au-
thority to get the temporary public key(s) certified. Since
the conservative evaluation of the basic constraints and the
key-usage extension is not necessary in this context, we can
change the proposed SPKM-profile accordingly, like dis-
cussed in the next section.

6 Credential Management for SPKM

In section 4 we briefly discussed the standard creden-
tial management, i.e. the secret key handling, the X.509 v3
certificates [12] and the more concrete PKIX profile [8] for

internet application. In this section we will give concrete
recommendations for the credential management to be ap-
plied in SPKM. We propose to use the PKIX profile with the
following incremental changes to allow the self-certification
of the temporary public key(s).

We define two new key purposes for theExtended key usage
field:

� id-kp-SignTempCert
OBJECT IDENTIFIER ::=fid-kp 1g
If this key purpose is present it is allowed to sign a
certificate for a temporary key, even if the cA-flag in
theBasic constraints extension is set to FALSE.
TheKey usage bit (0) ’digitalSignature’ has to be set
and (1) ’nonRepudiation’ may be set.

� id-kp-Temporary
OBJECT IDENTIFIER ::=fid-kp 2g
This key purpose indicates, that it is a temporary
key and that the next certificate in the verification
chain may be a user certificate in whichid-kp-
SignTempCert has to be present.

Since the proposed SSLogin mechanism is tailormade for
SPKM we recommend to subordinate these two object iden-
tifiers to SPKM. Thusid-kp OBJECT IDENTIFIER::=
fid-spkm 3g and id-spkm OBJECT IDENTIFIER::=f1 3
6 1 5 5 1g.

To implement the proposed SSLogin we will allow a
slightly more relaxed certificate verification for this tempo-
rary certificates, like discussed in the sequel.

We will assume, that a user already got X.509 v3 / PKIX
certified public keys. We will only need the signature key,
where ’id-kp-SignTempCert’ is present. The relevant fields
of a certificate containing the users public signature key
PsU informally look like this:

User-Certificate-CertPsU :

� issuer=CA

� validity=

– U-notBefore

– U-notAfter

� subject=User

� subjectAltName=UserAlt

� issuerAltName=CAAlt

� Key usage
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– critical=TRUE

– digitalSignature=TRUE

– nonRepudiation=TRUE

– all others=FALSE

� Extended key usage

– critical=FALSE

– id-kp-SignTempCert

� Basic constraints

– critical=TRUE

– cA=FALSE

This certificate is issued by a trusted CA. I.e. it is signed
with the CA’s private key. In the certificate for the corre-
sponding CA-public key, theKey Usage indicates ’keyC-
ertSign’ and ’cRLSign’. The cA-Flag in theBasic con-
straints extension is TRUE.

Now the User will be allowed to generate and self-certify
temporary public keys, like proposed in section 5 2. and
3. respectively. Note, that theExtended key usage ex-
tension above is flagged non-critical, because the long term
signature key may be used for other purposes as well. Thus
the presence of ’id-kp-SignTempCert’ only has informative
character. The certificate for the temporary public signature
key will (informally) look like this:

Temporary-User-Signature-Certificate-CertPsTU :

� issuer=User

� validity=

– T-notBefore

– T-notAfter

� subject=User

� subjectAltName=UserAlt

� issuerAltName=UserAlt

� Key usage

– critical=TRUE

– digitalSignature=TRUE

– all others=FALSE

� Extended key usage

– critical=TRUE

– id-kp-Temporary

� Basic constraints

– critical=TRUE

– cA=FALSE

The certificate for the temporary public encryption key
looks similar, except for theKey usage extension:

Temporary-User-Encryption-Certificate-CertPeTU :

� � � �

� Key usage

– critical=TRUE

– keyEncipherment=TRUE

– keyAgreement=TRUE

– all others=FALSE

Clearly, a certificate verification procedure conform to the
PKIX profile will reject this temporary certificate, because
it is certified (signed) with an end user signature key. The
(long term) user certificateCertPsU has not set the ’keyC-
ertSign’ bit and the ’cA’ flag in theBasic constraints ex-
tension is FALSE. Therefore we propose a somewhat re-
laxed certificate verification. A certificate will be valid, if

� all certificates in the verification chain are PKIX con-
form
or if

� all of the following requirements are fulfilled:

1. The first (temporary) certificate has the following
properties:

1.1 issuer=subject,

1.2 issuerAltName=subjectAltName,

1.3 validity.T-notBefore> validity.U-notBefore,

1.4 validity.T-notAfter< validity.U-notAfter,

1.5 theKey Usage extension is critical,

1.6 nonRepudiation=FALSE,

1.7 keyCertSign=FALSE,

1.8 cRLSign=FALSE,

1.9 theExtended Key Usage extension is critical,

1.10 ’id-kp-Temporary’ is present

1.11 theBasic constraints extension is critical,

1.12 cA=FALSE,

2. all other certificates in the certification chain are PKIX
conform,
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3. and the second (User’s long term) Certificate has the
following properties:

3.1 theKey Usage extension is critical

3.2 digitalSignature=TRUE

3.3 ’id-kp-SignTempKey’ is present

It is obvious, that this requirements restrict the presented
temporary certificate conceptto the first certificate in the
verification chain. Since theBasic constraints andKey
Usage extension is set appropriate, it will not be possible
to act as CA, by malicously presenting the temporary certifi-
cate to an ordinary (PKIX conform) verification procedure.
Furthermore the validity period of the temporary certificate
is smaller than the validity period of the long term user cer-
tificate and it is not possible to issue such temporary cer-
tificates for other subjects. Typically the validity-period of
the temporary certificate will not exceed one day. The last
requirement makes sure, that only the long termsignature
key can be used to produce temporary certificates and that
this self-certification is allowed at all. Note, that other ex-
tensions, likePolicy constraints are not affected by these
changes, because we self-certify only user keys.

7 Security - Usability - Efficiency

In this section we will briefly recall the different vari-
ants for the SPKM credential management, compare them
in terms of Security, Usability, Time-Efficiency and
Space-Efficiency and give more concrete recommenda-
tions for implementation. To compare the time efficiency,
we group the operations to be performed inOnce, Every
GSS-sessionandEvery GSS-context establishmentand es-
timate the workload in terms of modular (1024 bit) multi-
plications. To compare the space efficiency we estimate the
number of bytes, which have to be stored permanently in
Secure Storage, i.e. inside the PSE andInsecure Storage,
i.e. on the harddisk. We may assume, that a user already
got certified long term (1024 bit) RSA key pairs for signa-
tures and encryption and that the SPKM - credential man-
agement like presented in the previous section is applied to
all variants. We will only focus on additional time and space
requirements. I.e. we neither consider the time needed
to generate the long term keys, nor the space required to
store them in the PSE. Since we neglect some operations,
e.g. computing hash values, generation of random numbers
etc. and have to ’convert’ the time for some operations to
our ’unit’ (1024 bit modular multiplication), this estimates
are very rough in nature. We may assume, that the se-
cret RSA keys are stored in the CRTRSAPrivateKey-format
[28, 29], i.e.p; q; dp = dmod p� 1; dq = dmod q � 1 and
invq = q�1mod p to speed up the decryption and signature

operation by application of the Chinese Remainder Theo-
rem. In this case the decryption of the ciphertextC works
like this:

Mq = C
dq mod q

Mp = C
dp mod p

Mp = Mp �Mqmod p

M = (Mp � invqmod p) q +Mq

We use anm bit window method (see e.g. [16]) for ex-
ponentiation, wherel is the bitlength of the exponent. On
average we will need about

2
m�1

+
2m � 1

2m
dl=me+ l (1)

modular multiplications. Thus we may optimally choose
m = 5 for bitlength up to 512 andm = 6 for bitlenght 768
and 1024. Therefore we need about2 � 628 + 2 = 1258

modular (512 bit) multiplications for one 1024 bit RSA sig-
nature using the CRT. If we assume, that the complexity of
the implemented multiplication algorithm is quadratic this
equals about315 modular (1024 bit) multiplications. If we
use the Fermat numberF4 = 216 + 1 as public exponent
e, we can perform the encryption and signature verification
with only 17 modular (1024 bit) multiplications. If we use
a randome we would need about 1224 modular (1024 bit)
multiplications. We assume, that the length of every (long
term) certification path is one.

1. Single Login
This variant is the most obvious way for handling
SPKM credentials. The user opens the PSE by enter-
ing the PIN. The PSE is kept open and the secret keys
are accessible, until the user logs out.

1.1 Security
Since the (long term) secret keys are exposed for
a long time, we may classify the securitylow.

1.2 Usability
Since the user only has to enter the PIN once, the
usability isgood.

1.3 Time-Efficiency

1.3.1 Once
/

1.3.2 Every GSS-session
/

1.3.3 Every GSS-context establishment
We use the Three-Way authentication pre-
sented in section 3. Client and server have
to perform one signature, one verification,
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one encryption and one decryption. If the
certification path has length one, we have in
total two RSA-decryptions and four RSA-
encryptions. Thus we need about2 � 315 +
4 � 17 = 698multiplications (usinge = F4)
or about2 � 315 + 4 � 1224 = 5526modular
(1024 bit) multiplications in general.

1.4 Space-Efficiency

1.4.1 Secure Storage
/

1.4.2 Insecure Storage
/

2. Multiple Login
This variant is very similar to theSingle Loginvariant.
The difference is, that we close the PSE after every
context establishment. Therefore the user has to enter
the PIN forevery new contextto be established.

2.1 Security
Since the PSE with the (long term) secret keys is
closed almost always, the security ishigh.

2.2 Usability
Since the user has to enter the PIN foreverycon-
text to be established, the usability isbad.

2.3 Time-Efficiency

2.3.1 Once
/

2.3.2 Every GSS-session
/

2.3.3 Every GSS-context establishment
Like in 1.3.3 we need about698 modular
(1024 bit) multiplications, if we usee = F4

and about5526modular (1024 bit) multipli-
cations in general.

2.4 Space-Efficiency

2.4.1 Secure Storage
/

2.4.2 Insecure Storage
/

3. Secure Single Login - RSA
This variant uses the SSLogin mechanism discussed
in section 5, where the temporary key pair is an RSA
key-pair used for signaturesandencryption.

3.1 Security
Since the (long term) secret keys are only ex-
posed until the temporary certificate is signed,
the security ishigh.

3.2 Usability
The user only has to enter the PIN once. There-
fore the usability may be classifiedgood.

3.3 Time-Efficiency

3.3.1 Once
/

3.3.2 Every GSS-session
We have to generate a temporary RSA-key
pair at the time of Login. Since it has a
limited lifetime, we consider 768 bit keys to
be more than sufficient. A crude estimate
for the key generation (in terms of 1024 bit
modular multiplications) is about 108000.
Note, that this estimate is based on practi-
cal measurements with SECUDE [7], rather
than theoretical considerations. Since SE-
CUDE takes a very conservative approach in
prime generation, this value might be con-
siderable smaller in other implementations.
E.g. SECUDE uses 15 bases for the Miller-
Rabin pseudo primality test and trial divi-
sion with the first 1000 primes. Neglecting
the trial division this corresponds to a prob-
ability < 2�121, thatp andq are composite
384 bit numbers instead of primes (see [23],
page 147). Finally we need another 315
multiplications to sign the certificate con-
taining the temporary public key. Thus we
need about108315modular (1024 bit) mul-
tiplications in total.

3.3.3 Every GSS-context establishment
We have to perform two (768 bit)
RSA-encryptions and two (768 bit) RSA-
decryptions. We need about2�475+2 = 952

modular (384 bit) multiplications for one de-
cryption using the CRT and17 respectively
926 modular (768 bit) multiplications for
one encryption. The length of the verifica-
tion path now is two (for only one certifi-
cate). Therefore we need2 � 17 = 34 (us-
ing e = F4) or 2 � 1224 = 2448 modular
(1024 bit) multiplications to verifiy the peers
certificate. Thus, if we assume quadratic
complexity for multiplication we need to-
tally about2 � 952 � (384=1024)2 + 2 � 17 �
(768=1024)2+34 � 321modular (1024 bit)
multiplications (usinge = F4) or 2 � 952 �
(384=1024)2+2�926�(768=1024)2+2448 �
3758modular (1024 bit) multiplications in
general.

3.4 Space-Efficiency

3.4.1 Secure Storage
/

3.4.2 Insecure Storage
To store the secret (768 bit) key in CRT-
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format, we need about5 �384=8 = 240 byte.
Furthermore we have to store the temporary
certificate, which may be conservatively es-
timated with 500 bytes. Thus in total we
need to store about740 more bytes e.g. on
the harddrive.

4. Secure Single Login - DL based (without Precomputa-
tion)
This variant also uses the SSLogin mechanism dis-
cussed in section 5, where the temporary key pairs
are ElGamal for encryption and DSA for signatures.
All exponentiations are performed using the (ordinary)
window method [16] with a suitable window size de-
pending on the bitlength of the exponent.

4.1 Security
Since the (long term) secret keys are only ex-
posed until the temporary certificates are signed,
the security ishigh.

4.2 Usability
Since the user only has to enter the PIN once, the
usability may be classifiedgood.

4.3 Time-Efficiency

4.3.1 Once
We have to generate a 768 bit primep, and
the parametersq, gs andge. This is possible
in the time needed to perform about116000
modular (1024 bit) multiplications. Like
in 3.3.2 this estimate is based on measure-
ments with SECUDE and might be some-
what smaller in other implementations.

4.3.2 Every GSS-session
We have to generate a temporary ElGamal
and DSA key pair at the time of Login. This
may be performed by a simple exponentia-
tion for each keypair. According to (1) this
can be done with 926 modular (768 bit) mul-
tiplications for the ElGamal key pair (win-
dow widthm = 6) and 207 modular (768
bit) multiplications with the 5-bit window
method for the DSA key pair. Note, that for
DSA the private keyxs and the public key
ys = gxss are 160 bit numbers. Here we
have to sign two certificates, i.e. we need
about2 � 315 = 630 modular (1024 bit)
multiplications. Assuming quadratic com-
plexity for multiplication this equals about
(768=1024)2 � (926 + 207) + 630 � 1267
modular (1024 bit) multiplications in total.

4.3.3 Every GSS-context establishment
An ElGamal encryption is essentially two

exponentiations and a decryption is essen-
tially another exponentiation. For each ex-
ponentiation we need about 926 (768 bit)
multiplications. A DSA signature may be
performed with about207 + 20 = 227

(768 bit) multiplications. Note, that we con-
servatively estimated the time to compute
s = (k�1(h(m) + xr))mod q with 20 (768
bit) multiplications. A signature verification
needs about2 � 207 + 20 = 434 modular
(768 bit) multiplications. For the verifica-
tion of the two (peer-) certificates we need
4 � 17 = 68 (1024 bit) multiplications using
e = F4 and about4 � 1224 = 4896 modular
(1024 bit) multiplications. Thus in total we
need about(768=1024)2 � (3 � 926 + 227 +

434)+68 � 2408(1024 bit) multiplications
usinge = F4 or (768=1024)2 � (3 � 926 +
227 + 434) + 4896 � 7236modular (1024
bit) multiplications in general.

4.4 Space-Efficiency

4.4.1 Secure Storage
We store the global DL parameters on the
harddrive and compute a hash-value of this
parameters. Before we use them, we check
whether this parameters stored in insecure
memory are still OK. Therefore we only
need to store the hash-value (e.g.20 bytes
with SHA-1 or RIPEMD-160) in the secure
environment.

4.4.2 Insecure Storage
Here we have to storep; q; ge; gs perma-
nently. This will take about(768 + 160 +

768 + 768)=8 = 308 bytes. Furthermore
we have to store the secret exponentsxe; xs

needing about(768 + 160)=8 = 116 bytes
and the two (own) temporary certificates
with about500 + 424 = 924 bytes. Note,
that a DSA certificate is smaller, than an El-
Gamal certificate. All in all we have to store
about308+ 116+ 924 = 1348bytes on the
harddrive.

5. Secure Single Login - DL based (with Precomputation)
This variant also uses the SSLogin mechanism dis-
cussed in section 5, where the temporary key pairs are
ElGamal for encryption and DSA for signatures. The
difference to variant 4 is, that we perform the exponen-
tiations ofge andgs using the BGMW precomputation
variant proposed in [4]. The average number of multi-
plications using this exponentiation technique is

2m � 1

2m
dl=me+ 2m � 3; (2)
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wherem is the window width andl is the bitlength of
the exponent. We have to precomputate and store

g
im
; 0 � i � dl=me � 1; (3)

whereg = ge for ElGamal org = gs for DSA re-
spectively. For all other exponentiations the ordinary
window method [16] is used.

5.1 Security
Since the (long term) secret keys are only ex-
posed until the temporary certificates are signed,
the security ishigh.

5.2 Usability
Since the user only has to enter the PIN once, the
usability may be classifiedgood.

5.3 Time-Efficiency

5.3.1 Once
The time to generate the global DL pa-
rameters is of course equal to 4.3.1 . We
need about 116000 modular (1024 bit) mul-
tiplications. Furthermore we have to pre-
computate and store the powers ofge and
gs (see (3) ). According to (2) we opti-
mally chooseme = 5 for the 768 bit El-
Gamal exponentiations andms = 4 for
the 160 bit DSA exponentiations. Therefore
(according to (3) ) we need156 squarings
for the DSA-precomputation and763 mod-
ular (768 bit) squarings for the ElGamal-
precomputation. Assuming quadratic com-
plexity for multiplication we need about
(768=1024)2 � (156 + 763) + 116000 �
116517modular (1024 bit) multiplications
in total.

5.3.2 Every GSS-session
We have to generate a temporary ElGamal
and DSA key pair at the time of Login. This
may be performed by a simple exponenti-
ation for each keypair. According to (2)
we only need about 22 modular (768 bit)
multiplications for the computation ofgxss
and about 58 modular (768 bit) multipli-
cations to computegxee . Like in 4.3.2 we
have to sign two certificates, i.e. we need
about2 � 315 = 630 modular (1024 bit)
multiplications. Assuming quadratic com-
plexity for multiplication this equals about
(768=1024)2 � (22 + 58) + 630 � 675mod-
ular (1024 bit) multiplications.

5.3.3 Every GSS-context establishment
An ElGamal encryption equals essentially

two exponentiations. The first exponenti-
ation (gkmod p) needs about 58 multipli-
cations using the precomputation variant.
The second encryption-exponentiation and
the decryption-exponentiation may be per-
formed with about 926 (768 bit) multipli-
cations each using the ordinary 6-bit win-
dow method. A DSA signature may be
performed with about22 + 20 = 42 (768
bit) multiplications. A signature verification
needs about22 + 207 + 20 = 249 modular
(768 bit) multiplications. For the verifica-
tion of the two (peer-) certificates we need
4 � 17 = 68 (1024 bit) multiplications using
e = F4 and about4 � 1224 = 4896 mod-
ular (1024 bit) multiplications in general.
Thus in total we need about(768=1024)2 �
(58 + 2 � 926 + 227 + 434) + 68 � 1540
(1024 bit) multiplications (usinge = F4) or
(768=1024)2 � (58+2 � 926+227+434)+

4896 � 6368modular (1024 bit) multiplica-
tions in general.

5.4 Space-Efficiency

5.4.1 Secure Storage
We store the global DL parameters on the
harddrive and compute a hash over this pa-
rameters. Before we use them, we check
whether the parameters stored in insecure
memory are still OK. Therefore we only
need to store the hash-value (e.g.20 bytes
with SHA-1 or RIPEMD-160) in the secure
environment, e.g. on a smartcard.

5.4.2 Insecure Storage
Here we have to storep; q; g5ie ; g

4j
s ; 0 � i <

40; 0 � j < 154 permanently. This will
take about(768 + 160 + 768 � 154 + 768 �
40)=8 = 18740 bytes. Furthermore we have
to store the secret exponentsxe; xs needing
about(768 + 160)=8 = 116 bytes and the
two (own) temporary certificates with about
500 + 424 = 924 bytes. Note, that a DSA
certificate is smaller, than an ElGamal cer-
tificate. All in all we have to store about
18740 + 116 + 924 = 19780bytes on the
harddrive.

The results of our discussion are summarized in Table 1.
From this table we see, that we can combinesecurityand
usability at only slightly higher expenses at Login - time
and context establishment. The application of DL based al-
gorithms turns out to be very well suited to implement the
SSLogin variant, because the time for the actual key genera-
tion is negligible small and may be well performed at Login
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Time-Efficiency Space-Efficiency
Variant Security Usability Once Session Context Secure Insecure

Mult. Mult. Mult. Byte Byte
e = F4 / gen.

1. Single Login low good / / 698 / 5526 / /
2. Multiple Login high bad / / 698 / 5526 / /
3. SSLogin - RSA high good / 108315 321 / 3758 / 740
4. SSLogin - DL (naive) high good 116000 1267 2408 / 7236 20 1348
5. SSLogin - DL (prec.) high good 116517 675 1540 / 6368 20 19780

Table 1. Variants for the SPKM credential management

- time. Furthermore it is possible to speed up the context
establishment by applying exponentiation variants with pre-
computation, which is not possible in RSA-type cryptosys-
tems. In this case only slightly more memory is needed to
store the precomputed values. Since the additional storage
of about 20000 byte should be possible in every implemen-
tation, we recommend the application of this exponentiation
technique.

8 Conclusion

In this paper we briefly recalled the necessary basics of
the GSS-API, SPKM and X.509 v3 / PKIX public key certi-
fication. We proposed concrete changes to the PKIX profile
to enable the application of aSecure Single Loginmecha-
nism, which combines security and user comfort. Further-
more we proposed to extend the list of recommended SPKM
K-algs by signature and encryption algorithms based on dis-
crete logarithms, like DSA and ElGamal. We compared
the different variants for SPKM credential management in
terms of security, usability and efficiency and gave recom-
mendations for the implementation of the different variants.
The proposed changes for the certificate verification in sec-
tion 6 will appear in a more technical form in a forthcom-
ming internet-draft.

9 Acknowledgement

I would like to thank the entire SECUDE - team, espe-
cially Stephan Andr´e, Petra Gl¨ockner and Hans Schupp for
all the fruitful discussions and the anonymous referees for
providing several helpful remarks.

References

[1] C. Adams: The Simple Public-Key GSS-API Mecha-
nism (SPKM), RFC 2025, Okt. 1996

[2] ANSI: Public Key Cryptography Using Reversible Al-
gorithms for the Financial Services Industry: Trans-
port of Symmetric Algorithm Keys Using RSA, X9.44-
1993

[3] E. Baize, D. Pinkas:The Simple and Protected GSS-
API Negotiation Mechanism, Internet-Draft, 16th May
1997

[4] E. Brickell, D. Gordon, K. McCurley, D. Wilson:Fast
Exponentiation with Precomputation, Proceedings of
EUROCRYPT ’93 - LNCS 658, Springer, Berlin,
1994, pp. 200-207

[5] J.M. DeLaurentis:A Further Weakness in the Com-
mon Modulus Protocol for the RSA Cryptosystem,
Cryptologia, v.8, n.3, Jul 1984, pp. 253-259

[6] T. ElGamal: A public key cryptosystem and a signa-
ture schem based on discrete logarithms, IEEE Trans-
actions on Information Theory 31, 1985, pp. 469-472

[7] GMD/TKT-SIT: SECUrity Development Environ-
ment for Open Networks - Online Documentation,
http://www.darmstadt.gmd.de/secude/Doc/index.htm

[8] R. Housley, W. Ford, S. Farrel, D. Solo:Internet Pub-
lic Key Infrastructure, Part I: X.509 Certificate and
CRL Profile, Internet Draft: draft-ietf-pkix-ipki-part1-
06.txt, 15th October 1997
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