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Abstract

As part of the Detecting Intrusions at Layer ONe
(DILON) project, we show that Ethernet devices can be
uniquely identified and tracked—using as few as 25 Ether-
net frames—by analyzing variations in their analog signal
caused by hardware and manufacturing inconsistencies. An
optimal detector, the matched filter, is utilized to create sig-
nal profiles, which aid in identifying the device the signal
originated from. Several non-traditional applications of the
filter are presented in order to improve its ability to dis-
criminate between signals from seemingly identical devices
of the same manufacturing lot. The experimental results of
applying these filters to three different models of Ethernet
cards, totaling 16 devices, are presented and discussed.

Important applications of this technology include intru-
sion detection (discovering node impersonation and net-
work tampering), authentication (preventing unauthorized
access to the physical network), forensic data collection (ty-
ing a physical device to a specific network incident), and
assurance monitoring (determining whether a device will
or is in the process of failing).

1. Introduction

1.1. Network access control

Current network access control (NAC) mechanisms rely
exclusively on the use of digital tokens or identifiers—
usernames and passwords, MAC addresses, SSL certifi-
cates, WEP/WPA keys, etc—to prevent unauthorized ac-
cess. Unfortunately, even strong tokens and identifiers, such
as SSL certificates, by their purely digital nature, can be dis-
cretely copied if improperly secured, and put to use by ma-
licious users. Even worse, popular weak identifiers, such
as MAC addresses, may be easily obtained through pas-

sive network monitoring, and spoofed through the use of
a programmable network card. In contrast, the analog char-
acteristics of a device are nearly impossible to obtain (a
measurement cannot be done without physical access to the
medium) and duplicate, which makes them well-suited for
NAC purposes.

In the digital age, the physical layer is often regarded as
a security impediment, or, at best, overlooked as a source
of solutions for today’s security needs, because of its non-
digital nature. The instinctive reaction to the physical layer
has been to focus on securing the layers above it, through
the use of encryption, so that some level of authentication
is necessary for access to it. These methods often prove in-
trusive to the end-user; forcing them to remember forever-
changing and arcane keys, configure troublesome access
clients, or keep track of yet another access token. Clearly,
a non-intrusive method, which compliments existing access
control methods, is needed to control access to the network
infrastructure. We believe that DILON technology can ful-
fill this need.

1.2. The DILON concept

The DILON project investigates the use of analog and
digital characteristics of digital devices for such secu-
rity purposes as intrusion detection, authentication, foren-
sic data collection, and assurance monitoring. DILON is
founded upon the belief that hardware and manufactur-
ing inconsistencies cause minute and unique variations in
the signaling behavior of every digital device; furthermore,
these variations are manifest by use of the appropriate sig-
nal processing technique(s). Central to the security of this
concept is the belief that these slight variations are difficult,
if not impossible, to control and duplicate. This assumption
is founded upon knowledge of the variable tolerances of de-
vice components, which are introduced in the design and
fabrication processes, used in the construction of digital de-
vices. These tolerances allow for unpredictable variations



in the overall electrical operation of the device. Simply put,
because of these variations, no two devices may be made
exactly the same, and hence their analog signal characteris-
tics cannot be made the same, without substantial reverse-
engineering beyond the reach of all but the most determined
attackers.

Figure 1 presents a system-level diagram for an imple-
mentation of DILON technology. On the top of the dia-
gram are subject devices that communicate over a physical
medium—wired or unwired—to connect with a controlled
device, a switch or access point for instance. At the control
device an analog tap is used in conjunction with an analog-
to-digital converter (ADC) to sample the electrical signals
arriving across the medium, at a much higher rate and with
greater resolution than is necessary to actually decode the
signal. Storage will also be required for past and present
fingerprints. A policy engine will make use of a compari-
son module to determine which devices have access to the
network, as well as issue reports concerning the state of the
network.

The present approach for DILON focuses on making
use of a matched filter to create profiles of signals that are
useful in identifying the device the signal originated from.
We have found that a traditional matched filter is sensitive
enough to easily discriminate between signals produced by
different model Ethernet cards. Using advanced techniques,
a matched filter, applied in non-traditional ways, can be
made to discriminate between Ethernet cards of the same
model—even when each component of these cards pos-
sesses the same serial numbers, and appear to come from the
same manufacturing lot. We have also developed adaptive
methods that accurately track fluctuations in signals due to
device aging, voltage variations, and temperature changes.
These methods provide realistic and consistent false-accept
and false-reject rates (FAR and FRR).

1.3. Previous work

Signal detection and identification was one of the ma-
jor challenges in the research and development of radar and
wireless communication systems for a greater part of the
20th century. In particular, identification of radar, radios,
and various wireless communications became a very impor-
tant and popular topic around the time of World War II [13].
Most methods developed for radar identification at this time
were based upon transient analysis. As higher frequency
and faster responding circuits were introduced, more in-
depth transient analysis became necessary for transmitter
identification. To this day, many researchers are making use
of transient methods for the identification of modern trans-
mitters [3, 25, 1, 9, 10, 4, 17, 5]. However, these methods
have only proven successful in situations when the trans-
mitters under consideration were considerably different.

To date, a robust, reliable, and adoptable system for
transmitter characterization has yet to be devised to effec-
tively handle multiple transmitters in interconnected sys-
tems. While frequency based classification models have
been suggested [11, 12, 15, 14, 20], and other general rules
for identification have been suggested [6, 24], each is lim-
ited to discriminating between different brands and systems.
As traditional methods cannot adequately identify similar
devices, they will not be able to guarantee the privacy, secu-
rity, and integrity of sensitive information necessary to med-
ical, legal, governmental, and security management firms.

It should be noted that a similar problem was addressed
by cellular phone companies to combat cloning [23, 19, 18].
However, due to propriety nature of their work, there is very
little published on their methodology. From what can be
determined from the limited literature available, these meth-
ods do not have a high success rate in discriminating signals
from similar sources.

Recently, work in the development of physical authenti-
cation schemes has led to the creation of a physical token
that implements a physical one-way function, which is ver-
ified using a statistical hashing algorithm [22]. Our work is
different from [22] in that we rely on the inherent physical
variation introduced as part of the manufacturing process,
and do not require extra variation to be explicitly added to
the devices for such purposes.

A more closely related physical authentication system
was introduced in [8, 7]. Gassend et. al investigated the
identification of integrated circuits based upon the indirect
measurement of their timing characteristics. In contrast, our
method focuses on examining the spectral characteristics
across the operating bandwidth of the device. Additionally,
our work shows that the signaling characteristics of network
devices appear to be more amenable to identification than
integrated circuits, as we have been able to identify a greater
number of devices.

Finally, recent work has investigated the possibility of
remotely fingerprinting devices over the Internet by mea-
suring their clock skew [16]. This method shows promise;
however, accurate identification seems to require 36 hours
of observation, where packets are received from the remote
host at a rate of 46 packets per hour. The efficacy of this
method is difficult to measure, as the authors do not report
their results in terms of false-reject and false-accept rates.

2. Background

The concepts of systems, signals, filtering, and related
terminology and tools are discussed. The matched filter op-
eration is defined.



Figure 1. Functional view of a NAC system incorporating DILON technology.

2.1. Signals and systems

A system is a process by which an input signal is trans-
formed to produce an output signal; furthermore, a system
is said to be linear time-invariant (LTI) if the system is both
additive and multiplicative, and a time shift of the input re-
sults in a corresponding time shift in the output. It can be
shown that the response, or output, of an LTI system to all
inputs can be completely described by determining the sys-
tems unit impulse response [21]. For our purposes, the unit
impulse response, or transfer function, of a system in the
time domain will be denoted by h(t). The response of a sys-
tem, y(t), to a particular input, x(t), can be found by con-
volving the transfer function of the system with the input
signal. The convolution operation, denoted by ?, between
h(t) and x(t) is defined as:

y(t) = h(t) ? x(t) =

+∞∫
−∞

h(t− τ)x(τ)dτ (1)

By taking the Fourier Transform of the input signal, de-
noted by F{x(t)} = X(ω), and the transfer function, de-
noted by F{h(t)} = H(ω), the convolution operation de-
fined in (1) may be replaced by multiplication:

Y (ω) = H(ω)X(ω) (2)

It should be noted that (2) gives the frequency response
of a system, whereas (1) gives its time-domain response.
Of course, these responses are related through the inverse-
Fourier and Fourier Transforms, respectively.

2.2. Filters

A filter may be regarded as a special kind of system,
where the relative amplitudes and phases of the frequency

components of an input signal are modified, or eliminated.
As the filter discussed in this paper is LTI, we may describe
its response via a transfer function. In turn, this transfer
function may be used in conjunction with either (1 or 2) to
determine the response of the filter to an input signal.

2.3. The matched filter

The matched filter is said to be an optimal detector, as it
can be shown that the filter maximizes the signal-to-noise
ratio of a known input signal in additive white Gaussian
noise (AWGN). [2]. The transfer function of the matched
filter, in the frequency domain, at sampling time t0 may be
stated as:

H(ω) = κ
A∗(ω)
P (ω)

exp−jωt0 (3)

where A∗(ω) is the complex conjugate of the Fourier Trans-
form of a known time-domain signal α(t), P (ω) is the
power spectral density (PSD) of the noise associated with
an input signal, and κ is an arbitrary constant. By select-
ing an appropriate value of κ for the operating environment,
and assuming AWGN for the PSD, P (ω) may be eliminated
from (3). For a given input signal, β(t), the output of the
filter, Mt0 , at sampling time t0, in the Gaussian noise case
is then:

Mt0 = H(ω)B(ω) = A∗(ω) exp−jωt0 B(ω) (4)

where B(ω) is the Fourier Transform of the time-domain
input signal β(t).

Taking the inverse Fourier Transform of (3) gives the
transfer function of the filter, h(t), in the time-domain, for
the AWGN case, as:

h(t) = α(t0 − t) (5)

It can be shown that the output of the filter is maximized



when:

µ(t0) = h(t0) ? β(t0) =

t0∫
t0−T

α(τ)β(τ)dτ (6)

where T is the period of the known time-domain signal
α(t).

As can be seen from (6), the matched filter operation
may be interpreted as the inner-product of two signals, or
an integrated-correlation.

3. Signal identification

We describe how the matched filter may be used to create
a signal profile useful for identifying a signal’s device of
origin.

3.1. Signal selection rationale

This work focuses on the profiling of 10Mb wired Eth-
ernet signals. We chose to study 10Mb Ethernet because of
the relative simplicity of the electronic devices and signal-
ing involved, and its operation at low speeds. As the elec-
tronics and signaling are less complicated than higher-speed
systems, we were able to understand the functioning of the
devices, and identify common behavior between devices of
different makes, which aided us in hypothesis creation and
testing while attempting to identify differences and similar-
ities in signals. In addition, capturing accurate samples of
10Mb Ethernet frames may be accomplished using lower
resolution, slower, and therefore less expensive ADCs.

Wired Ethernet was chosen due to the low noise environ-
ment inherent in wired systems. Environmental noise adds
a stochastic and non-stationary component to the signal that
must be minimized as much as possible to obtain consis-
tent measurements. On the other hand, noise characteristics
of an individual device, or component from a device, may
exhibit distinguishing characteristics.

Finally, we believed that if we should fail in discriminat-
ing 10Mb Ethernet signals, we would have little chance of
succeeding in the high-speed wired and wireless domains.
However, we should also note that in some respects profil-
ing 10Mb Ethernet signals may be viewed as a more diffi-
cult problem than that of higher-speed systems: there are
fewer components per device, and hence less opportunity
for signal variability due to perturbation by device compo-
nents.

3.2. Identifying a common signal

In order to create a profile of the signal characteristics
for an Ethernet device, a portion of the frame preamble

common to all devices was identified. At the beginning of
each frame a 64-bit sequence of alternating ones and ze-
ros, encoded using differential Manchester encoding with a
fundamental frequency of 5MHz, ending with the sequence
10101011 are sent to synchronize the receiver of the desti-
nation device to the transmitter of the source device (Figure
2).

This synchronization signal consists of a transient, or
turn-on, portion (denoted by ’- . - . -’ in Figure 2), which
is the result of the transmitting circuitry of the sending de-
vice powering on, as well as a steady state portion (denoted
by ’- - - - -’ in Figure 2) that serves as the actual synchro-
nization signal.

As mentioned earlier, most work in signal identification
has traditionally focused on the transient portion of a sig-
nal. However, as the transient signal in 10Mb Ethernet is so
small, in terms of the number of wavelengths of the over-
all signal, we do not believe that there is physically enough
information contained in it for the identification of similar
devices. Indeed, it has been shown in the literature that tran-
sient analysis is sufficient only for distinguishing between
devices of different models, but not devices of the same
model. As such, our methodology relies primarily upon the
steady-state portion of the signal for profiling purposes.

The final portion of the Ethernet frame shown in Figure
2 (denoted by ’. . . . .’) is the beginning of the MAC address
of the receiving device. Preliminary work with this portion
of the signal has shown that it may be possible to use the
MAC source address for signal profiling.

3.3. Matched filter creation

Having identified a common and repetitive portion of the
Ethernet signal suitable for identification purposes, an exact
starting position and period of the portion of the signal to be
matched to must be chosen. We call this part of the signal
the reference signal, and choose it to represent the known
time-domain signal α(t). As per (5), the reference signal
must be reversed in the time-domain, and shifted by t0 to
be used as the filter. In this respect t0 may be regarded as
the final time point of the reference signal.

Initially, the period and position of the reference signal
were chosen as an arbitrary number of points spanning the
length of the synchronization signal. For 10Mb Ethernet,
we have found this acceptable to distinguish between all but
the most similar of signals; however, we have also devel-
oped algorithms to determine the optimal reference signal
for a set of known devices. This type of reference selection
would be useful during a training period, where sample data
could be taken for a new device introduced on the network,
and compared to previously collected data of other devices.
For a general study of the matched filter, however, we have
selected a reference signal that includes the preamble tran-



Figure 2. The Preamble of an Ethernet frame used for signal profiling.

sient and steady-state portion of the synchronization signal,
which is the same, to within five sample points, for each
device. While optimally determining a reference signal for
a device, in relation to other known devices, may increase
performance, our experiments have shown that it is not gen-
erally necessary to do so.

3.4. Signal profile

The first step in creating a signal profile is to apply the
filter to the signal used to create it; i.e., convolve the filter
with the portion of the signal used for the selection of the
reference signal. The filter returns a single value from this
operation that serves as a baseline. This value represents the
filter response when a perfect match is made between the
filter and the original signal. If another signal is exactly the
same as the original, then we expect that applying the filter
to this signal will produce the same value. In general then,
applying the filter to a signal produces a measurement of the
closeness of the signal to the original, and consequently the
alikeness of the devices the signals were acquired from. If
a signal from a different device approaches the filter output
value for the original signal too closely then we are unable
to distinguish it from the device that produced the original.

Due to the noise inherent in any system, we cannot as-
sume that even a properly functioning device will output
exactly the same synchronization signal for each frame.
Noise from surrounding devices, created by a hard disc or
CD-ROM being accessed or variations in system load, and
thermal noise assuredly cause slight variations in the sig-
nal from frame to frame. In fact, with the aid of temper-
ature recording equipment we have been able to correlate
aberrations in the filter output to variations in the ambient
temperature of the lab. Furthermore, due to the non-ideal
properties of the Ethernet cabling—parasitic resistance, ca-

pacitance, and inductance—even the act of measuring the
signal on a different portion of the Ethernet cabling, or using
a different cable altogether, may affect the measured signal.
This affect, however, gives rise to the interesting possibility
of detecting passive taps on the line, which often change the
effective material parameters of the medium.

To take into account the inherent variability of every de-
vice’s output, as well as external factors such as temperature
and system load variations, a signal profile must be created
by using a collection of signals taken over a period of time.
The filter created by the original signal is applied to this col-
lection of signals and the response to each recorded (Figure
3). We have found that only 25 sequentially sampled signals
are necessary to adequately determine the unique signaling
behavior of a device.

Figure 3. Filter output for 25 frames of an Eth-
ernet device.

By examining the filter response for a device over a num-
ber of hours, we have determined that a device’s synchro-
nization signal is under continuous change. In many cases,
we have discovered that slight variations in the amplitude of
the signals are the cause of this variation. A subtle change
in signal shape, over a period of hours, also changes the



filter response. By using the average of several synchro-
nization signals for the reference signal we have been able
to decrease the variation of the filter response; however, this
often leads to a corresponding increase in the FAR.

In order to account for these changes in signal character-
istics over time, we have introduced a tolerance, δ, for the
maximum amount of deviation in filter response acceptable
before a signal is labeled as too different from the original.
In order to take into account past behavior, we require that
the next n-frames resemble the previous n-frames, ±δ. In
this way a device may be adaptively tracked as its signal
changes over time. Mathematically, this is stated by defin-
ing two thresholds for the maximum amount of positive,
th+, and negative, th−, deviation in filter output allowed
over the previous n-frames:

th+(µi · · ·µi+n−1) = max(µi−1 · · ·µi−n)(1 + δ)
th−(µi · · ·µi+n−1) = min(µi−1 · · ·µi−n)(1− δ) (7)

where µi represents the filter output of the ith frame. We
have found that setting n equal to the number of samples
used to learn the behavior of a device proves adequate for
tracking the signal over time.

During our experiments the filter output for the first 25
frames of a device were used as training data, whereby an
appropriate value for δ would be determined by stipulating
that zero false-rejects would occur for the next 25 filter out-
puts. A minimum value of .001 for δ was imposed, and in-
cremented by .001 until the aforementioned condition was
met. After observing a device’s behavior over time the value
of δ can be adjusted to better fit the unique behavior of the
card. We have also found that large, spurious, deviations
do occur for all Ethernet devices, so a perfect acceptance
rate cannot be obtained—unless one is willing to allow a
certain number of significant deviations every n-frames, or
set δ unreasonably high. As with any system with statistical
variation, a balance must be found for δ that results in an
acceptable number of false-accepts and false-rejects.

3.5. Variations on the matched filter method

To further improve the efficacy of our method, we have
devised several variations on the procedure outlined above
to improve our ability to discriminate between highly sim-
ilar devices. Each of these techniques works to amplify
slight differences in signal characteristics that are too sub-
tle to be distinguished by the original method. The impe-
tus of this work was based upon the observation that as
the matched filter operation is a sum of products, large-
scale similarities between signals can often overshadow the
small-scale differences useful for signal profiling.

3.5.1. An ensemble of filters. For a given device, mul-
tiple matched filters may be created by selecting a refer-

ence signal for each portion of the preamble identified in
Section 3.2. Matching filters to the transient, steady-state,
and source MAC address sections of the frame gives a full
characterization of the broad traits of a signal. An ensem-
ble of filters is utilized, instead of a single large filter, so
that strong similarities in certain regions of the signal can-
not overshadow smaller differences in others.

Selecting multiple reference signals for each section of
the signal may also highlight slight differences; e.g., each
transition, or pair of transitions, of the synchronization sig-
nal could be matched to different filters. In such a way the
granularity of filtering could be arbitrarily increased to take
into account the smallest of differences.

3.5.2. Bandpass filtering. By analyzing the spectrum of
signals from a multitude of similar devices, we have found
that distinguishable differences exist in the frequencies be-
yond the fundamental frequency of the synchronization sig-
nal; however, as the fundamental frequency dominates other
frequency components, in terms of relative power, these dif-
ferences are often obscured. Applying a bandpass filter to
the reference signal and signal samples minimizes the influ-
ence of the fundamental frequency on the filter response by
removing that portion of the signal altogether.

Through experimentation, by use of several bandpass fil-
ters with increments of 1MHz in bandwidth, we have de-
termined that, for some devices, the 13-17MHz frequency
range exhibits the greatest variation. As the power levels of
frequency components beyond 17MHz approach that of the
noise level, we have found frequencies higher than 17MHz
ill-suited for discriminatory purposes.

3.5.3. Normalization. Normalizing both the reference sig-
nal and signal samples, according to the Euclidean norm,
desensitizes the matched filter to similarities in shape, and
increases its sensitivity to variations in amplitude. This
proves advantageous for discriminating between signals
where the differences exist primarily in their relative ampli-
tudes. However, if the amplitudes of two signals are closely
matched, while their shapes are not, this form of normal-
ization will decrease our ability to distinguish between the
two.

3.5.4. Trimming. The concept of time-domain trimming
was developed in order to minimize the affect of the sig-
nal amplitude on filter response. By eliminating amplitude
dominance, variations in the shape of the signal are made
apparent. Analogous to the frequency domain trimming
used in bandpass filtering, time-domain trimming removes
the portions of a signal that tend to overshadow all others
by zeroing the signal amplitude for values greater than a
predetermined upper bound. By adding a lower bound, and
varying the height of each boundary accordingly, a window



is created that allows for any portion of the signal to be scru-
tinized by its shape alone.

For example, by only setting an upper bound, the zero-
crossings—where the signal crosses the horizontal axis—of
a signal may be examined in order to ensure that the width
of a signal matches that of the filter. We have found that
time-domain trimming is most effective when only the sig-
nal samples are trimmed.

4. Experimental results

The equipment and methods used to acquire the Ether-
net signals for analysis are given. Methods for calculating
the FAR and FRR are discussed. Finally, the results of the
matched filter approach to signal profiling are given.

4.1. Experimental setup

Our current testbed consists of two PCs running GNU
Linux; one to act as the Test PC (TPC), which houses the
Ethernet card we wish to fingerprint, while the other, the
Data Acquisition PC (DAQPC), makes use of a Tektronix
3052 digital sampling oscilloscope, interfaced via an IEEE
488 card and Labview-6, connected to a passively tapped
internal Ethernet card, to capture Ethernet frames sent to it
over a crossover cable by the TPC.

In order to generate traffic for the DAQPC to capture, the
TPC is instructed to ping the DAQPC. During a typical data
acquisition period the TPC will ping the DAQPC 10,000
times. To ensure that only traffic from the TPC is captured,
only the receiving pins of the DAQPC’s Ethernet card have
been connected to the oscilloscope. In this way we are able
to allow the DAQPC to respond to the TPC’s pings, and
ensure that the data acquisition process hasn’t caused any
packet loss.

Upon detection of an Ethernet frame the oscilloscope be-
gins to sample the signal at a rate of 1Gigasamples/s. The
signal is sampled 10,000 times, for a total of 10 micro-
seconds, with 8-bits of resolution. The data collected during
sampling is sent to the DAQPC via the IEEE 448 interface,
where a custom Labview routine monitoring the interface
accepts the data and stores the values in a vector we call a
record, which is subsequently written to the disc. Each cap-
tured frame is stored in its own record; all of the records col-
lected for a device during a session encompass its dataset.

4.2. Filter application

Having acquired several thousand signal samples from
each device over a number of hours, we then create a fil-
ter for each of the devices using the procedure outlined in
Section 3.3. The reference signal for each device has a pe-
riod of 4,176 sample points, and is selected from the first

valid record of a device’s dataset. Following this, the ref-
erence signal is convolved with each record of its dataset
using an FFT-based convolution algorithm. Convolving the
reference signal with each record of its dataset performs the
matched filter operation for all possible time-shifts; conse-
quently, an output is created that is equal in length to that of
the length of the record. This operation is necessary to de-
termine the time of optimal alignment, t0, between the filter
and the record, which results in the maximum filter output,
as per (6).

Thus, the filter output at the point of maximum align-
ment corresponds to the maximum of the convolution op-
eration. Letting εi(t) represent the reference signal for the
ith device, and ηj

i (t) the jth record of its dataset, the filter
output, µj

i (t0), is then:

µj
i (t0) = max(εi(t) ? ηj

i (t)) for j = 1 · · ·n (8)

where n is the number of records in the device’s dataset
(Figure 4). This procedure is followed for each device in
order to determine the filter response of each record in its
dataset.

Having determined the filter output for each record of its
own dataset, we then apply the filter to each record of the
other device’s datasets in order to determine the alikeness
of their respective signals (Figure 5). Letting γj

i,k(t0) rep-
resent the filter output using the ith device’s filter applied to
the kth device’s dataset:

γj
i,k(t0) = max(εi(t) ? ηj

k(t)) for j = 1 · · ·n (9)

As can be seen from Figure 5, the respective filter out-
puts of Device i and Device k do not overlap. Following the
explanation set forth in Section 3.4., we are therefore able
to discriminate between Device i and Device k.

4.3. Acceptance testing

Following the procedure set forth in Section 3.4., a value
for δ can be determined that is expected to provide an ac-
ceptable FRR (less than .009 in our experiments). Using the
response of the filter for the ith device to the 26th through
50th records of its own dataset, µ26···50

i (t0), as training data
in conjunction with (7), thresholds can be established for
the next 25 filter outputs. If the filter response for one of
the next 25 records lies outside of the bounds set by these
thresholds then its corresponding record is marked as re-
jected, and is not used in determining the thresholds for the
next 25 outputs. This procedure is followed for the remain-
der of the filter responses in the device’s dataset. The FRR
is then calculated using:

FRR =
nr

n− 25
(10)



Figure 4. Filter output for 10,000 records of an Ethernet device.

Figure 5. Filter output for 10,000 records of two different Ethernet devices using the same filter.

where nr is the number of rejected records and n is the num-
ber of total records.

4.4. Intrusion testing

Whereas it is possible to determine the FRR by sequen-
tially applying (7) to each of the next 25 filter outputs, the
FAR may not be determined in such a sequential manner,
as it cannot be known where to begin comparing the output
of the ith device’s filter applied to the kth device’s dataset.
Simply comparing the distributions of the filter output for
the two cases would also produce an inaccurate FAR, as
the filter output for each device is changing in time, and
it would not be unreasonable to assume that at a particular
point in time one device will have the same filter response
as another device at a different point in time (Figure 6).

Thus, to calculate an accurate FAR, we assume that the
filter response for each record of the kth device’s dataset us-

ing the ith device’s filter, γ1···n
i,k (t0), where n is the number

of records in a dataset, is equally likely. Based upon this
assumption, random numbers between one and n are gener-
ated to serve as an index used in deciding the starting value
of j, for the filter response γj

i,k(t0).
Using the first value of the index for j, the next 24 fil-

ter responses, γj···j+24
i,k (t0), are compared to the threshold

values calculated for µ1···25
i (t0) to check whether or not a

record from γj···j+24
i,k (t0) would be accepted as a record

from µ1···25
i (t0). This procedure is followed for each 25

record segment of µ26···n
i (t0), where every 25 records a new

value of j is chosen by taking the next value in the index.
The total number of index values generated should then be
n divided by 25. The FAR is then calculated using:

FAR =
na

n
(11)

where na is the number of accepted records and n is the



Figure 6. Filter output for 10,000 records of two different Ethernet devices using the same filter,
where at different times the filter output is the same.

number of total records.
This procedure is repeated 1,000 times, with new index

values chosen for each iteration. The FAR for each iteration
are then averaged to produce the total FAR. Repeated test-
ing using this method has provided consistent values for the
FAR.

4.5. Results

The results of the matched filter methodology for signal
profiling are shown for 16 devices, consisting of a combina-
tion of three different models, via a confusion matrix (Table
1), which indicates the FRR and the FAR. The FRR may
be deduced by subtracting the diagonal elements from one,
while the FAR is simply the off-diagonal elements. Per-
fect detection/rejection would result in a matrix where the
diagonal is one and off-diagonal elements are zero. The
FRR and FAR are reported for 10,000 records per dataset.
The naming convention mXcY is utilized to denote card Y
of model X.

As can be seen from the table, the FRR is sufficiently
low (less than 1%), for different model cards we have near
perfect detection, while some cards of the same model are
difficult to differentiate. By experimenting with different
minimum and incremental values used in determining δ, we
have found that minimum and incremental values of .001 al-
low for too much variation in filter output. In fact, a slightly
lower value of δ for each card will result in a negligibly
higher false-reject rate; completely eliminate nearly all col-
lisions which occur with frequency less than 20%; decrease
collisions which occur with frequency less than 80% by up
to 30%; but have no affect on collisions which occur with
frequency greater than 80%. In addition, by utilizing the

techniques discussed in Section 3.5., we have been able to
substantially reduce or eliminate most collisions. In partic-
ular, bandpass filtering proved particularly effective in dif-
ferentiating m6c3 from m5c3/7. Through the use of both
bandpass filters and an ensemble of filters, we were also
able to eliminate almost all of the intra-model collisions of
m5cY and m6cY, respectively. Time-domain trimming and
an ensemble of filters were also employed to dramatically
reduce the number of collisions in m4cY, although perfect
discrimination was not possible.

5. Future work

Several important issues regarding the variability of a de-
vice’s analog signal require additional consideration. For
example, under what conditions does the signal vary, how
does device aging affect signaling characteristics, and how
can a signal from a system that has lost and re-established a
connection with the network be tracked? These questions,
amongst others, provide a rich backdrop for future research.

An immediate area of consideration is extending this
work to include different networking systems. Initial work
has already begun on attempting to profile 100Mb Ether-
net signals. Preliminary results indicate that the aforemen-
tioned techniques will be adequate for discriminating be-
tween different model devices; however, a deeper investi-
gation into the signaling characteristics of 100Mb Ethernet
devices may be required in order to provide accurate re-
sults for devices of the same model. Work will also con-
tinue in the 10Mb realm, as we try to create signal profiles
for as many devices as possible. Other work includes ana-
lyzing wireless signals from 802.11b, sensor networks, and
RFID systems. Currently, we are attempting to optimize



Table 1. Confusion matrix of 16 devices with 10,000 records per dataset
Tested Card

m4 m5 m6
Expected Card c1 c2 c3 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c1 c2 c3
m4c1 .9961 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
m4c2 0 .9965 .8470 0 0 0 0 0 0 0 0 0 0 0 0 0
m4c3 0 .8988 .9956 0 0 0 0 0 0 0 0 0 0 0 0 0
m5c1 0 0 0 .9969 .9729 .0003 0 0 .0012 .0002 .0342 0 0 0 0 0
m5c2 0 0 0 .9290 .9970 0 0 0 .0026 0 .0626 0 0 0 0 0
m5c3 0 0 0 .0032 0 1.000 0 0 0 .9982 0 0 0 0 0 0
m5c4 0 0 0 0 0 0 .9999 0 0 0 0 .0020 .0017 0 0 0
m5c5 0 0 0 0 0 0 0 .9928 0 0 0 0 0 0 0 0
m5c6 0 0 0 .0184 .0394 0 0 0 .9999 0 .9584 0 .7792 0 0 0
m5c7 0 0 0 .0003 0 .9751 0 0 0 .9940 0 0 0 0 0 0
m5c8 0 0 0 .0278 .0751 0 0 0 .8873 0 .9957 0 .1821 0 0 0
m5c9 0 0 0 0 0 0 .0001 0 0 0 0 .9932 0 0 0 0
m5c10 0 0 0 0 0 0 .0004 0 .3988 0 .1518 0 .9938 0 0 0
m6c1 0 0 0 0 0 0 0 0 0 0 0 0 0 .9995 .3489 0
m6c2 0 0 0 0 0 .0150 0 0 0 .0490 0 0 0 .3176 .9992 .1037
m6c3 0 0 0 0 0 .5769 0 0 0 .7100 0 0 0 0 .0857 .9994

the matched filter for the profiling of wireless signals. Ma-
jor challenges include adjusting the sensitivity of the filter
to handle fluctuations of amplitude. Possible solutions to
this problem include signal normalization and equalization.

6. Conclusion

We have shown that the matched filter can be reliably
used to build signal profiles that can be used to discrimi-
nate between Ethernet cards of different models. By ap-
plying the matched filter in non-traditional ways, we have
also demonstrated that it is possible to discriminate between
seemingly identical cards, which appear to have originated
from the same manufacturing lot. Finally, we have demon-
strated that the analog signal characteristics of Ethernet de-
vices can be tracked, and are thus suitable for use in net-
work access control schemes. The techniques used in eval-
uating the effectiveness of the matched filter method have
also been given. Future work will focus on applying our
methods to the high-speed (100Mb and 1Gb Ethernet) and
wireless domains (802.11b, sensor networks, and RFID sys-
tems), as well as exploring how device behavior changes
due to environmental factors and aging.
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