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Abstract consideration. Including the signature in every packet is

We introduce distillation codes, a method for streaming
and storing data. Like erasure codes, distillation codes
allow information to be decoded from a sufficiently large
quorum of symbols. In contrast to erasure codes, distilla-
tion codes are robust against pollution attacks, a powerful
class of denial of service (DoS) attacks in which adver-
sariesinject invalid symbols during the decoding process.

We examine applications of distillation codes to mul-
ticast authentication. Previous applications of erasure
codes to multicast authentication are vulnerable to low
bandwidth pollution attacks. We demonstrate pollution
attacks against previous approaches which prevent re-
ceiversfrom verifying any authentic packets. Toresist pol-
[ution attacks, we introduce Pollution Resistant Authenti-
cated Block Streams, which have low overhead and can
tolerate arbitrary patterns of packet loss within a block
up to a predetermined number of packets. In the face of
40Mb/s of attack traffic, PRABSreceivers successfully au-
thenti cate the stream and consume only 10% of their CPU.

1. Introduction

Single-source multicast enables a sender to efficiently
disseminate digital media to a large audience, but to de-
fend against adversaries who inject bogus packets, re-
celvers must verify the authenticity of packets. One ap-
proach to multicast authentication is signature amortiza-
tion. Signature amortization schemes divide the multicast
stream into blocks of sequential packets and authenticate
all the packets in a block with a single signature. Sig-
nature amortization is a compelling approach to multi-
cast authentication because it distributes the communica-
tion and computation overhead of a digital signature over
many packets.

One challenge in signature amortization schemesis ro-
bustness to packet loss. Receivers need the digital signa-
ture to verify the authenticity of the packets in the block,
but the best way to reliably transmit the signature requires

robust to packet loss, but incurs high overhead. Includ-
ing a few bytes of the signature in each packet is space
efficient, but is not robust to loss. Signature amortization
schemes differ mainly in their solution to this problem.

Three previous approaches are hash graphs [11, 18,
26, 33], the Wong-Lam scheme [35], and erasure codes
[21, 22]. All are vulnerable to denial of service attacks.
Hash graph protocols construct a directed graph over the
packets where each node in the graph contains the hash
values of the neighbors on its incoming edges. The hash
graph terminates with a signature packet, which authenti-
cates a handful of the nodes in the graph. If the signature
packet is not lost and there exists a path from a particu-
lar packet to the signature, the receiver authenticates the
packet by traversing the hash path to the digital signature
and verifying the signature.

The Wong-Lam [35] scheme constructs a Merkle hash
tree over the packetsin the block and signs the root of the
tree. Each packet contains the signature and the nodesin
tree necessary to reconstruct the root. By including the
signaturein every packet, each packet isindividually veri-
fiable. Receivers authenticate each packet by reconstruct-
ing the root value of the tree and verifying the signature.

Hash graph protocols and the Wong-Lam scheme are
vulnerable to signature flooding attacks. An adversary
flooding the stream with invalid signatures will over-
whelm the computational resources of receivers attempt-
ing to verify the signatures. Additionally, in hash graph
protocols, adversarial loss patterns can cause denial of ser-
vice. For example, if an adversary causes the loss of all
signature packets, nothing is verifiable.

Several researchers advocate the use of erasure codes
[15, 16, 28, 29] for signature amortization [21, 22]. Era-
sure codes are amechanism that allow receiversto decode
messages from a sufficiently large quorum of encoding
symbols. Erasure codes are robust to arbitrary patterns
of loss among the encoding symbols as long as the de-
coder receives a sufficiently large subset of them. Multi-
cast authentication protocols using erasure codes are ro-
bust to packet loss and have low overhead. However, era-
sure codes are designed to handle only a specific threat



model: packet loss. Erasure codes assume that symbols
are sometimes lost but not corrupted in transit; thisis the
erasure channel model.

Unfortunately, the assumptions that underlie erasure
codes are unrealistic in hostile environments. Adversaries
can pollute the message stream by injecting invalid sym-
bols. We call this a pollution attack. If an erasure code
uses an invalid symbol as input to its decoding algorithm,
it will reconstruct invalid data. The communication model
that incorporates this more realistic threat is the polluted
erasure channel, in which valid symbols can be lost, and
an adversary can inject additiona invalid symbols claim-
ing to be valid. Polluted erasure channels more accurately
model multicast environments: malicious end hosts and
routers can observe, inject, modify, delay, and drop mes-
sages in an erasure encoded multicast stream.

This paper introduces and gives efficient constructions
of digtillation codes, which are robust against pollution
attacks, signature flooding, and adversarial loss patterns.
We make the following contributions:

e We introduce the notion of pollution to erasure chan-
nels, which allows us to more accurately model the
threats of multicast data dissemination. We also in-
troduce pollution attacks and demonstrate how |low
bandwidth pollution attacks can cause denia of ser-
vice for erasure codes.

e We introduce distillation codes; we show that dis-
tillation codes function well in the polluted erasure
channel model, and prove that they are resistant to
pollution attacks.

e We usedistillation codesto construct a new multicast
authentication protocol: Pollution Resistant Authen-
ticated Block Streams (PRABS). PRABS can toler-
ate arbitrary patterns of packet loss within a block
up to a predetermined number of packets and are re-
sistant to pollution attacks on receivers. Figure 1
compares PRABS to existing multicast authentica-
tion protocols.

e We present measurements of an implementation of
distillation codes and PRABS. These measurements
demonstrate the effectiveness of distillation codes
against pollution attacks.

2 Préiminaries
2.1. Broadcast and multicast authentication

Disseminating information from a server in a broadcast
setting to multiple receivers demands a mechanism for
guaranteeing the authenticity of the data stream. We need

Scheme Overhead | Denial of service
(bytes) vulnerabilities

Hash graphs ~ 40-50 | Signature flooding
[11, 18, 26, 33] & adversarial loss

Wong-Lam [35] 188 Signature flooding

SAIDA[23] 22 Pollution attacks

Pannetrat- 12 Pollution attacks
Molva[21]

| PRABS | 65 | — |

Table 1. Comparison of PRABS to existing
multicast authentication protocols.

The overhead was computed assuming 80 bit cryptographic
hashes, 128 byte RSA signatures, and 128 packet blocks. For
SAIDA and PRABS, we assume up to 64 packet |osses per block.
For PRABS, we use the optimization described in Section 4.6.
Our scheme, PRABS, is resistant to pollution attacks, signature
flooding, and adversarial loss patterns.

a space efficient and computationally lightweight authen-
tication mechanism, especialy if the receivers are embed-
ded devices. In unicast settings, symmetric key cryptog-
raphy can provide an efficient solution to the authentica-
tion problem [5]. Naively extending such schemes to a
multicast setting by distributing the secret key to al the
receivers is not secure: any receiver can forge messages
using the secret key.

The goals and requirements of broadcast/multicast au-
thentication are as follows:

e Packet authenticity. Each receiver can verify that
packets originated from the sender and were unmod-
ified in transit. Receivers must be able to distinguish
traffic injected by other parties, including any of the
receivers.

e Packet loss robustness. Receivers can authenticate
each packet despite the loss of afixed fraction of the
total packets.

e Loss model independent. In addition to packet loss
robustness, receivers can verify packets even when
the lossis bursty, correlated, or in any other pattern.

e Denial of service (DoS) resistant. Receivers can re-
sist denial of service attacks against their resources.

2.2. Erasurecodes

An erasure code [15, 16, 28, 29] is an encoder and de-
coder that use forward error correction to tolerate loss.
The encoder redundantly encodes information into a set
of symbols. If the decoder receives sufficiently many
symbols, it can reconstruct the original information. An



(n,t) erasure encoder generates a set S of n symbols
{s1,82,...,8,} from the input. The decoder can toler-
ate a loss of up to ¢ packets, i.e., it can reconstruct the
original datagiven any n — t symbolsfrom S.

Reed-Solomon, Tornado, and LT codes are examples
of erasure codes. Reed-Solomon [29] codes typically re-
quire O(n?) time to encode and decode; Tornado and
LT codes [15, 16] require O(n) time. Although Reed-
Solomon codes are slower, they have the advantage that
reconstructing the original data is guaranteed to be suc-
cessful if the decoder has at least n — ¢ encoding symbols.
With Tornado and LT codes, reconstructing with at least
(n—t)- (1 + ¢) encoding symbolsis successful with high
probability for e ~ 0.05.

2.3. Terminology and assumptions

We assume there is a single party authorized to encode
and send messages. We refer to this party asthe legitimate
encoder. If the legitimate encoder encodes and sends a
message D over the channel to the decoder, D is said to
be valid. If amessage D was never encoded and sent by
the legitimate encoder over the channel, D is said to be
invalid.

Let S be aset of n symbols generated by an erasure en-
coder with input D. We assume n and theloss parameter ¢
are fixed and known to the encoder and the decoder. Each
symbol isan ordered pair (s;,7), 1 < i < n, soeach sym-
bol contains its index value. The symbolsin S are valid
symbols of D if this encoding process is executed by the
legitimate encoder; other ordered pairs are invalid sym-
bols. We are concerned about invalid symbols injected by
an adversary. Given a set of symbolswhich includesvalid
symbols and possibly invalid symbols, the decoder pro-
duces a candidate reconstruction R. The reconstruction
Risvalid when R = D for somevalid D and invalid oth-
erwise. We assume erasure decoding with at least n — ¢
valid symbols of D and no other symbols will result in a
valid reconstruction of D.

We assume the encoder and decoder have access to
TAG(-) and VALIDATE(-) agorithms, respectively. The
TAG(-) agorithm augments its input with some addi-
tional informationthat enablesthe VALIDATE(:) algorithm
to verify its authenticity. For correctness, we require
VALIDATE(TAG(R)) = true for all R. To guarantee au-
thenticity, we assume it is difficult for an adversary to
forge R such that VALIDATE(R) = true. We also assume
the existence of an algorithm STRIP(:) that strips off the
authentication information added by TAG(-). One possi-
ble instantiation of (TAG(-),VALIDATE(-)) is public key
signature generation and verification. See Appendix A
for aformal treatment of our authenticity requirementsfor
(TAG(-), VALIDATE(")).

To enable decoders to determine whether a candidate

reconstruction is valid, we will erasure encode TAG(D)
rather than D. Then given a candidate reconstruction R,
adecoder determinesits authenticity by checking whether
VALIDATE(R) = true. We refer to the process of applying
VALIDATE(:) to a candidate reconstruction as reconstruc-
tion validation.

2.4. Pollution attacks. DoS against erasure codes

Adversaries can disrupt the decoding process by intro-
ducing invalid symbols. If the decoder uses an invalid
symboal, it will generate an invalid reconstruction, causing
denia of service. We call this apollution attack, and refer
to an erasure channel with pollution attacks as a polluted
erasure channel.

Decoders can easily recover from pollution attacks with
only asmall number of invalid symbols and no lost valid
symbols. Since both valid and invalid symbols contain an
index, the decoder simply looks for duplicate indices and
drops both symbols. If at least n — ¢ symbols remain af-
ter dropping duplicates, the decoder will recover the valid
reconstruction.

Recovery becomes more difficult as the number of in-
valid symbols increases. For example, suppose the de-
coder receives only the first n — ¢ valid symbols and an
adversary injects one invalid symbol in each of those po-
sitions. The decoder cannot simply drop the duplicates
since no symbols will remain. Alternatively, the decoder
could select one symbol from each position, execute the
decoding algorithm, and apply VALIDATE(:) to verify the
authenticity of the candidate reconstruction. This ap-
proach is ill-fated: the decoder is successful only if it is
lucky enough to select the valid symbol in every position.
This event has probability 2—1_f , and in the worst case, the
decoder will produce 2"~* candidate reconstructions be-
forethevalid oneis found.

2.5. Threat model

We assume that an adversary can observe, inject, mod-
ify, delay, and drop traffic in the channel between the
sender and receiver. An adversary could be a compro-
mised router on the path between the sender and receiver,
for example.

Denial of serviceattacks DoS attackstake many forms,
depending on the resource they are trying to exhaust. An
adversary can attack the sender, the network infrastruc-
ture between sender and receiver, and the receiver. In the
broadcast setting, the sender does not accept any datafrom
the network, so we will assume that the sender is not sus-
ceptible to DoS attacks. We also do not consider band-
width exhaustion attacks, as they are outside of the scope
of this paper. A receiver has little recourse if its last hop



router dropsall itstraffic or thousands of zombie machines
flood and overload its last hop link. To recover from these
attacks, receiversmust rely on help from theinfrastructure
to detect the problem and take appropriate action. Recent
research results address these challenges [2, 3, 10]. How-
ever, we must consider DoS attacks against the receiver’s
computation and storage resources. An attacker should
not be able to exhaust these resources to cause DoS.

The attack factor is the ratio of the bandwidth of in-
jected invalid traffic to the bandwidth of valid traffic. For
example, an attack factor of five implies that for every
1000 bytes of legitimate transmitted data, an adversary
injects 5000 bytes of invalid data. We are primarily in-
terested in medium bandwidth pollution attacks, e.g., up
to an attack factor of ten. We assume that beyond these
values, the adversary will saturate the channel and cause
large packet loss within the network.

2.6. Cryptographic primitives

Universal one-way hash functions We assume the ex-
istence of families of universal one-way hash functions
(UOWHFs) [19]. UOWHFs satisfy a property known as
target collision-resistance (TCR) [7]. U is called a fam-
ily of UOWHFsif for all polynomial-time adversaries A,
A has low probability in winning the following game: A
first chooses a message M, and then A is given a ran-
dom h(-) € U. Towin, A must output M’ # M such
that h(M’') = h(M). This differs from any collision-
resistance (ACR), in which the adversary has the freedom
to choose both M and M’ after sheis given h(-). TCR
has two advantages over ACR: (1) Since TCR isaweaker
notion, it is believed to be easier to achieve in concrete
instantiations. (2) Since M is specified before the hash
function h(-), birthday paradox attacks to find collisions
do not directly apply, and the hash output can be half the
size of an ACR hash function.

In the multicast setting, adopting TCR alows adver-
saries to have complete control over the underlying data
in a stream, but only before transmission starts. If this
assumption does not hold, we must replace most applica-
tionsof TCR hash functionswith ACR hash functions, and
that would increase our overhead by afactor less than two.
For the remainder of this paper, we assume all collision-
resistant hash functionsare TCR.

Merkle hash trees Merkle hash trees[17] are a mecha-
nism for computing asingle cryptographically secure hash
digest over a set of dataitems. Merkle hash trees are con-
structed in the following manner. Let i(-) be a collision-
resistant hash function and let S = {s1,$2,...,8,} be
a set of data items. For the sake of simplicity, suppose
that n = 2¢~! for ¢ > 1. Then, we construct an ¢-level
complete binary tree using the hashes of the data items,

Figure 1. Merkle Hash Trees.

Each leaf node h; is calculated by taking the hash of
the corresponding data item s;, and each internal node
is computed by taking the hash of the concatenation
of its two children. The shaded nodes h4, h; 2, and
hs.g form a verification sequence of s3. Given the leaf
element s3 and its verification sequence, one can re-
construct and verify the root value g by computing
}L(}L(}LLQ, h(h(53), h4)), h5’8).

h; = h(s;), asleaves. Each interna node of thetreeisthe
hash of the concatenation of its two children, as in Fig-
ure 1.

Merkle hash trees have several nice properties. Each
internal node h; ; can be viewed as a hash digest of the
dataitems s;, si+1, - . ., sj, and theroot of the tree can be
viewed as the hash of the whole set S. If the verifier can
verify the authenticity of the root value, for example with
a signature, and has al of the data items over which the
tree was constructed (and the corresponding positions),
she can verify the authenticity of every data item by re-
constructing the hash tree and comparing the computed
root value with the authenticated root value.

However, the data items are not individually verifiable;
to recalculate the root value, the entire set .S is needed. To
make each s; individually verifiable, it must be augmented
with additional verification information. Given an item s,
a verifier can recalculate the root of the tree if it also has
the “sibling” nodes on the path from A(s) to the root of
the tree. We refer to this sequence of nodes as the ver-
ification sequence of s. For example, in Figure 1, given
element s3 and its verification sequence (ha4, hi 2, hs8)
(the shaded nodes), one can reconstruct and verify the root
value hy s by computing h(h(hy 2, h(h(s3), ha)), hs ).
In general, each verification sequence requires 6(log(n))
space, and the associated root value can be reconstructed
with #(log(n)) hash operations.



3. Distillation Codes

We need a new coding scheme to address polluted era-
sure channels. We define

DISTILLATION CODING:

An (n,t) distillation code encodes amessage D into a
set of n symbols S = {s1, $2,..., s, } and transmits
them over a polluted erasure channel. The code should
satisfy the following properties:

Authenticity The distillation decoder should never
output an invalid reconstruction.

Correctness Supposefor somevalid D, T' contains at
least n — ¢ valid symbols of D. Then execution
of the distillation decoder on 7" will output avalid
reconstruction.

Wefirst present and analyze three naive distillation codes.

3.1. Three strawman schemes

Decode all possibilities One simple distillation coding
scheme is to modify an erasure decoder to try all possible
combinations of n — ¢ symbolsand apply VALIDATE(:) to
each reconstruction to identify avalid one. If the decoder
receives at least n — ¢ valid symbols of some valid D,
then eventually it will use a combination containing only
valid symbolsof D and output avalid reconstruction. This
approach has a serious problem: an exponential number of
executions of the decoding algorithm are required in the
worst case before a valid reconstruction is found.

Digitally sign every symbol A second approach is to
use a conventional erasure code and digitally sign each
symbol. The decoder authenticates each received sym-
bol and uses only valid symbols in the decoding process.
However, al known signature schemes have at least one
of following problems. (1) In most signature schemes,
generating signatures is expensive. Digitaly signing ev-
ery symbol will overwhelm the computational resources
of the encoder for even modest values of n. (2) Signature
verification can also be expensive. Since, every injected
invalid symbol requires an additiona signature verifica-
tion by the decoder, this creates a potential DoS attack.
(3) Some digital signatures are large (e.g., 128 bytes for
RSA-1024). When the symbol size is relatively small,
including a large signature with every symbol is undesir-
able. (4) Some one-timesignature schemes haverelatively
small signatures and feature fast signature generation and
verification. However, to enable multiple signatures, the
fastest variants require large public keys which are im-
practical to distribute [24, 30]. Some signature schemes

may adequately address one or two of these problems, but
until thereis a signature scheme with short signatures that
arefast to generate and verify with a short public key, dig-
itally signing every symbol is not an option.

Error correctingcodes A third approachisto use error
correcting codes (ECC). An (n,t) ECC encodes D into n
symbols such that the decoder can recover D in the pres-
ence of ¢ atered and e erased symbolsif 2a+e¢ < t. ECC
viewsinvalid symbolssimply as errors. Thisapproach has
several problems. ECC encoding produces longer sym-
bols and ECC decoding is slower than in pure erasure
codes. More seriously, ECC is vulnerable to pollution at-
tacks. Consider an attack similar to the one presented in
Section 2.4, where the decoder has multiple choices for
the symbol to use at a particular position of the input to
the decoding algorithm. If the number of positions with
multiple choicesis > % then ECC decoding will require
exponentia time aswell.

3.2. Our approach

In this section, we introduce an efficient construction
of distillation codes. Before presenting the details of our
construction, we review why the strawman schemes are
impractical and motivate how we address their shortcom-
ings.

Since adversaries can pollute the channel, decoders
must verify the authenticity of reconstructions. The sec-
ond straw man approach guarantees the decoder uses only
valid symbols in the decoding process, but under attack,
verifying every symbol overwhelms the receiver. To re-
duce the number of signature verifications required to ob-
tain avalid reconstruction, we authenticate the reconstruc-
tions rather than the symbols. We partition the symbolsin
away that distills the valid symbols from the invalid ones,
and then decode each of the partitions and authenticate
the resulting reconstructions. Since we only consider par-
titionswith at least n — ¢ symbols, adversaries must inject
at least n — ¢t symbolsto cause an additional decoding and
verification operation. If the decoder receives m symbols,
then it executes at most | -2~ | decoding and verification

n—t

operationsto recover the valid reconstruction.

Partitioning the symbols Suppose, given a set T' con-
taining both valid and invalid symbols, the decoder can
run an agorithm PARTITION SyMBOLS that partitions
the symbolsinto Q@ = {Q1,Qo, ..., Qx} satisfying the
following property:

Definition 1. [Distillation Property] Let T be a set con-
taining invalid and valid symbols. A set of partitions
Q = {Q1,Q2,...,Qi} of T satisfies the Distillation



Property if the following holds: if D = {D : D is valid
and 3¢t € T such that ¢ isa valid symbol of D}, then for
all D € D, one partition contains exactly all the valid
symbolsof D.

The distillation decoder can then erasure decode each
(Q; to obtain a set of candidate reconstructions. Assum-
ing that for some valid D, at least n — t valid symbols
of D were received by the decoder, at least one of these
candidates will be valid and can be found by running
VALIDATE(").

The complete specification for efficient distillation de-
coding is shownin Figure 3. What remains are: (1) an en-
coding algorithm which enables the decoder to partition
the symbols, and (2) an efficient construction of PARTI-
TION SYMBOLS. We describe both in the next section.

3.3. Digtillation encoding using one-way accumu-
lators

Inthis section, we present our implementationsof distil-
lation encoding and the algorithm PARTITION SYMBOLS.
In both constructions we make use of one-way accumula-
tors.

3.3.1 Oneway accumulators

Our construction of PARTITION SYMBOLS relies on a
secure set membership operation. We have aset T' =
{t1,ta,...,t,} Of received symbols and want to parti-
tion T into @ = {Q1,Q2,...,Qx} which satisfies the
Distillation Property. Note that to do this we do not need
to determine if a given symbol is valid. Instead, given a
valid symbol ¢ of some D € D and a set of symbols @,
we would like to determine that ¢ € Q if @ is a set of
valid symbolsof D and ¢ ¢ Q otherwise. If t isaninvalid
symbol and @ is a set of valid symbols, we would like to
determinet ¢ Q.

We build a secure set membership operation by using
one-way accumulators[4, 8, 9, 12, 20, 32]. One-way ac-
cumulators combine a set of inputs into a single value
called an accumulator. Using auxiliary witness informa-
tion, one can authenticate an element as a member of the
set. One-way accumulator schemestypically includethree
functions:®

Accumulate(S)
Witness(s, S)
Verify (s, w, a)

— a
— w
— b

Accumulate(-) takes a set S of values as input and out-
puts its accumulator a. Witness(-, -) takesan s € S and

1For a more rigorous treatment of one-way accumulators, refer to
Benaloh and Mare [8] or Baric and Pfitzmann [4].

the set S and produces a witness w for s. Verify(-, -, -)
takes as input a conjectured element s of S, its wit-
ness w, and an accumulator a of S, and outputs b €
{true, false}. If b = true, we determine s € S. Other-
wises ¢ S.

It must be hard to forge elements of S. That is,
it must be hard to find an s’ ¢ S and w’ such that
Verify(s',w’, Accumulate(S)) = true, even if the at-
tacker has seen other valid (s, w) pairsand a.

In many accumulator schemes, one can recover the ac-
cumulator = Accumulate(S) of aset S given an ele-
ment s € S and its witness w. Let this process be repre-
sented by the function

Recover(s,w) — a.

When Recover(-,-) exists for an accumulator scheme,
Verify(-, -, ) is typicaly implemented by verifying that
Recover(s,w) = a. Inour instantiation of PARTITION
SymMBoLsS, werely on the Recover(-, -) function and use
itinaspecial way. In particular, with Recover(-, -) averi-
fier does not need to know the accumulator « to determine
if two elements s; and s; belong to the same set. It only
needsto verify that Recover(s;, w;) = Recover(s;, w,).
For the sake of brevity, we say that s and w has accumu-
lator value a if Recover(s, w) = a.

3.3.2 Implementing DISTILLATION ENCODE and
PARTITION SYMBOLS

To resist pollution attacks, the distillation encoder must
enable the decoder to digtill the valid symbols of an era-
sure encoding from a larger set of invalid ones. Our en-
coding algorithm accomplishes this by accumulating the
set of valid symbols and then augmenting each symbol
with its witness. The full description of DISTILLATION
ENCODE isgivenin Figure 2.

We can now use the Recover(-,-) algorithm of the
one-way accumulator to implement PARTITION SYM-
BOLS. Recover(-,-) is evaluated for each received sym-
bol/witness pair, and symbols with the same accumul ator
value are put in the same partition. The full specification
of PARTITION SyMBOLS isgivenin Figure 4. For an ad-
versary to causeaninvalid symbol to beplaced in the same
partition as the valid symbols implies that she is able to
break the one-way accumulator scheme, i.e., sheisableto
forge an element of the set protected by the accumulator.

3.3.3 Merklehash treesas a one-way accumulator

Merkle hash trees [17] are attractive one-way accumula
tors for distillation codes.? When Merkle hash trees serve

2There are several one-way accumulator schemes [4, 8, 9, 12, 32]
based on exponentiation modulo an RSA modulus and the (strong) RSA



DISTILLATION ENCODE:

Input: A message D.
Output: An (n,t) distillation encoding of D, represented asaset S = {s1,s2,...,Sn}.

1. Let D’ = TAG(D).

2. Construct an (n, t) erasure encoding (ERASURE ENCODE(-)) of D’. Let S" = {s},s5,...,s),} bethe
resulting symbols.

3. Construct an augmented set of symbols S = {s1,s2,...,5,} Where s; = (s}, w;) and w; =
Witness(s;, S”). Output S.

Figure 2. Our algorithm for distillation encoding.

DISTILLATION DECODE:
Input: AsetT = {t1,to,...,t,} containing valid and invalid symbols.
Output: A valid reconstruction or ERROR.

1. Invoke PARTITION SymBoLSon T, resulting in partitions Q 1, Q2, . .., Q.

2. Throw away all partitions containing less than n — ¢ symbols. Let Q1,Q-, ..., Q, be the remaining
partitions.
3. (a) Forall Q;, replaceeach s = (s’,w) in Q; with s (i.e,, strip off witnessinformation).
(b) Executethe erasure decoding algorithm (ERASURE DECODE(+)) on each @ ;, resulting in candidate
reconstructions R+, Ro, . .., Ry.

4. Run VALIDATE oneachof Ry, Ry, ..., Re. Let V = {R; : VALIDATE(R;) = true}. If V = (), output
ERROR. Otherwise, randomly select an R; from ) and output STRIP(R;).

Figure 3. Our algorithm for distillation decoding.

PARTITION SYMBOLS:

Input: A setT = {t1,ts,...,t,} containing valid and invalid symbols, each augmented with witnesses.
Valid symbolsare from an (n, t) distillation encoding of D.
Output: A set of partitions @ = {Q1, Q2, . .., Qx} of T satisfying the Distillation Property.

1. Initialize Q to theempty list. Let A bealist of accumulator values, initialized to be empty.
2. Fori =1tomdo

(8) Foreacht; = (s;,w;), calculate a = Recover(s;, w;).

(b) If a ¢ A, add a to the end of A and add {(s;, w;)} to the end of Q. Otherwise, there exists an
accumulator a; in A suchthat a = a;. Add (s;, w;) t0 Q.

3. Output Q.

Figure 4. Implementation of PARTITION SYMBOLS, using one-way accumulators.




as one-way accumulators [12, 17, 32], the size of wit-
nesses grows logarithmically with the size of the accu-
mulated set. Thisis not a serious problem since Merkle
hash trees rely only on cryptographic hash functions, and
the accumulator and witness generation and recovery al-
gorithms are fast and efficient.

Given aset S = {s1,5s2,...,5,}, we implement the
one-way accumulator operations as follows:

Accumulate(S) —  hip,
Witness(s, S)
Recover(s, v)

— U

— M,

The accumulator value h 1 ,, isthe root value of a Merkle
hash tree constructed over S as described in Section 2.6.
The witness of an element s is the verification sequence v
of s in the same hash tree. Recover(s, v) isimplemented
by reconstructing the candidate root ' ,, of the hash tree
using s and its verification sequence v. Given an authen-
ticated accumulator value h1 ,,, Verify(s, v, hy ) isim-
plemented by verifying 2} ,, = h1 . Using Merkle hash
trees, Accumulate(-) hasrunningtime #(n), and the other
operations have running time 0(log(n)).

Even without an authenticated root, given the corre-
sponding verification sequences v; and v;, we can ver-
ify that two elements s; and s; are elements of the same
set by checking that Recover(s;, v;) = Recover(s;, vj).
This is exactly the property needed to implement Step 2
in PARTITION SymBoLS. Although the decoder cannot
determine if an accumulator value is authentic until Dis-
TILLATION DECODE has completed, Recover(-, -) alows
PARTITION SYMBOLS to create a partitions of valid sym-
bols which contain no invalid ones.

3.4. Security analysis: Pollution resistance of dis-
tillation codes

We prove three security properties of distillation codes:

Authenticity If (TAG(-),VALIDATE(-)) guarantee authen-
ticity, then distillation codes also guarantee authen-
ticity. Thismeansthat DISTILLATION DECODE will
never output invalid reconstructions.

Correctness Suppose VALIDATE(D) = true for al valid
D, and (TAG(-),VALIDATE(:)) guarantee authentic-
ity. If for somevalid D, T containsat least n—t valid

assumption. However, the size of the accumulator and witness are on
the order of the RSA modulus, and the computation required to generate
witnesses and verify elementsisroughly equivalent to signature genera-
tion and verification. We have aready argued that this level of overhead
isinfeasible.

Nyberg [20] proposed a one-way accumulator scheme using only
hashing and pseudorandom number generation based on Bloom filters.
The main drawback of Nyberg's scheme is that the accumulator value
must be on the order of severa thousand bytes.

symbols of D, then the execution of DISTILLATION
DEecobE on T' will output avalid reconstruction.

DoS-resistance Didtillation codes efficiently satisfy the
above properties in the presence of medium band-
width pollution attacks (up to an attack factor of ten).

3.4.1 Authenticity

The authenticity property isthat if (TAG(:),VALIDATE("))
guarantee message authenticity, then DISTILLATION DE-
coDE will never output invalid reconstructions. Thisim-
plies that if DISTILLATION DECODE outputs R, then R
was encoded and sent by the legitimate encoder. We prove
this property in Appendix A.

3.4.2 Correctness

To prove the correctness property, we must show that if
for somevalid D, T' contains at least n — ¢ valid symbols
of D, then the execution of DISTILLATION DECODE on
T will output a valid reconstruction.

Theorem 1. Assume (TAG(-),VALIDATE(-)) guarantees
authenticity of reconstructions, VALIDATE(D) = truefor
all valid D, and the underlying one-way accumulator in
DISTILLATION DECODE resists element forgery. Suppose
T containsat least n —t valid symbols of D for somevalid
D. Then the execution of DISTILLATION DECODE onT'
will output a valid reconstruction.

Proof. Let © = {Q1,...,Qx} bethe set of partitioned
symbols resulting from Step 1 of DISTILLATION DE-
CODE. Recall that the decoder partitions the symbols
such that all the symbolsin @; share the same accumu-
lator value (i.e., there exists a such that for al (s’,w)
in Q;,Recover(s’,w) = a). In paticular, if S’ is
a set of valid erasure code symbols created in Step 2
of DISTILLATION ENCODE applied to D, then for ev-
ery valid distillation code symbol (s’,w) resulting from
Step 3 of DISTILLATION ENCODE, Recover(s’,w) =
Accumulate(S’). Thus one partition, say @, contains
all the valid distillation code symbols of D.

Now we show @, contains no invalid symbols. Sup-
pose, by contradiction, that 2, containsan invalid symbol
(8',w). If a = Accumulate(S”), then Recover(s’, w) =
a, implying Verify(s’,w,a) = true. However, since
s ¢ S, this violates the security condition for element
forgery in one-way accumulators (Section 3.3.1). Thus,
Q,, contains no invalid symbols and al the received valid

symbolsof D.
Since, by assumption |Q,] > n — t, then
D’ = ERASURE DECODE(Q,) is successful. Since

VALIDATE(D') = true, then V # ( (from Step 4 of
DiSTILLATION DECODE), and the authenticity property



of distillation codes implies V contains no invalid recon-
struction. Therefore, DISTILLATION DECODE outputs a
valid reconstruction. O

3.4.3 DoS-resistance

In this section, we show distillation codes can efficiently
satisfy the authenticity and correctness properties in the
presence of medium bandwidth pollution attacks. This
means an adversary cannot cause resource exhaustion de-
nial of service attacks against the receivers.

Computational DoS-resistance We first prove an
upper bound on the extra computation an adversary
can cause with a pollution attack with attack factor f.
Consider the three expensive operations in distillation
decoding: hash function applications, erasure decodings,
and VALIDATE(-) executions.

Theorem 2. In DISTILLATION DECODE, the most com-
putation an adversary can cause with a pollution attack
with attack factor fis(f+1)-n-(log(n)+ 1) hash func-
tion applications and L%J + 1 erasure decodings and
VALIDATE(-) executions.

Proof. To prove this upper bound, we calculate separate
upper bounds on the number of hash applications and
the number of erasure decodings and VALIDATE(:) exe-
cutions.

(1) Hash function applications. Every received sym-
bol triggers the execution of the accumulator operation
Recover (-, -). With our Merkle hash tree implementation
of one-way accumulators, this requires log(n) + 1 hash
function applications per symbol. Under attack factor f,
thisresultsin (f +1) - n- (log(n) + 1) total hash function
applications.

(2) Erasure decodings and VALIDATE(-) executions:
In the DISTILLATION DECODE algorithm, an erasure
decoding is executed if and only if VALIDATE(:) is
executed. To trigger an additional erasure decoding
and VALIDATE(-) execution, the adversary must cause
DISTILLATION DECODE to create an additional partition
containing at least n — t symbols. Since symbols are
only put into a single partition, creating an additional
partition with at least n — ¢t symbolsrequiresthe adversary
to inject at least n — ¢t symbols. This holds regardless
of the adversary’s attack method. Thus, with attack
factor f, an adversary can create at most | L2 | addi-

n—t

tional partitions, and DISTILLATION DECODE executes at

most L%J + 1 erasure decodingsand VALIDATE(-) calls.

Thus, the most computation an adversary can cause
with a pollution attack with attack factor f is (f + 1) -
n - (log(n) + 1) hash function applicationsand | L2 | +1
erasure decodingsand VALIDATE(-) executions. O

This analysis demonstrates a nice property of distilla-
tion codes. the computational workload of DISTILLATION
DEcCODE scales linearly with the bandwidth of the attack
and is independent of the attack traffic pattern. In Sec-
tion 4, we show why this property of distillation codesis
useful for constructing DoS-resistant multicast authenti-
cation protocols.

To demonstrate what this upper bound means in con-
crete terms, consider the case of a medium bandwidth
atack (f < 10) wheren = 128 and t = 64. Sup-
pose (TAG(:),VALIDATE(-)) are RSA-1024 signature gen-
eration and verification, symbols are roughly the size of
a network packet (1024 bytes), and one message is sent
per second. This corresponds to 128 encoding symbols
per second of valid traffic, or IMb per second. For each
valid message sent by the encoder, the decoder will ex-
ecute at most 11,264 hash function applications and 21
erasure decodings and signature verifications. Thisisrela-
tively insignificant: with these parameters, a 2.4GHz Pen-
tium 4 machine running Linux can compute on average
70,000 1024-byte SHA1 hashes per second, 1700 RSA-
1024 signature verifications per second, and 300 (128,64)
Reed-Solomon decoding operations per second. We con-
firm this analysis experientially in Section 5 with an im-
plementation of distillation codes.

Strong pollution attacks We now demonstrate a pollu-
tion attack which achieves this upper bound. To cause
PARTITION SYMBOLS to create a partition with n — ¢
symbols, the adversary must generate at least n — ¢ sym-
bol/witness pairs that recover to the same accumulator
value. To do this, an adversary generates a set of random
symbols and runs Step 2 of DISTILLATION ENCODE to
augment the symbols with witness values. The adversary
then injects the invalid symbol/witness pairs and repeats
this processatotal of [ L2 | times,

State-holding DoS-resistance We defer analysis of
state holding attacks until Section 4.5.3, wherewe analyze
an application of distillation codes to multicast authenti-
cation.

3.4.4 Messagereordering and replay

The authenticity and correctness properties of distillation
codes by themselves do not prevent replay and reordering



attacks. The correctness property guaranteesthat if the le-
gitimate encoder encodes and sends D over the channel
and the decoder receives at least n — ¢ valid symbols of
D, then DiIsSTILLATION DECODE will output some valid
reconstruction. D is not guaranteed to be the output be-
cause an adversary can replay valid symbols from previ-
ous messages into the decoding process. In the Step 4 of
DISTILLATION DECODE, V might contain multiple valid
reconstructions, and one will be selected randomly as the
output.

A more desirable correctness property is the following:
if T contains at least n — t valid symbols of D, then
DisTiLLATION DECODE will output D. To achieve this,
we must add replay protection to (TAG(-),VALIDATE()).
Most any replay protection mechanism is applicable. For
example, the TAG(-) agorithm can append a monoton-
ically increasing counter to D before authenticating it.
VALIDATE(D) first verifiesthe authenticity of D and then
verifies the counter value is fresh. To handle adversaries
that delay messages (i.e., deliver symbols from multiple
fresh valid messages in a single execution of DISTILLA-
TION DECODE), we can extend DISTILLATION DECODE
to output multiple valid reconstructions.

4. Pollution Resistant Authenticated Block
Streams

Pollution Resistant Authenticated Block Streams
(PRABS) use distillation codes to construct authenticated
multicast streams. PRABS builds on SAIDA (Signature
Amortization using the Information Dispersal Algorithm)
[22], a multicast authentication protocol proposed by
Park, Chong and Siegel which uses erasure codes.
Pannetrat and Molva [21] present a protocol similar to
SAIDA which has less overhead, but is dlightly more
complex. Applying distillation codes to the Pannetrat-
Molva construction results in a protocol with about 10
bytes less of overhead per packet, but for the sake of
simplicity we focus on SAIDA.

SAIDA is a signature amortization scheme. Signature
amortization schemes[11, 18, 21, 22, 26, 33, 35] amortize
the packet overhead and cost of generating and verifying
a signature over many packets by dividing the multicast
stream into blocks. Each block is then authenticated with
asingle digital signature.

Signature amortization schemes differ mainly in their
method for reliably transmitting the signature to the re-
ceivers and individually authenticating each packet in
the block. Previous approaches include hash graphs
[11, 18, 26, 33], the Wong-Lam scheme [35], and erasure
codes[21, 22].

As we discussed in Section 1, these approaches to sig-
nature amortization are vulnerable to pollution attacks,
signature flooding, and adversarial loss patterns. To de-

fend against adversarial |oss patterns, we need a signature
amortization schemethat can tolerate arbitrary packet loss
within a block up to a predetermined number of pack-
ets. SAIDA uses erasure codes to achieve this. How-
ever, SAIDA is vulnerable to pollution attacks. PRABS
combines distillation codes with the basic approach of
SAIDA to resist pollution attacks, signature flooding, and
adversaria loss patterns. Before we present the details of
PRABS, we first review SAIDA and discuss its vulnera-
bilities to pollution attacks.

4.1. SignatureAmortization usingthelnformation
Dispersal Algorithm

In SAIDA, the sender partitions the packet stream into
blocks of n consecutive packets. Let h(-) be a crypto-
graphic hash function, (PKSign(,-), PKVerify(-,-,-))
be a public key signature scheme, and (K puo, Kpriv)
be the public/private keypair of the sender.  Then
for each block P; = p],pj,...,pl, the sender
computes the authentication string H,||Gx,, where
Hy = h@)h@)I.. |lh@h) and Gu, =
PKSign(Kpiv, h(H;)). Given the hash string H; and its
signature G 7, , areceiver can authenticate any pg’ in block
j by verifying PKVerify (Kb, Hj, Gg;) = true and
that h(p!) equals the i-th entry in the hash string H ;.

This process assumes the receiver knows H; and Gy, .
We would like to authenticate every received packet, re-
gardless of theloss pattern of other packetsintheblock. A
naivesolutionistoinclude H; and G i, with every packet,
but thisincurs large packet overhead.

SAIDA constructsan (n, t) erasure code over H ;||G g,
and includes one encoding symbol with each packet in
the block. Each augmented packet takes the form p?||s?,
where p! is the i-th packet in the original block and s7 is
the ¢-th symbol of the erasure encoding. If no morethan ¢
packets are lost in transmission, then the receiver can re-
construct H;||Gx,, verify G g, and authenticate each of
the received packets.

4.2. Pollution vulnerabilitiesin SAIDA

SAIDA is vulnerable to pollution attacks. If a single
invalid symbol is used in the decoding agorithm, it will
fail to reconstruct H;||G g, . Park, Chong, and Siegel pro-
pose using distributed fingerprintsto remedy this problem.
Distributed fingerprints combine erasure codes with error-
correcting codes (ECC) to achieve robustness to sym-
bol modification [14]. In SAIDA, distributed fingerprints
augment each s’ with a symbol from an (n,t) ECC en-
coding of L; = h(s])||h(s3)]|...||h(s}), where h(-)
is a collison-resistant cryptographic hash function and
{s],8%,...,5} are the erasure encoding symbols of
H;||Gx,. The decoder reconstructs L; using ECC de-



coding and verifies a candidate symbol 53 by comparing
h(5?) to the i-th hash valuein L ;.

Park, Chong, and Siegel claim distributed fingerprints
prevent DoSin SAIDA.3 Although distributed fingerprints
can handle symbol modification, they were not designed
to defend against pollution attacks where many invalid
symbols are injected. Since distributed fingerprints rely
on ECC, they are vulnerableto the pollution attacks (Sec-
tion 3.1).

4.3. Using distillation codes to prevent pollution
attacks

We now introduce Pollution Resistant Authenticated
Block Streams (PRABS). PRABS builds on SAIDA, but
uses distillation codes rather than erasure codes to resist
pollution attacks.

In PRABS, the sender partitions the packet stream into
blocks of n consecutive packets, For block j composed of
packets P; = p),p, ..., p), the sender computes H; =
JlReD)IR@)I]- - ||h(p},). We assume each packet in-
cludes its block number and sequence number within the
block. Now, rather than encoding H ;||G'g, withan (n, 1)
erasure code, we use an (n,t) distillation code. More
specifically, the sender applies DISTILLATION ENCODE
toinput D = H;. We define TAG(-), VALIDATE(:), and
STRIP(-) asfollows:

Gp = PKSign(Kpiv, k(D))
Tag(D) = DJ||Gp
VALIDATE(D||Gp) £ if(PKVerify(Kpuw, D, Gp))
parse D as

NIl - - [1h(pn)
if jisfreshreturntrue
return false

STRIP(D||Gp) £ D

Applying DISTILLATION ENCODE to H; resultsin n dis-
tillation code symbols s{, sg, ...,8). The sender then
augments each packet p{ in the block with the corre-
sponding symbol s{ and multicasts the augmented packets
p?||s to the receivers. This process is repeated for each
block.

Let {r7,7],...,r] } betheset of received packets from
block j. Since we assume a polluted erasure channel be-

SFor SAIDA, digital fingerprints are overkill. ECC is typically
more expensive than erasure codes, but the additional cost is only no-
ticeable when the input is large. Digital fingerprints use ECC over
L = h(s1)||h(s2)]|...||h(sn) where the s; are the erasure encoded
symbols of some data D. |L| isrelatively small for modest values of n,
and thus efficient for ECC. However, when | D| isroughly equal to | L],
asitisin SAIDA (for n = 128, |[D| = 1408 vs. |L| = 1280), it is
more efficient to simply use ECC directly on the input D.

tween the sender and the receiver, {r,r},... ri } con-
tains some subset of the authentic packets and some num-
ber of invalid packets injected by the adversary. Since
we are considering pollution attacks on receivers, we
are most interested in the case when |invalid packets| >
|valid packets|. . o
The receiver parses each augmented packet r/ as p?||¢]
where p{ represents an unaugmented packet of block j
and tg represents a symbol of the distillation encoded
authentication information H;. The receiver then ap-
plies DISTILLATION DECODE to the received symbols
{t],t5,...,t2 }. In Step 4, the receiver has a set of can-
didate reconstructions of the form H ;||G'y, and executes
VALIDATE(-) on each one to obtain V, the set of valid re-
constructions. To account for non-malicious delays and
reorderings in the network, we ater DISTILLATION DE-
CODE to output the complete set of valid reconstructions

STRIP(V) 2 {STRIP(R) : R € V}

rather than a single valid reconstruction.

The authenticity property of distillation codes guaran-
teesall H; € STRIP()V) areauthentic, but the receiver still
needs to verify the authenticity of the underlying packet
stream. For each H; € STRIP(V), the receiver needs to
verify the authenticity of all the packets claiming to bein
block j. Recall p] is annotated with its specific position i
in block 7, so the receiver can authenticate p{ by verifying
h(p!) is equal to the i-th value in the hash string H ;.

The above description implicitly assumes the adver-
sary mounts the strong pollution attack described in Sec-
tion 3.4.3 (injecting accumulated random symbol/witness
pairs). However, the adversary may also mount a cut-and-
paste attack where she injects invalid packets augmented
with symbol/witness pairs stripped from the valid pack-
ets. In thefina step of verification described in the pre-
vious paragraph, the receiver may have multiple packets,
say pi,p;”?,p;"” for aposition i that are augmented with
the same valid symbol. Inthis case, the receiver will com-
pute the hash of each of these packets and compare with
the i-th position in the hash string A ; to find the authentic
packet.

For each block, if no more than ¢ out of n authentic
packets are lost in transmission, PRABS can authenticate
al received packets in the block regardless of the pattern
of loss. Furthermore, in contrast to SAIDA, PRABS is
resistant to pollution attacks. The operation of a PRABS
sender and receiver is detailed in Figure 5.

4.4. Practical considerations

Earlier in Section 3, we presented DISTILLATION DE-
CODE asabatch algorithm, wherewefirst collect symbols
and then apply the decoding agorithm to all the symbols.
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(b) PRABS receiver. The PRABS receiver extracts
the distillation code symbols from the received pack-
ets and executes DISTILLATION DECODE. The de-
coder validates the resulting reconstructions, and if
sufficiently many valid packets were received, outputs
the valid authentication string H; for the block. Fi-
nally, the receiver uses H; to authenticate each of the
received packets.

Figure 5. Pollution Resistant Authenticated Block Streams (PRABS)

In practice, and in particular for PRABS, it is more effi-
cient to implement DISTILLATION DECODE asan on-line
algorithm, where the partitions are created dynamically as
symbols arrive over the network. When the size of a par-
tition reachesn — t, it is erasure decoded and validated.

The chief motivation for the on-line agorithm is to
avoid the tough decision of when to apply the batch de-
coding algorithm. Ideally in the batch agorithm, the re-
ceiver should not execute DISTILLATION DECODE until
it is confident it has finished receiving all the packetsin a
particular block. The on-line decoding algorithm avoids
this problem by treating each partition independently and
decoding it only when it becomes sufficiently large. The
only remaining problemis when to rel ease the memory al-
located for partitions that never reach n — ¢ symbols. We
address this problem in Section 4.5.3.

4.5, Security analysis

We analyze the security of PRABS in terms of packet
authenticity, replay protection, and resistance to pollution
attacks using our threat model introduced in Section 2.5.

45.1 Authenticity

Claim 1. If areceiver in PRABSreceivesany n — ¢ valid
packets from block 7, it can verify the authenticity of all
packetsin block j.

Proof. We assume RSA signature generation and verifica-
tion guarantees authenticity of signed messages, and every
receiver has obtained an authentic copy of the legitimate
sender’s public key. We also assume h(-) is collision-
resistant hash function. Then by the authenticity prop-
erty of distillation codes (Section 3.4.1 and Theorem 3 in
Appendix A), every output of DISTILLATION DECODE is
guaranteed to be authentic.

Therefore, if areceiver receives any n — ¢ valid pack-
ets from block 7, then the modified version of DISTILLA-
TION DECODE in Section 4.3 will output the authenticate
hash sting H, = 5||A(p) 1R - (p) o block j.
Given any candidate packet p; fromblock j, areceiver can
verify its authenticity by checking whether i (- ) isequal
to the i-th hash entry in the hash string H ;. An adversary
able to cause areceiver to accept aforged packet p7 # p!
implies sheisableto find acollision on i(-) at p?. O

45.2 Messagereordering and replay

Claim 2. No valid packet in PRABS will be accepted by
a receiver more than once, and for all authenticated re-
ceived packets, a receiver can reconstruct the order in
which they were sent.

Proof. Let j designate a packet’sblock and i designateits
position inthat block. Sincethereisaone-to-onemapping



from (j,) to the valid packets, after H is reconstructed
and p/ is authenticated and accepted, all future copies of
p! can be rejected.

(j,4) also determines a packet’'s order in the stream.
Although an adversary can reorder the delivery of pack-
ets, after areceiver authenticates p?, it can determine the

proper position of p{ in the stream. O

45.3 DoSresistance

Computational DoS-resistance For computational
DoS-resistance, we consider the three expensive oper-
ations in PRABS: hash function applications, erasure
decodings, and signature verifications.

Claim 3. Let b be the bandwidth of PRABSin blocks per
second. Then the most computation an adversary can
cause for receiverswith a pollution attack with attack fac-
tor fisb- (f+1)-(n- (log(n)+ 1)+ n) hash function
applicationsand b - (L%J + 1) erasure decodings and
signature verifications.

Proof. The denial-of-service resistance of PRABS relies
on the DoS-resistance properties of distillation codes. For
each packet a PRABS receiver receives, it extracts one
distillation code symbol and uses it as input to DISTIL-
LATION DECODE. Then by Theorem 2, the adversary can
cause the receiver to executed - (f + 1) - n - (log(n) + 1)
hash function applicationsand b - (L%J +1) erasurede-
codings and signature verifications.

In addition, a receiver must check the authenticity of
each received packet p?. This requires checking whether
h(p!) is equal to the i-th hash entry in H;, resulting in at
most b - (f + 1) - n hash function applications.

Thus, with alegitimate traffic rate of b blocks per sec-
ond and attack factor f, the most computation an ad-
versary can cause for receivers with a pollution attack is
b-(f+1)-(n-(log(n) + 1) + n) hash function applica-
tionsand b - (| £ | 4 1) erasure decodings and signature

n—t

verifications. O

For example, consider the scenario of a 1Mb per second
streamwith b = 1, n = 128, and 1024 byte packets. With
t = 64, hash outputs of 80 bits, and 1024 bit RSA signa-
tures, |(H;||Gg,)| ~ 1408 bytes, and the resulting era-
sure code symbols are approximately 22 bytes. For f =
10, this requires receivers to execute to at most 11,264
22-byte SHA1 hashes per second, 1408 1024-byte SHA1
hashes per second, and 21 erasure decodings and signa-
ture verifications per second. Thisis relatively insignifi-
cant: with these parameters, a2.4GHz Pentium 4 machine
running Linux can compute on average 540,000 22-byte
SHA1 hashes per second, 70,000 1024-byte SHA1 hashes
per second, 1700 RSA-1024 signature verifications per

second, and 3700 (128,64) Reed-Solomon decoding oper-
ations per second. We verify this analysis experimentally
in Section 5 with an implementation of PRABS.

PRABS is resistant to signature flooding attacks be-
cause a signature is distributed among the all packets in
the block. To cause a single additional verification oper-
ation, an adversary must inject at least n — t packets. In
contrast to hash graphs and the Wong-Lam scheme, ad-
versaries can cause an additional verification operation by
injecting a single packet.

State-holding DoS-resistance In addition to computa-
tional DoS attacks, adversaries can launch state-holding
DoS attacks agai nst receivers, attempting to exhaust mem-
ory resources. For example, an adversary could accu-
mulate and inject sets of less than n — ¢ invalid pack-
ets (symbols) for block sequence numbers far into the
future. A naive PRABS receiver will allocate space for
these packets and symbols and wait to receive sufficiently
many symbols to reconstruct the authentication informa-
tion. For invalid block sequence numbers much greater
than the current valid block sequence number, this attack
causes receiversto allocate large amounts of memory held
until the valid sequence numbers catch up to the invalid
sequence humbers.

One solution to this attack is to limit the amount of
memory allocated to PRABS receivers and enforce some
reclamation policy on packet (symbol) buffers. However,
choosing a reclamation policy can be tricky. We need to
be careful legitimate packets awaiting authentication are
not freed prematurely by some clever injection of attack
traffic.

To prove PRABS is resistant to these state-holding
attacks on memory resources, we show an upper bound
on the memory requirements for PRABS receivers to
achieve the same authentication rate of valid packets
under attack as when there is no attack. In our proof, we
assume an upper bound d on the maximum end-to-end
latency delay imposable by an adversary, and the same
upper bound on non-malicious delays normally occurring
within the network. We assume the sending rate of the
stream is r, and the attacker can inject traffic at a rate up
tof-r.

Claim 4. For arate r stream sending n packets each of
size m, attack factor f, and maximum packet delay of d
seconds, if a PRABS receiver allocates at least r - (n -
m/r+d)-(f+1) bytesof memory, it will not discard any
packet that would have been authenticated had there been
an infinite amount of memory available.

Proof. Suppose the PRABS receiver managesits r - (n -
m/r +d) - (f + 1) byte packet cache with a FIFO re-



placement policy. We will show that no packet that would
have been accepted had there been an infinite sized cache
will be discarded. This property will allow usto conclude
that a bounded cache does not affect whether a packet is
accepted or not.

Suppose that there is a legitimate packet p that is about
to be evicted from the cache that would have been ac-
cepted with an infinitely sized cache. Since the receiver
has not authenticated p, p’s partition contains fewer than
n — t symbols. For it to be accepted at some later time,
the PRABS decoder must receive at least one more packet
fromitsblock, sinceall packetsfrom the same block share
accumulator values. But, we know that p hasresidedinthe
cachefor at least (n - m/r + d) seconds. Thisis because
the cache uses a FIFO replacement policy, its total cache
sizeisr-(n-m/r)-(f+1), andtraffic arrives at arate less
than (f+1)-r. But, thelongest transit delay for apacket is
d, and the encoder sends all packets from the same block
withinn-m/r seconds. Thus, the encoder will not receive
any other packet from p’s group after n- m/r + d seconds.
Since p will never be accepted after n - m/r + d seconds,
our assumption that p would have been accepted at some
later timeisfalse, and it is safe to discard p. O

4.6. Securely using smaller hash digests with
UOWHFs

Using a hash function with an 80 bit output to con-
struct the Merkle hash tree in our distillation code results
in10-log(n) bytesof overhead per symbol. Inthissection,
we describe an application of UOWHFs that leveragesthe
real-time nature of multicast to reduce this overhead by
close to a factor of two without affecting authentication
security. This optimization has no significant effect on
PRABS's resistance to pollution attacks.

Recall that with the target collision-resistance (TCR)
model for UOWHFs (Section 2.6), the sender chooses
a particular hash function from a family of TCR hash
functions and informs the receivers of the choice before
transmission begins. If we assume h(-) is a random or-
acle, we can construct a TCR hash function by choosing
arandom salt » and using the first & bits of output from
h,(z) & h(r||z||r). Thisis caled the envelope method
[13]. Assuming h(-) and k are agreed in advance, the
sender only needs to inform the receivers of the random
valuer.

To reduce the overhead of distillation code symbols, we
would like to to use a hash function with a shorter out-
put, say 40 bits, for constructing the Merkle trees. Un-
fortunately, shortening the hash output reduces collision-
resistance. A 40 bit output provides only about O(24°)
security, and an adversary is likely to find a collision on
h.-(+) during the lifetime of along lived stream. However,
there is no reason to necessarily use the same hash func-

tion for every block in PRABS. By revealing a new salt
value r at the start of each block’s transmission, there is
asmall bounded amount of time where finding a collision
on h,(-) is useful. After the receivers have successfully
received and decoded the valid authentication information
for ablock, pollution attacks against that particular block
become impossible.

To take advantage of this optimization, the encoder and
decoder need relatively few changes. The encoder selects
arandom salt r; for block j and uses h.,(-) in the con-
struction of the Merkle hash tree in Step 3 of DISTIL-
LATION ENCODE. To inform receivers of the salt value
r;, the encoder augments each distillation code symbol in
block j with the salt valuer;.

To decode, in Step 2aof PARTITION SYMBOLS, the de-
coder parses each distillation code symbol as (r;, s’, w),
and recovers the accumulator value a = Recover(s’, w)
using h,, (-) as the underlying hash function. To prevent
adversaries from breaking the accumulator by finding col-
lisions using different salt values, Step 2b of PARTITION
SyMBOLS(+) can partition based on both the accumulator
value and the advertised salt value.

Security Analysis  Since we are shortening only the out-
put of the hash function used in the Merkle tree, and not
the output of the hash function used in the authentication
string H;, this change only affects DoS-resistance and not
packet authenticity.

For an adversary to launch a successful pollution attack,
she must find acollision on /., (-) in the Merkle tree over
the symbolsin block j. If the length of salt valuesis suf-
ficiently long to prevent long running attacks that iterate
over all possiblevaluesof r;, then the adversary must wait
until the sender discloses r; before she tries to find a col-
lision in the Merkle tree.

Since collisions are useless after the receivers have re-
ceived all the legitimate packetsin a block, if we assume
adversaries can delay packets by at most d seconds and
each block requires ¢ seconds to send, then we must se-
lect k such that given r, adversaries have low probability
infinding acollisionon h,.(-) ind + ¢ seconds. After this
time, receivers have presumably received and accepted all
the valid packets from the block, and further packets from
that block are rejected.

For block size n, the adversary wins if she finds a col-
lision on any of the n symbolsin a block. If an adver-
sary hashes 2#~1°2(") random values, then she will find a
collision on one of the symbols with non-negligible prob-
ability. For block size n, we must choose & such that
2k—log(n) js an intractable amount of work for massively
parallelized adversaries to complete in d + ¢ seconds.
Suppose n = 128, one block is transmitted per second,
and the maximum adversarial delay is 10 seconds. Given



that a 2.4GHz Pentium IV machine can compute roughly
540,000 instances of 22-byte hash function operations per
second, choosing k£ = 40 bits requires roughly 1450 ma-
chinesto compl etethe necessary work beforethereceivers
have finished receiving the block.

Theremaining questionisthevalueof |r|. If |r| issmall,
adversaries can launch long running attacks which iter-
ate over all values of » and hash 2% random values for
each h,.(-). We can bound the effectiveness of long run-
ning attacks by using a long per stream salt disseminated
to receiversimmediately before transmission, but we till
must be concerned with long running attacks over thelife-
time of the stream. lterating over all possible values of r
requires about O(2!7I+*=1og(n)) work to achieve a non-
negligible success probability, but a birthday attack can
reduce this dightly. By the birthday paradox, if the ad-

versary hashes 2%~1°¢(") random valuesfor 23" values of

r, then the adversary will see a collision after 2 % blocks
with non-negligible probability. For n = 128 and k& = 40,
choosing the |r| = 64 bits requires roughly 25° opera-
tions for an adversary to be successful after 232 |egitimate
blocks have been sent.

We stress again this optimization has no effect on packet
authenticity. The authentication mechanismis unchanged;
hash outputs in the authentication string are 80 bits and
signed by afull strength digital signature. If an adversary
can delay packets more than d seconds or apply massive
computing power to find a collision in the Merkle tree in
less than d seconds, she can only cause denial of service
and cannot violate authenticity.

Overhead reduction The overhead savings of using a
salted hash function constructionin the Merkletreeis sub-
stantial. Using an unsalted hash function with an 80 bit
output results in Merkle hash tree verification sequence
lengthsof 10-log(n) bytes. Using the salted hash function
with a40 bit output and a 64 bit salt value yields verifica
tion sequences of length 5 - log(n) bytes and an additional
8 bytesfor the salt. This provides comparable security for
precomputation attacks and saves (5 - log(n) — 8) bytes
per symbol. We show the overhead savings of salting with
UOWHFsin Figure6.

5. Implementation and M easurements

We implemented PRABS and measured its perfor-
mance. Our goal was to build a multicast authentication
protocol that could efficiently operate even when an adver-
sary sends 10 times as much traffic as the original stream.

The protocol and test harness were implemented in
2,300 lines of C++ code. The sending and receiving ma-
chines each had a 2.4 GHz Pentium 4 processor and 1GB
of RAM. Both machines were running Linux 2.4 kernels
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Figure 6. PRABS packet overhead.

This graph shows the effect of block size on packet overhead
in PRABS using an (n, 5 ) distillation code. The total packet
overhead is (10 - n + |G|) - 2 + log(n) - £ + |r| bytes, with a
k bit hash output in the Merkle tree, |r| byte salt, and |G| byte
signature. The plot islog scalewith || = 8 and |G| = 128. We
show the savings of salting and 40 bit hash outputsin the Merkle
treevs. no salting and 80 bit outputs. For smaller block sizes, the
erasure encoding dominates the overhead, but becomes small as
n grows. For larger n, the witness information for each symbol
dominates.

and gcc 2.95. They are connected by a 100 Mb/s low-
latency switched network. We relied on the OpenSSL
library[1] for cryptographic functions and a Rizzo's era-
sure code library[31]. We used RSA-1024 for the TAG(+)
and VALIDATE(+) agorithms. We used the SHA1 crypto-
graphic hash function with 40 bit outputs (Section 4.6) for
the Merkle tree and 80 hit outputs for the authentication
string.

The server sent a stream of data packets at a variety of
rates and attack factors. We measured the receiver load
when receiving two streams. 1Mb per second and 4Mb
per second. Our PRABS stream used 128 packet blocks,
where each packet had a 1024 byte data payload. For
each stream, we looked at attack factors between 0 and
10. With attack factor 10 against the 4Mb/s stream, the at-
tacker injects 40Mb/s of attack traffic. Recall that the ad-
versary only needsto inject 64 packets to induce a decode
operation; by injecting 72 packets, the adversary ensures
that 64 packetswill arrive at the receiver and can cause the
receiver to process 18 times as many malicious blocks as
legitimate blocks.

Our tests measure the performance of the client under
the worst case. For example, reconstruction data with a
systemic erasure code is much slower when using the par-
ity packets (packets 64-127). Our adversary inducesaloss
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(a) Processor utilization measured once per second to the nearest
percent at the receiver while receiving a 4Mb per second stream.
During the attack phase, the adversary sends a 10 times as much
malicious traffic as legitimate traffic. This corresponds to 18 times
as many malicious blocks of traffic. Thereceiver's processor utiliza-
tion increases during this phase, but remains below 15%. Outside of
the attack phase, authenticating the stream consumes less than 2%
of the CPU.

5
Attack Factor

(b) Thisgraph illustrates the relationship between processor uti-
lization and the attack factor. Recall that the attack factor is
the bandwidth multiplier of malicious packets that the adversary
injects. The processor utilization exhibits a linear relationship
with respect to the attack factor. Each data point is an average
from 3 separate runs.

Figure 7. Processor utilization while running PRABS.

of 48 legitimate non-parity packets to force the receiver
reconstruct its data using mostly the parity packets. Like-
wise, the adversary choosesto inject parity packetsaswell
to increase the receiver’s load using the strong pollution
attack detailed in Section 3.4.3.

Our first test measured the processor load on the client
as it received a music file. The attacker then began an
injection attack on an existing stream with an attack fac-
tor of 10. We measured the receiver’s process utilization
once per second to the nearest percent. The results for the
4AMbls stream are presented in Figure 7(a). With no at-
tack, the receiver uses only a small fraction of the CPU.
Usually it was measured at 0%, and at al times it was
under 2%. Under heavy attack, the receiver’'s CPU load
increases to 10%, but always remains below 15%. For a
1Mb/s stream, the receiver’s CPU averaged 3.6% during
afactor 10 attack. For both streams, the receiver success-
fully authenticated all received packets.

The second test measured the processor utilization as a
function of the attack factor. We display the resultsfor the
AMb/s streamin Figure 7(b). The graph highlightsthelin-
ear relationship between the processor utilization and the
attack factor, confirming our analysis from Section 3.4.3.

6 Redated Work

TESLA isabroadcast authentication scheme with many
attractive guarantees. authenticity, low overhead, robust-
ness to loss, and DoS resistance [25, 27]. However,
TESLA requirestime synchronization between the sender
and the receiver. For each block, the sender picksthe next
key in a one-way key chain and appends a message au-
thentication code [5] to each packet in that block. The
sender later publishes the key. Receivers validate the key
using the one-way chain and only accept packets authen-
ticated with that key that arrive before it was disclosed.

Previous work has addressed erasure symbol corrup-
tion in the context of distributed storage. Krawczyk pro-
posed distributed fingerprints, an application of error cor-
rection codes (ECC) in conjunction with erasure codes to
detect atered symbols [14]. However, as discussed in
Section 3.1, ECC is aso vulnerable to pollution attacks.
Distributed fingerprints work well when invalid symbols
are guaranteed to replace the valid symbols, but not when
thereis pollution.

Weatherspoon et a. proposed a scheme similar to ours
for detecting corrupted symbolsin the distributed archival
system of Oceanstore [34]. However, similar to dis-
tributed fingerprints, they do not consider pollution at-
tacks where additional invalid symbols are injected into
the decoding process.



7. Conclusion

Didtillation codes enable systems to store or transmit
information that is robust against packet loss, pollution
attacks, and modification of transmitted packets. We
demonstrated the potential of distillation codes by intro-
ducing PRABS, an new DoS-resistant multicast authenti-
cation protocol. PRABS s secure against awide variety of
pollution attacks without requiring significant overhead,
either in the space required to represent symbols or in the
computational effort required to encode and decode mes-
sages. Didtillation codes are fast, general, and secure, but
moreimportant, they are designed to face realistic, hostile
threat models.

We hypothesize that distillation codes are applicable
in a variety of contexts. Consider the example of a dis-
tributed Internet-wide file service. A user wishes to store
a file across multiple untrusted repositories and hopes to
recover his file at a later date. Assume that the user can
not trust any single machine to permanently store the en-
tire file or metadata about the file. One approach is to
divide the origind file into shares, and then sign each of
the shares asthey are distributed to different machines. By
producing shares that store redundant information (along
the lines of secret sharing, the information dispersal algo-
rithm, or erasure codes), we can check to ensure that none
of the shares have been tampered with. However, if share
reconstruction takes place on a heavily loaded file server
that is simultaneously reconstructing many different files,
this may yield an unreasonable load. In contrast, we can
imagine a system that signsthe origina file, and then uses
distillation codesto rapidly reconstruct thefile. Whilefur-
ther investigationis required, we hypothesize that distilla-
tion codes may yield good performance in this situation.
Similarly, other cases where data must be segregated and
then reconstructed may also be fertile ground for explor-
ing the potential of distillation codes.
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A. Security Analysis of Distillation Codes:
Authenticity

We will show that if the TAG(:) and VALIDATE(:) algo-
rithms satisfy integrity of plaintext, then adistillation code
using these algorithms also satisfies integrity of plaintext.
We will adapt Bellare and Namprempre's notion of in-
tegrity of plaintext (INT-PTXT) [6] to the public key set-
ting. Note that their definition was in the context of en-
cryption and decryption algorithms, while we frame ours
in terms of encoding and decoding algorithms.

Definitions & Notation We define a public key encod-
ing scheme PKE = (K,&,D) to consist of three al-
gorithms. The randomized key generation algorithm
takes a natural number £ € N as its security parame-
ter and outputs a public key K pyp and private key Kpiy:

(Kpuos Kpriv) il K (k). The encoding agorithm & uses
the private key K iy to encode a message M into a code-

text C', possibly using a randomization source: C' £
Exyy(M). The decoding algorithm D uses the public
key Kpup to authenticate the codetext C'. It returns a
plaintext if it can authenticate the codetext, or L if it
cannot validate the codetext: P+ «— Dk, (C) where
P+ € {1} uU{0,1}*. For al encoding schemes, we re-
QUi reM = DKpub (ngriv (M))

We now provide an authenticity definition for a public
key encoding scheme PICE(KC, £, D). A verification algo-
rithm D7, takes a codetext and returns a boolean value
indicating whether the decoding was successful:

ALGORITHM Dy : C € {0,1}" — {0,1}
if D,,(C) #L returnl
return 0



We allow an adversary accessto K pp, an encoding ora-
cle, aswell as a verification oracle in order to try to break
the encoding scheme. The adversary is able to violate
the integrity of the encoding scheme if it can produce a
codetext whose plaintext was never passed to the encod-
ing agorithm Eg,,(-). If it is computationaly difficult
for an adversary to produce such a plaintext, the encoding
scheme is said to offer integrity of plaintext, abbreviated
INT-PTXT.

Definition 2. Integrity of a public key encoding scheme

Let PXE(K,E, D) be a public key encoding scheme.
Let £ € N and A be an adversary that has accessto an en-
coding oracle £(-) and a verification oracle D*(-). Then,
consider the following experiment:

EXPERIMENT EXppie 4 1 b € N— {0,1}
(K pub, Kpriv) = K(k)
if ASKW ()P () (k, Kpup) makes aquery
to D, (+) such that:
D, (€) = 1 and D, (C) was
never aquery to £, (+)
thenreturn 1
elsereturn 0
The advantage of the adversary is the probability that the
adversary can produce a query to the decoder that returns
success for which the corresponding plaincode was never
passed to the encoder. Specificaly:

Advpie a(k) 2 Pr [Exppie a(k) = 1]

We define the advantage function of the scheme in terms
of 7, the running time of the adversary, ¢, the number of
queries the adversary makes to the encoding algorithm &£
with total length p., and g4, the number of queriesthe ad-
versary makes to the verification algorithm D* with total
length 114 as:

AdV’P}Cg (ka T, 4e,qd; e, /j/d) é mj‘X{AdV'P}CE,A(k)}

The scheme PKE satisfies INT-PTXT if Advpie, a(k)
is negligible for any adversary A with time-complexity
polynomial in k.

Distillation Codes We now briefly present distillation
codes in the public key encoding framework. Distilla-
tion codes use an underlying public key encoding scheme
PKEY = (KV,EV, DY) that provides integrity protec-
tion. To refer to an instantiation of a particular distillation
code, we write PXCEPY = (KKPC £PC DPC), Thisdis-
tillation code uses the underlying code PXE"Y to provide
integrity protection. The key generation algorithm i P¢
returns a public-private keypair (K 5", K37). Since the
distillation code can decode despite symbol loss, the de-
coding algorithm takes a string composed of either sym-

bolsor L to represent amissing symbol: si|[sy || ... ||s;}
where s € { L, s;}.

We set  to be the input message size; (n,t) represent
the erasure coding parameters. n the number of encoded
symbols per message, and ¢ the maximum number of sym-
bolsthat can belost for successful reconstruction; m to be
the size of the encoded erasure symbols; and f the maxi-
mum attack factor, as defined in Section 2.5. We consider
al of these as fixed parameters for a particular instantia-
tion of PEY.

We abstract distillation code key generation, encoding,
and decoding algorithms from Figures 2 and 3. We define
the algorithm DE(-) to be steps 2-3 of DISTILLATION
ENCODE that erasure encodes the authenticated data and
augments them with the accumulator values. We define
the algorithm DC/(-) to be steps 1-3 of DISTILLATION
DecobDE from Figure 3 that returns a set of candidate re-
constructions.

ALGORITHM KPC - k e N (KRS, KRS)
K «— KV (k)
return K
ALGORITHM 5};’%0 : M € {0,1}" — {s}"
C — DEEY, (M)
return C' ’
ALGORITHM DID<,§,F :Ce{L}u{0,1}™—
{0,137 U {L}
R «— DC(C)
for each R e R
if DY, (R) #Lreturn D}, (R)
priv priv
return L
Theorem 3. If PKEY = (KY,€V,DY) is INT-
PTXT secure, then the distillation code PXEPC
(KPC ePC DPC) isalso INT-PTXT secure.

Proof. Assume that there exists an adversary
Agpc .y p-po(. that can violate the INT-PTXT property
of a distillation code PIEPC. Then, we will provide a
construction for an adversary Bev (.) p«v .y that can break
any INT-PTXT secure encoding scheme PXE Y. In other
words, we will create an adversary B that makes a query
CV toD*V(-) suchthat DV (CV) #1 and DV (CV) was
never aquery to £V (-). We will prove that the advantage
for adversary B will be at least as large as that held by
adversary A.

Advpiepe 4(k) < Advpgev 5(k) D

Furthermore, if A runs in time ¢ using ¢. encoding
queries of total length . and ¢, verification queries
of total length p4, then B will run in the same query
size parameters u. and g making ¢. encoding and <

(L | 4+ 1) qq Vverification queries.

n—t




The adversary B will use the adversary A to break
PKEY. It will emulate the distillation code encoding
and verification process fully so that A will believe that
it is interacting with a true distillation encoder and veri-
fier. Thus, B will take in the security parameter & and a
public key and will output a codetext C'. Specifically:

ADVERSARY Bev () p-v : Kpp x k € N— {0, 1}
fori=1...(qqa + ge) do

when A makesaquery M to its encoding
oracle EPC (),

do A<« DE(EY(M))

when A makesaquery T to its verification
oracle D*PC(.),

do{Ri,...,R;} — DC(T)

forj=1,...,1
if D}‘Esb(Rj) =1
A < 1;return
A<«<=0

Suppose, in the course of its run, adversary A has ad-
vantage o = Advpigpc 4. In other words, it succeeds
in breaking the distillation code in an « fraction of its
executions. Consider such an execution. In this execu-
tion, let C' denote the first query that A makes to the ver-
ification oracle D*P¢(C) for which it has never made
the query £PC(DPY(C)) with DPC(C) #1. By con-
struction of DPC, this means that there exists some R;
and for which DY (R;) #1. Now, to show this violates
the INT-PTXT property of PXEY, we need to verify that
DV (R;) was never a query to to £V (). We know that
DV (R;) = DPY(C) and DPY(C) was never a query
to £PC(.). This means that DV (R;) was never a query
to £Y(-). Thus, the advantage that adversary B has in
breaking PKEY is at least as large as A has in breaking
PKE. Thus we have a contradiction since we assumed
that PKXEY is INT-PTXT, implying that there can be no
adversary that breaks PICE with non-negligible probabil-
ity.

We note that B will make more queries to the decoding
oracle than 4. Since a given codetext can produce many
candidate reconstructions, each of which needs to be val-
idated, B will make more queries to its validation oracle.
In fact, as argued in Section 3.4.3, there will be at most
| L% | + 1 candidate reconstructions. Thus, if .A makes

n—t

¢, validation oracle calls, B will make < (L fn| +1) 4

n—t

validation oracle cadls. O




