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Motivation

Proliferation of collaborative computing
environments that support the execution of coarse-
grain parallel computations on anonymous
machines connected via the Internet (e.g.,
Charlotte, Atlas, Javelin, ParaWeb, Bayanihan,
Popcorn).

To promote large scale participation non-altruistic
market-based schemes have been proposed, but
eflicient mechanisms for verifying the work
performed by the participants have not been

addressed. \¢
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Computing Environment
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Goals

o Transparency: Integration with existing
metacomputing infrastructures should not require
extensive e flort.

o Efficiency: Verification should require significantly
less time than executing the entire task.

o Robustness: “Cheating” workers should be caught
with high probability.







Related Work

o Efficient decompilation techniques (e.g., Mocha)
exist, with typical decompilation time on the order
of milli-seconds.
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o “What can be done can be undone”.



Redundant Computation with Online Voting

o Ineflicient ---- voting schemes incur network
overhead.

o Collaborators can easily sway results.

o Waste of computational resources.
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Computing with Secrets or
E.F.

Detecting misbehavior through mechanisms
that rely on inserting keys within active
content i1s nadequate:

— Since the content distributed must be
readable by a potentially large group ofhosts,
secrets are readable and thus can be easily

recovered or reused.

(> — Encryption schemes with the necessary
4 homomorphic properties (for CEF) do not

Kl ,Z exist.



High Level Overview
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Program Analysis + Code
Transformation
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Control Flow Graph “Checkable” units

Key to instrumentation: (1) Execution ofthese units will be captured in traces

(2) Each trace will correspond to the output of exactly one unit.



Run-time system
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Verification
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Discrete Log Performance Results

runtime system (i.e., remote monitoring)
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Discrete Log Performance Results

(verification)
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Limitations

More than 35% of execution time i1s spent resuming
suspended threads within the remote J VM ---
however, since the Remote Debugging interface has
been unsupported since JDK 1.02, performance
enhancements are unlikely.

Restricted to a set of programs that are “execution
capturable” and have uniquely identifiable units.



