Distributed Execution with
Remote Auditing

Fabian Monrose, Avi Rubin & Peter Wyckoff

< 28
System
Design

P
Motivatioj

(

P~
Performanc

|

-&
verview

’\

-&
onclusio

’\

0)

Motivation

Proliferation of collaborative computing
environments that support the execution of coarse-
grain parallel computations on anonymous
machines connected via the Internet (e.g.,
Charlotte, Atlas, Javelin, ParaWeb, Bayanihan,
Popcorn).

To promote large scale participation non-altruistic
market-based schemes have been proposed, but
eflicient mechanisms for verifying the work
performed by the participants have not been

addressed. \¢
xoh

Computing Environment

Malicious
Worker

]
=]
Cheating _:-' ‘/l\’
Worker Manager £ £ § £ ¢

Goals

o Transparency: Integration with existing
metacomputing infrastructures should not require
extensive e flort.

o Efficiency: Verification should require significantly
less time than executing the entire task.

o Robustness: “Cheating” workers should be caught
with high probability.

Related Work

o Efficient decompilation techniques (e.g., Mocha)
exist, with typical decompilation time on the order
of milli-seconds.

= SN &z
0110101010011 \ __al =

Decompiler Source code

Bytecode

o “What can be done can be undone”.

Redundant Computation with Online Voting

o Ineflicient ---- voting schemes incur network
overhead.

o Collaborators can easily sway results.

o Waste of computational resources.

15

2

.

=

Computing with Secrets or
E.F.

Detecting misbehavior through mechanisms
that rely on inserting keys within active
content i1s nadequate:

— Since the content distributed must be
readable by a potentially large group ofhosts,
secrets are readable and thus can be easily

recovered or reused.

(> — Encryption schemes with the necessary
4 homomorphic properties (for CEF) do not

Kl ,Z exist.

High Level Overview

SPMD
Task

=

/

Transformed
components

Program
Analysis

4

(£ <=

Manager/Verifier

Worker %
* @

Remote Agent

]
-
]

]

Execution
Traces

Program Analysis + Code
Transformation

o

state 1

1 (initialization)

> R] state i+1

state n

—
|:| (creates output)

, !

Control Flow Graph “Checkable” units

Key to instrumentation: (1) Execution ofthese units will be captured in traces

(2) Each trace will correspond to the output of exactly one unit.

Run-time system

Manager
—

-
g
2
+
Q
(]
g
=
o
O

join request

=>

remote agent
work request

<=
=

task

Virtual Machine

Worker

oD
<
&
o
=
)
a2

Virtual Machine

Verification

Verifier
\ .
e _ o e Load image and
f@ F reconstruct stack
Remote
Agent

‘@ Execute same

step locally

Compare states in remote {
and local call stacks.

2 biasedContinue
. & . coin toss

[3) e

e}

Penalize worker Reward worker

Discrete Log Performance Results

runtime system (i.e., remote monitoring)

1600+
1400+
1200+
1000+

Seconds 800-
600

400-

ﬁ 2001

O_

Sequential 1 2 4 6 8 10 12
Number of Workers

B 100%
m 10%

Discrete Log Performance Results

(verification)

300
250 -

2 200

Secands 150 -
100 -
0 -

10 12

Nunba o Warkers

0)

Limitations

More than 35% of execution time i1s spent resuming
suspended threads within the remote J VM ---
however, since the Remote Debugging interface has
been unsupported since JDK 1.02, performance
enhancements are unlikely.

Restricted to a set of programs that are “execution
capturable” and have uniquely identifiable units.

