
Document Structure Integrity: A Robust Basis for Cross-site Scripting Defense

Yacin Nadji∗

Illinois Institute of Technology

Chicago, IL, USA

yacin@ir.iit.edu

Prateek Saxena

University of California

Berkeley, CA, USA

prateeks@eecs.berkeley.edu

Dawn Song

University of California

Berkeley, CA, USA

dawnsong@cs.berkeley.edu

Abstract

Cross-site scripting (or XSS) has been the most domi-

nant class of web vulnerabilities in 2007. The main under-

lying reason for XSS vulnerabilities is that web markup and

client-side languages do not provide principled mechanisms

to ensure secure, ground-up isolation of user-generated

data in web application code. In this paper, we develop

a new approach that combines randomization of web ap-

plication code and runtime tracking of untrusted data both

on the server and the browser to combat XSS attacks. Our

technique ensures a fundamental integrity property that pre-

vents untrusted data from altering the structure of trusted

code throughout the execution lifetime of the web applica-

tion. We call this property document structure integrity (or

DSI). Similar to prepared statements in SQL, DSI enforce-

ment ensures automatic syntactic isolation of inline user-

generated data at the parser-level. This forms the basis for

confinement of untrusted data in the web browser based on

a server-specified policy.

We propose a client-server architecture that enforces

document structure integrity in a way that can be imple-

mented in current browsers with a minimal impact to com-

patibility and that requires minimal effort from the web de-

veloper. We implemented a proof-of-concept and demon-

strated that such DSI enforcement with a simple default pol-

icy is sufficient to defeat over 98% of the 5,328 real-world

reflected XSS vulnerabilities documented in 2007, with very

low performance overhead both on the client and server.

1 Introduction

Cross-site scripting (XSS) attacks have become the most

prevalent threat to the web in the last few years. Accord-

ing to Symantec’s Internet Threat Report, over 17,000 site-

specific XSS vulnerabilities have been documented in 2007

alone, which constitute over 4 times as many as the tradi-

∗This work was done while the author was visiting UC Berkeley.

tional vulnerabilities observed in that period [36]. Web Ap-

plication Security Consortium’s XSS vulnerability report

shows that over 30% of the web sites analyzed in 2007 were

vulnerable to XSS attacks [42]. In addition, there exist pub-

licly available XSS attack repositories where new attacks

are being added constantly [43].

Web languages, such as HTML, have evolved from light-

weight mechanisms for static data markup, to full blown

vehicles for supporting dynamic code execution of web ap-

plications. HTML allows inline constructs both to embed

untrusted data and to invoke code in higher-order languages

such as JavaScript. Due to their somewhat ad-hoc evolu-

tion to support demands of the growing web, HTML and

other web languages lack principled mechanisms to sepa-

rate trusted code from inline data and to further isolate un-

trusted data (such as user-generated content) from trusted

data. As a result, web developers pervasively use fragile

input validation and sanitization mechanisms, which have

been notoriously hard to get right and have lead to numerous

subtle security holes. We make the following observations

explaining why it is not surprising that XSS vulnerabilities

plague such a large number of web sites.

Purely server-side defenses are insufficient. Server-side

validation of untrusted content has been the most commonly

adopted defense in practice, and a majority of defense tech-

niques proposed in the research literature have also fo-

cused on server-side mitigation [3, 44, 5, 16, 25, 22]. A

common problem with purely server-side mitigation strate-

gies is the assumption that parsing/rendering on the client

browser is consistent with the server-side processing. In

practice, this consistency has been missing. This weak-

ness has been targeted by several attacks recently. For ex-

ample, one such vulnerability [34] was found in Facebook

in 2008. The vulnerability is that the server-side XSS fil-

ter recognizes the “:” character as a namespace identifier

separator, whereas the web browser (Firefox v < 2.0.0.2)

strip it as a whitespace character. As a result, a string such

as

is interpreted by the browser as <img src=‘‘...’’

Browser # Attacks

Internet Explorer 7.0 49

Internet Explorer 6.0 89

Netscape 8.1-IE Rendering 89

Netscape 8.1-Gecko Rendering 47

Firefox 2.0 45

Firefox 1.5 50

Opera 9.02 61

Netscape 4 5

Figure 1: XSS attacks vary significantly from browser to

browser. A classification of 92 publicly available XSS at-

tacks showing the diversity in the number of attacks that

affect different web browsers [12].

onload=attackcode>, which executes attackcode

as a JavaScript code. In contrast, the Facebook XSS filter

fails to recognize the attack string attackcode as code

altogether. In general, it is problematic to expect the web

server to accurately validate input data consistently with

the browser, because actual browser behavior varies with

browser implementation quirks and user configuration set-

tings. Figure 1 highlights the diversity in the range of at-

tacks that a user may be susceptible to depending on the

browser implementation being used.

Integrity of client-side scripting code is subject to dynamic

attacks. Several attacks target code injection vulnerabili-

ties in client-side scripting code which processes untrusted

data in an unsafe manner during its execution. Such attacks

subvert the integrity of dynamic operations performed by

web applications in the browser. Automatic XSS detection

tools which employ server-side static analysis [22] or run-

time analysis [44] are designed to identify attacks that tar-

get integrity of HTML code alone; these tools are severely

handicapped as they do not model semantics of a diverse

set of client-side languages supported by the browser. With

the increasing popularity of AJAX applications such XSS

vulnerabilities are a serious threat for Web 2.0 applications.

The onus of eliminating such vulnerabilities places heavy

burden on web developers who are ill-equipped to robustly

detect them before deployment. One example of attacks that

target dynamic processing of untrusted content by client-

side JavaScript is the vulnerability [20] in the OnlineNow

mechanism of MySpace.com web application. The Onli-

neNow mechanism provides dynamic online/offline status

of a user’s friends on MySpace. The vulnerability allows an

attacker “friend” to place a crafted <div> tag below his/her

picture, which when viewed by a victim causes a JavaScript

eval statement to execute the attacker’s code. Such vul-

nerabilities are not targeted at lack of validation in server-

side scripting code (such as PHP); rather they target web

application code written in client-side scripting languages.

XSS attacks are not limited to JavaScript injection and

cookie-stealing. Attackers need not use JavaScript as a

vector for script based attacks — attack vectors can be based

on Flash (ActionScript), QuickTime, VBScript, CSS, XUL

and even languages supported by web browser extensions.

For instance, XSS attacks were demonstrated using certain

features of the PDF language supported by Adobe Acrobat

Reader plugin for the web browser [29]. Another observa-

tion worthy of note is that XSS vulnerabilities can result in

damage well beyond automatic password or cookie theft.

One compelling example of an attack that does not target

cookie theft, is the recent XSS vulnerability on a banking

web site reported by Netcraft [26]. Fraudsters exploited this

vulnerability for a phishing attack, by injecting a modified

login form (using an iframe) onto the bank’s login page.

This allows the attacker to steal the user’s credentials by

having them manually submit their credentials, rather than

covertly stealing the password via a script.

Content validation is an error-prone mechanism. The

most commonly used mechanism for preventing XSS is val-

idation of untrusted data. Sanitization is one kind of val-

idation which removes possibly malicious elements from

untrusted data; escaping is another form which transforms

dangerous elements so that they are prevented from be-

ing interpreted as special characters. Balzarotti et. al. [3]

showed that sanitization mechanism is often insufficient to

prevent all attacks, especially when web developers use

custom built-in sanitization routines provided by popular

scripting languages such as PHP. In general, there has been

no “one-size-fits-all” sanitization mechanism, as validation

checks change with the policy that the server wishes to en-

force and no single primitive filters out dangerous content

independent of the context where the untrusted data is in-

lined and used.

Defense Requirements. Based on these empirical obser-

vations, we formulate the following four requirements for a

cross-site scripting defense.

1. The defense should not rely on server-side sanitization

of untrusted data; instead it should form a second level

of defense to safeguard against holes that result from

error-prone sanitization mechanism.

2. The defense should confine untrusted data in a manner

consistent with the browser implementation and user

configuration.

3. The defense must address attacks that target server-

side as well as client-side languages.

4. The defense should proactively protect against attacks

without relying on detection of common symptoms of

malicious activity such as cross-domain sensitive in-

formation theft.

Our Approach. In this paper, we develop an approach

that significantly shifts the burden of preventing XSS at-

tacks from the web developer to the web execution plat-

form. Our approach can be implemented transparently in

the web server and the browser requiring minimal web de-

veloper intervention and it provides a second line of defense

for preventing XSS attacks. In our approach, XSS is viewed

as a privilege escalation vulnerability, as opposed to an in-

put validation problem. Sanitization and filtering/escaping

of untrusted content aims to block or modify the content

to prevent it from being interpreted as code. Our approach

does not analyze the values of the untrusted data; instead,

it restricts the interpretation of untrusted content to cer-

tain lexical and syntactic operations—more like a type sys-

tem. The web developer specifies a restrictive policy for

untrusted content, and the web browser enforces the speci-

fied policy.

To realize this system we propose a new scheme, which

uses markup primitives for the server to securely demar-

cate inline user-generated data in the web document, and

is designed to offer robustness in the face of an adaptive

adversary. This allows the web browser to verifiably iso-

late untrusted data while initially parsing the web page.

Subsequently, untrusted data is tracked and isolated as it

is processed by higher-order languages such as JavaScript.

This ensures the integrity of the document parse tree —

we term this property as document structure integrity (or

DSI). DSI is similar to PreparedStatements [9] which pro-

vide query integrity in SQL. DSI is enforced using a fun-

damental mechanism, which we call parser-level isolation

(or PLI), that isolates inline untrusted data and forms the

basis for uniform runtime enforcement of server-specified

syntactic confinement policies.

We discuss the deployment of this scheme in a

client-server architecture that can be implemented with a

minimum impact to backwards compatibility in modern

browsers. Our proposed architecture employs server-side

taint tracking proposed by previous research to minimize

changes to the web application code. We implemented a

proof-of-concept that embodies our approach and evaluated

it on a dataset of 5,328 web sites with known XSS vulnera-

bilities and 500 other popular web sites. Our preliminary

evaluation demonstrates that parser-level isolation with a

single default policy is sufficient to nullify over 98% of the

attacks we studied. Our evaluation also suggests that our

techniques can be implemented with very low false posi-

tives, in contrast to false positives that are likely to arise due

to fixation of policy in purely client-side defenses. In com-

parison to existing XSS defenses, DSI enforcement offers a

more comprehensive defense against attacks that extend be-

yond script injection and sensitive information stealing, and

safeguards against both static as well as dynamic integrity

threats.

Summary of Contributions. We outline the contribu-

tions of this paper below.

• We develop a new approach to XSS defense that pro-

vides principled isolation and confinement of inline

untrusted data that has the following distinguishing

features.

– Employs a new markup randomization scheme,

which is similar to instruction set randomiza-

tion [17], to provide robust isolation in the face

of an adaptive attacker.

– Preserves the structural integrity of the web ap-

plication code throughout its lifetime includ-

ing during dynamic updates and operations per-

formed by execution of client-side code.

– Ensures that confinement of untrusted data is

consistent with the browser processing.

– Eliminates some of the main difficulties with

server-side sanitization mechanism.

• We empirically show that DSI enforcement with a sin-

gle default policy effectively thwarts over 98% of re-

flected real-world attack vectors we study. We discuss

how the full implementation of client-server architec-

ture could achieve these gains at very low performance

costs and with almost no false positives.

2 XSS Definition and Examples

An XSS vulnerability is one that allows injection of un-

trusted data into a victim web page which is subsequently

interpreted in a malicious way by the browser on behalf of

the victim web site. This untrusted data could be interpreted

as any form of code that is not intended by the server’s pol-

icy, including scripts and HTML markup. We treat only

user-generated input as untrusted and use the terms “un-

trusted data” and “user-generated data” interchangeably in

this paper. We also refer to content as being either passive,

i.e, consisting of elements derived by language terminals

(such as string literals and integers)– or active, i.e, code that

is interpreted (such as HTML and JavaScript).

Running Example. To outline the challenges of pre-

venting exploits for XSS vulnerabilities, we show a toy

example of a social networking site in Figure 2. The

1: <body>

2: <div id=’WelcomeMess’> Welcome! </div>

3: <div id=’$GET[’FriendID-Status’]’ name=’status’> </div>

4: <script>

5: if($GET[’MainUser’]) {

6: document.getElementById(’WelcomeMess’).innerHTML =

7: "Welcome" + "$GET[’MainUser’]";

8: }

9: var divname = document.getElementsByName("status")[0].id;

10: var Name = divname.split("=")[0]; var Status = divname.split("=")[1];

11: eval("divname.innerHTML = \"" + Name + " is " + Status + "\"");

12: </script>

13: </body>

Figure 2: Running example showing a snippet of HTML pseudocode generated by a vulnerable social networking web site

server. Untrusted user data is embedded inline, identified by the $GET[’...’] variables.

Untrusted variable Attack String

Attack 1 $GET[’FriendID-Status’] ’ onmouseover=javascript:document.location="http://a.com"

Attack 2 $GET[’MainUser’] </script><script>alert(document.cookie);</script>

Attack 3 $GET[’FriendID-Status’] Attacker=Online"; alert(document.cookie);+"

Attack 4 $GET[’MainUser’] <iframe src=http://attacker.com></iframe>

Figure 3: Example attacks for exploiting vulnerabilities in Figure 2.

pseudo HTML code is shown here and places where un-

trusted user data is inlined are denoted by elements of

$GET[’...’] array (signifying data directly copied

from GET/POST request parameters). In this example, the

server expects the value of $GET[’MainUser’] to con-

tain the name of the current user logged into the site, and

$GET[’FriendID-Status’] to contain a string with

the name of another user and his status message (“online”

or “offline”) separated by a delimiter (“=”). Assuming no

sanitization is applied, this code has at least 4 places where

vulnerabilities arise, which we illustrate with possible ex-

ploits1 summarized in Figure 3.

• Attack 1: String split & Attribute injection. In this at-

tack, the untrusted $GET[’FriendID-Status’]

variable could prematurely break out of the id at-

tribute of the <div> tag on line 3, and inject un-

intended attributes and/or tags. In this particular in-

stance, the attack string shown in Figure 3 closes

the string delimited by the single quote character,

which allows the attacker to inject the onmouseover

JavaScript event. The event causes the page to redirect

to http://a.com potentially fooling the user into

trusting the attacker’s website.

A similar attack is possible at line 7, wherein the at-

tacker breaks out of the JavaScript string literal using

1The sample attacks are illustrative of attacks seen in the past, and are

not guaranteed to work on all browsers. See Figure 1 for more details.

an end-of-string delimiter (") character in the value for

the variable $GET[’MainUser’].

• Attack 2: Node splitting. Even if this server san-

itizes $GET[’MainUser’] on line 7 to disallow

JavaScript end-of-string delimiters, another attack is

possible. The attacker could inject a string to split the

enclosing <script> environment, and then inject a

new script tag, as shown by the second attack string

in Figure 3.

• Attack 3: Dynamic code injection. A more subtle at-

tack is one that targets the integrity of the eval query

on line 11. Notice that JavaScript variable Name and

Status are derived from parsing the untrusted id of

the div element on line 3. Even if the server sanitizes

the $GET[’FriendID-Status’] value for use in

the div element context on line 3 by removing the ’

delimiter, the attacker could still inject code in the dy-

namically generated javascript eval statement. The

vulnerability on line 10 parses the id attribute value

of each div element into separate user name and status

variables, which performs no sanitization for variable

named Status. The attacker can use an attack string

value as shown as the third string in Figure 3 to execute

the arbitrary JavaScript code at line 11.

• Attack 4: Dynamic active HTML update. The at-

tacker could inject active elements inside the <div>

with id WelcomeMess at line 6-7, by using the

fourth attack string in Figure 3 as the value for

$GET[’MainUser’]. This attack updates the web

page DOM 2 tree dynamically on the client side after

the web page has been parsed and the script code has

been executed.

Motivation for our approach. We observe that all of the

attacks outlined in Figure 3 require breaking the intended

structure of the parse tree on the browser. The resulting

parse trees from all attacks are shown superimposed in Fig-

ure 4. It is worth noting that attacks 1 and 2 break the struc-

ture of the web page during its initial parsing by the HTML

and JavaScript parsers, whereas attack 3 and 4 alter the doc-

ument structure during dynamic client-side operations.

If the browser could robustly isolate untrusted data on

the web page, then it can quarantine untrusted data with

respect to an intended policy. In this example, the server

wishes to coerce untrusted nodes to leaf nodes in the parse

tree, by treating them as string literals. This disallows

injection of any language non-terminal (possible active

HTML/JavaScript content) in the web page.

These examples bring out the complexity in defending

against attacks with sanitization alone. To reinforce our ob-

servations, it is easy to understand that server side sanitiza-

tion would be hard to perform in a moderately large appli-

cation. The application developer would need to understand

all possible contexts in which the data could be used with

respect to multiple languages. Sanitization for each kind of

active content varies based on the policy that server wishes

to enforce, and could also vary based on the target browser’s

mechanism for rendering. Attacks need not be JavaScript

based and may target a variety of goals (scripting with Flash

and click fraud3, in addition to sensitive information steal-

ing).

3 Approach Overview

Web pages are parsed by various language parsers that

are part of the web browser into internal parse trees. Un-

der a benign query, the web server produces a web page

that when parsed, results in a parse tree with a certain struc-

ture. This parse tree represents the structure that the web

server aims to allow in the web document, and hence we

term it as the document structure. In our approach, we en-

sure that the browser can identify and isolate nodes derived

from user-generated data, in the parse tree during parsing.

In principle, we whitelist the intended document structure

and prevent the untrusted nodes from changing this struc-

ture in unintended ways. We call the property of ensuring

2DOM is the parse tree for the HTML code of the web page
3Using XSS to trick the user into clicking a “pay-per-click” link or

advertisement through injecting HTML [11].

intended document structure as enforcing document struc-

ture integrity or DSI.

We clearly separate the notion of a confinement policy

from the parser-level isolation mechanism. As in our run-

ning example, web sites often wish to restrict untrusted data

to leaf nodes in the document structure, as this is an effec-

tive way to stop an attacker from injecting active content.

We refer to this confinement policy as terminal confinement,

i.e., confinement of untrusted data to leaves in the document

structure, or equivalently, to strings derived from terminals

in the grammar representing valid web pages. Figure 5 is

the parse tree obtained by DSI enforcement for our running

example.

The server may wish to instruct the browser to enforce

other higher-level semantic policy, such as specifying a re-

stricted sandbox, but this is possible only if the underly-

ing language or application execution framework provides

primitives that prevent an attacker can from breaking out

of the confinement region. For instance, the new pro-

posal of sandbox attributes for iframe tags (introduced

in HTML 5 [40]) defines semantic confinement policies for

untrusted data from another domain. However, it relies on

the iframe abstraction to provide the isolation. Similar

to iframes, DSI forms the basis for higher level policy

specification on web page regions that contain inline un-

trusted data. Our isolation primitives have no dependence

on escaping/quoting or input sanitization for their internal

working, thus making our mechanism a strong second line

of defense for input validation checks already being used in

web application code.

Key challenges in ensuring DSI in web applications. The

high-level concept of terminal confinement has been pro-

posed to defend against attacks such as SQL injection [35],

but HTML differs from SQL in two significant ways.

First, HTML can embed code written in various higher-

order languages which share the same inline data. For

instance, there are both generic (such as JavaScript URI)

and browser-specific ways to invoke functions in VBScript,

XUL, JavaScript, CSS and so on. To account for this dif-

ficulty, we treat the document structure as that implied by

the superimposition of the parse trees obtained from code

written in all languages (including HTML, JavaScript) used

in a web page.

A second distinguishing challenge in securing web ap-

plications, specially AJAX driven applications, is that the

document parse trees can be dynamically generated and

updated on the client side. In real web pages, code in

client-side scripting languages parses web content asyn-

chronously, which results in repeated invocations of dif-

ferent language parsers. To address dynamic parsing,

we treat the document structure as having two different

components—a static component and a dynamic one. A

html

'Welcome!'

bodydiv

onmouseover

script

alert
(document.cookie);

script
div

iframe

Attack 4

Attack 1

Attack 2

www.attacker.com

src

id

'WelcomeMess'

id

div

javascript:document.location=
"http://a.com"

=

divname.innerHTML
"Attacker is
Online";

"alert
(document.cookie);"

Attack 3

=

Figure 4: Coalesced parse tree for the vulnerable web page in Figure 2 showing superimposition of parse trees resulting

from all attacks simultaneously. White node show the valid intended nodes whereas the dark nodes show the untrusted nodes

inserted by the attacker.

web page must have a static document structure, i.e., the

document structure implied by the parse tree obtained from

the initial web page markup received by the browser. Sim-

ilarly, a web page also has a dynamic document structure,

i.e., the structure implied by the set of parse trees created by

different parsers dynamically. To illustrate the distinction,

we point out that attacks 1 and 2 in our running example

violate static DSI, whereas attacks 3 and 4 violate dynamic

DSI.

Goals. Parser-level isolation is a set of mechanisms to

ensure robust isolation of untrusted data in the document

structure throughout the lifetime of the web application.

Using PLI we outline three goals that enforce DSI for a

web page with respect to a server-specified policy, say

P . First, we aim to enforce static DSI with respect to P ,

from the point web page is generated by the server to the

point at which it is parsed into its initial parse trees in the

browser. As a result, the browser separates untrusted data

from trusted data in its initial parse tree robustly. Second,

we aim to enforce dynamic DSI with respect to P in the

browser, across all subsequent parsing operations. Third,

we require that the attacker can not evade PLI by embed-

ding untrusted content that results in escalated interpreta-

tion of untrusted data. These three goals enforce DSI based

on uniform parser-level isolation.

Outline of Mechanisms. We view the operation of encod-

ing the web page in HTML, merely as serialization (or mar-

shaling4) of the content and the static document structure

on the server side, and browser-side parsing of HTML as

the deserialization step. We outline 4 steps that implement

PLI and ensure the document structure is reconstructed by

the browser from the point that the web server generates the

web page.

Server-side. There are two steps that the server takes.

• Step 1—Separation of trusted and user-generated

data. As a first step, web servers need to identify un-

trusted data at their output interface, and should dis-

tinguish it from trusted application code. We make

this assumption to begin with, and discuss some ways

to achieve this step through automatic methods in

Section 5. We believe that this is not an unrealis-

tic assumption—previous work on automatic dynamic

taint tracking [44, 27] has shown that tracking un-

trusted user-generated data at the output interface is

possible; in fact, many popular server-side scripting

language interpreters (such as PHP) now have built-in

support for this. Our goal in subsequent steps is to sup-

plement integrity preserving primitives to ensure that

the server-specified policy is correctly enforced in the

client browser, instead of the sanitization at the server

output interface for reasons outlined in Section 1.

4akin to serialization in other programming languages and RPC mech-

anisms

html

"<iframe
src='www.attacker.com'>

</iframe>

bodydiv script

div

Attack 4 Attack 1

Attack 2

id

'WelcomeMess'
id

'onmouseover=javascript:document.location=
"http://a.com"

"</script><script>alert
(document.cookie);</script>"

=

divname.innerHTML

"Attacker is Online"; alert
(document.cookie);"

Attack 3

Figure 5: Coalesced parse tree (corresponding to parse tree in Figure 4) resulting from DSI enforcement with the terminal

confinement policy—untrusted subtrees are forced into leaf nodes.

• Step 2—Serialization: Enhancement of static struc-

ture with markup. The key to robust serialization is

to prevent embedded untrusted data from subverting

the mechanism that distinguishes trusted code from in-

line untrusted data in the browser. To prevent such

attacks, we propose the idea of markup randomiza-

tion, i.e., addition of non-deterministic changes to the

markup. This idea is similar to instruction set random-

ization [17] proposed for preventing traditional vulner-

abilities.

Browser-side. There are two steps that the browser takes.

• Step 3—Deserialization: Browser-side reconstruction

of static document structure. The web browser parses

the web page into its initial parse tree, coercing the

parse tree to preserve the intended structure. Thus, it

can robustly identify untrusted data in the document

structure at the end of the deserialization step.

• Step 4—Browser-side dynamic PLI. This step is

needed to ensure DSI when web pages are dynamically

updated. In essence, once untrusted data is identified in

the browser at previous step, we initialize it as quaran-

tined and track quarantined data in the browser dynam-

ically. Language parsers for HTML and other higher-

order languages like JavaScript are modified to disal-

low quarantined data from being used during parsing

in a way that violates the policy. This step removes the

burden of having the client-side code explicitly check

integrity of the dynamic document structure, as it em-

beds a reference monitor in the language parsers them-

selves. Thus, no changes need to be made to existing

client-side code for DSI-compliance.

4 Enforcement Mechanisms

We describe the high level ideas of the mechanisms in

this section. Concrete details for implementing these are

described in Section 5.

4.1 Serialization

Web pages are augmented with additional markup at the

server’s end, in such a way that the browser can separate

trusted structural entities from untrusted data in the static

document structure. We call this step serialization, and it is

ideally performed at the output interface of the web server.

Adaptive Attacks. One naive way to perform serializa-
tion is to selectively demarcate or annotate untrusted data
in the web page with special markup. The key concern is
that an adaptive attacker can include additional markup to
evade the isolation. For instance, let us say that we embed
the untrusted data in a contained region with a special tag
that disallows script execution that looks like:

<div class="noexecute">

possibly-malicious content

</div>

...

3 : <div id="J
5367

GET[’FriendId-Status’] K
5367

">

4 : <script>

5 : if (J
3246

GET[’MainUser’] K
3246

) {

...

Figure 6: Example of minimal serialization using random-

ized delimiters for lines 3-5 of the example shown in Fig-

ure 2.

This scheme is proposed in BEEP [15]. As the authors

of BEEP pointed out, this naive scheme is weak because

an adaptive attacker can prematurely close the <div> en-

vironment by including a </div> in a node splitting at-

tack. The authors of BEEP suggest an alternative mecha-

nism that encodes user data as a JavaScript string, and uses

server-side quoting of string data to prevent it from escaping

the JavaScript string context. They suggest the following

scheme:

<div class="noexecute" id="n5"></div>

<script>

document.getElementById("n5").innerHTML =

"quoted possibly-malicious content";

</script>

We point out that it can be tricky to prevent the mali-

cious content from breaking out of even the simple static

JavaScript string context. It is not sufficient to quote the

JavaScript end-of-string delimiters (") – an attack string

such as </script><iframe>...</iframe> perpe-

trates a node splitting attack closing the script environment

altogether, without explicitly breaking out the string con-

text. Sanitization of HTML special characters <,> might

solve this instance of the problem, but a developer may not

employ such a restrictive mechanism if the server’s policy

allows some form of HTML markup in untrusted data (such

as <p> or tags in user content).

Our goal is to separate the isolation mechanism from

the policy. The above outlined attack reiterates that con-

tent server-side quoting or validation may vary depending

upon the web application’s policy and is an error-prone pro-

cess; keeping the isolation mechanism independent of input

validation is an important design goal. We propose the fol-

lowing serialization schemes as an alternative.

Minimal Serialization. In this form of serialization, only

the regions of the static web page that contain untrusted

data are surrounded by special delimiters. Delimiters are

added around inlined untrusted data independent of the con-

text where the data is embedded. For our running example

shown in the Figure 2, the serialization step places these

delimiters around all occurrences of the GET array vari-

ables. If the markup elements used as delimiters are stat-

ically fixed, an adaptive attacker could break out of the con-

finement region by embedding the ending special delimiter

in its attack string as discussed above. We propose an alter-

native mechanism called markup randomization to defend

against such attacks.

The idea is to generate randomized markup values for

special delimiters each time the web page is served, so that

the attacker can not deterministically guess the confining

context tag it should use to break out. Abstractly, the server

appends a integer suffix c, c ∈ C to a matching pair J K
of delimiters enclosing an occurrence of untrusted data, to

generate J
c
K
c

while serializing. The set C is randomly gen-

erated for each web page served. C is sent in a confiden-

tial, tamper-proof communication to the browser along with

the web page. Clearly, if we use a pseudo-random number

generator with a seed Cs to generate C, it is sufficient to

send {Cs, n}, where n is the number of elements in C ob-

tained by repeated invocations of the pseudo-random num-

ber generator. In the Figure 6 , we show the special de-

limiters added to the lines 3-5 of our running example in

Figure 2. One instance of a minimal serialization scheme

is the tag matching scheme proposed in the informal jail

tag[7], which is formally analyzed by Louw et. al. [21].

Full Serialization. An alternative to minimal serializa-

tion is to mark all trusted structural entities explicitly, which

we call full serialization. For markup randomization, the

server appends a random suffix c, c ∈ C, to each trusted ele-

ment (including HTML tags, attributes, values of attributes,

strings) and so on.

Though a preferable mechanism from a security stand-

point, we need a scheme that can mark trusted elements

independent of the context of occurrence with a very fine

granularity of specification. For instance, we need mech-

anism to selectively mark the id attribute of the div ele-

ment of line 3 in the running example (shown in Figure 2)

as trusted (to be able to detect attribute injection attacks),

without marking the attribute value as trusted. Only then

can we selectively treat the value part as untrusted which

can be essential to detect dynamic code injection attacks,

such as attack 3 in Figure 3.

Independently and concurrent with our work, Gundy et.

al. have described a new randomization based full seri-

alization scheme, called Noncespaces [10] that uses XML

namespaces. However, XML namespaces does not have the

required granularity of specification that is described above,

and hence we have not experimented with this scheme. It is

possible, however, to apply the full serialization scheme de-

scribed therein as part of our architecture as well, sacrificing

some of the dynamic integrity protection that is only possi-

ble with a finer-grained specification. We do not discuss

full serialization further, and interested readers are referred

to Noncespace [10] for details.

V −→ J
c
NK

c
{N.mark = Untrusted;}

X −→ Y1Y2 {if (X.mark == Untrusted)

then (Y1.mark = X.mark;

Y2.mark = X.mark;)

else (Y1.mark = Trusted; }
Y2.mark = Trusted;)

Figure 7: Rules for computing mark attributes in minimal

deserialization.

4.2 Deserialization

When the browser receives the serialized web page, it

first parses it into the initial static document structure. The

document parse tree obtained from deserialization can veri-

fiably identify the untrusted nodes.

Minimal deserialization . Conceptually, to perform de-

serialization the browser parses as normal, except that it

does special processing for randomized delimiters J
c
, K

c
. It

ensures that the token corresponding to J
c

matches the token

corresponding to K
c
, iff their suffixes are the same random

value c and c ∈ C. It also marks the nodes in the parse tree

that are delimited by special delimiters as untrusted.

Algorithm to mark untrusted nodes. Minimal deserial-

ization is a syntax-directed translation scheme, which com-

putes an inherited attribute, mark, associated with each

node in the parse tree, denoting whether the node is

Trusted or Untrusted. For the sake of conceptual ex-

planation, let us assume that we can represent valid web

pages that the browser accepts by a context-free grammar G
5.Let G = {V, Σ, S, P} , where V denotes non-terminals,

Σ denotes terminals including special delimiters, S is the

start symbol, and P is a set of productions. Assuming that

C is the set of valid randomized suffix values, the serialized

web page s obeys the following rules:

(a) All untrusted data is confined to a subtree rooted

at some non-terminal N , such that a production, V −→
J
c
NK

c
, is in P .

(b) Productions of the form V −→ J
c1

NK
c2

, c1 6= c2 are

not allowed in P.

(c) ∀c ∈ C, all productions of the form V −→ J
c
NK

c

are valid in P.

The rules to compute the inherited attribute mark are

defined in Figure 7, with mark attribute for S initialized to

Trusted.

Fail-Safe. Appending random suffixes does not lead to ro-

bust design by itself. Sending the set C of random values

5practical implementations may not strictly parse context-free gram-

mars

...

3 : <div id="J
5367

.. J
2222

... K
5367

">

4 : <script>

5 : if (J
3246

.. K
2222

... K
3246

) {

...

Figure 8: One possible attack on minimal serialization, if

C were not explicitly sent. The attacker provides delimiters

with the suffix 2222 to produce 2 valid parse trees in the

browser.

used in randomizing the additional markups adds robustness

against attacker spoofing delimiters.

To see why, suppose C was not explicitly sent in our

design. Consider the scenario where an adaptive attacker

tries to confuse the parser by generating two valid parse

trees. In Figure 8 the attacker embeds delimiter J2222 in

GET[’FriendId-Status’] and a matching delimiter

K2222 in GET[’MainUser’]. There could be two valid

parse trees—one that matches delimiters with suffix 5367

and 3246, and another that matches the delimiters with suf-

fix 2222. Although, the browser could allow the former to

be selected as valid as delimiter with 5367 is seen first ear-

lier in the parsing, this is a fragile design because it relies

on the server’s ability to inject the constraining tag first and

requires sequential parsing of the web page. In practice, we

can even expect the delimiter placement may be imperfect

or missing in cases. For instance in Figure 8, if the special

delimiters with suffix 5367 were missing, then even if the

server had sanitized GET[’FriendId-Status’] per-

fectly against string splitting attack (attack 1 in Section 2),

the attacker possesses an avenue to inject a spurious de-

limiter tag J2222. All subsequent tags placed by the server

would be discarded in an attempt to match the attacker pro-

vided delimiter. The attacker’s ability to inject isolation

markup is a weakness in the mechanism which does not ex-

plicitly send C. The informal <jail> proposal may be

susceptible to such attacks as well [7]. Our explicit com-

munication of C alleviates this concern.

4.3 Browser­side dynamic PLI

Once data is marked untrusted, we initialize it as quar-

antined. With each character we associate a quarantine bit,

signifying whether it is quarantined or not. We dynamically

track quarantined metadata in the browser. Whenever the

base type of the data is converted from the data type in one

language to a data type in another, we preserve the quaran-

tine bit through the type transformation. For instance, when

the JavaScript code reads a string from the browser DOM

into a JavaScript string, appropriate quarantine bit is pre-

served. Similarly, when a JavaScript string is written back

to a DOM property, the corresponding HTML lexical enti-

ties preserve the dynamic quarantine bit.

Quarantine bits are updated to reflect data dependences

between higher-order language variables, i.e. for arithmetic

and data operations (including string manipulation), the

destination variable is marked quarantined, iff any source

operand is marked quarantined. We do not track control

dependence code as we do not consider this a significant

avenue of attack in benign application. We do summa-

rize quarantine bit updates for certain functions which result

in data assignment operations but may internally use table

lookups or control dependence in the interpreter implemen-

tation to perform assignments. For instance, the JavaScript

String.fromCharCode function requires special pro-

cessing, since it may use conditional switch statement or a

table-lookup to convert the parameter bytes to a string ele-

ments. In this way, all invocations of the parsers track quar-

antined data and preserve this across data structures repre-

senting various parse trees.

Example. For instance, consider the attack 3 in our ex-

ample. It constructs a parse tree for the eval statement as

shown in Figure 4. The initial string representing the ter-

minal id on line 3 is marked quarantined by the deserial-

ization step. With our dynamic quarantine bit tracking, the

JavaScript internal representation of the div’s id and vari-

ables divname, Name and Status are marked quaran-

tined. According to the terminal confinement policy, during

parsing our mechanism detects that the variable Status

contains a delimiter non-terminal “;”. It coerces the lexeme

“;” to be treated a terminal character rather than interpret-

ing it as a separator non-terminal, thus nullifying the attack.

5 Architecture

In this section, we discuss the details of a client/server ar-

chitecture that embodies our approach. We first outline the

goals we aim to achieve in our architecture and then outline

how we realize the different steps proposed in Section 4.

5.1 Architecture Goals

We propose a client-server architecture to realize DSI.

We outline the following goals for web sites employing

DSI enforcement, which are most important to make our

approach amenable for adoption in practice.

1. Render in non-compliant6 browsers, with minimal im-

pact. At least the trusted part of the document should

render as original in non-compliant browsers. Most

user-generated data is benign, so even inlined un-

trusted data should render with minimal impact in non-

compliant browsers.

6Web browsers that are not DSI-compliant are referred to as non-

compliant

2. Low false positives. DSI-compliant browsers should

raise very few or no false positives. A client-server ar-

chitecture, such as ours, reduces the likelihood of false

positives that arise from a purely-client side implemen-

tation of DSI (see Section 7).

3. Require minimal web application developer effort. Au-

tomated tools should be employed to retrofit DSI

mechanisms to current web sites, without requiring a

huge developer involvement.

5.2 Client­Server Co­operation Architecture

Identification of Untrusted data. Manual code refac-

toring is possible for several web sites. Several web mashup

components, such as Google Maps, separate the template

code of the web application from the untrusted data already,

but rely on sanitization to prevent DSI attacks. Our explicit

mechanisms would make this distinction easier to specify

and enforce.

Automatic transformation to enhance the markup gener-

ated by the server is also feasible for several commercial

web sites. Several server side dynamic and static taint-

tracking mechanisms [44, 19, 38] have been developed in

the past. Languages such as PHP, that are most popularly

used, have been augmented to dynamically track untrusted

data with moderate performance overheads, both using au-

tomatic source code transformation [44] as well as manual

source code upgrades for PHPTaint [38]. Automatic mech-

anisms that provide taint information could be directly used

to selectively place delimiters at the server output.

We have experimented with PHPTaint [38], an imple-

mentation of taint-tracking in the PHP 5.2.5 engine, to au-

tomatically augment the minimal serialization primitives for

all tainted data seen in the output of the web server. We en-

able dynamic taint tracking of GET/POST request parame-

ters and database pulls. We disable taint declassification of

data when sanitized by PHP sanitization functions (since we

wish to treat even sanitized data as potentially malicious).

All output tainted data are augmented with surrounding de-

limiters for minimal serialization. Our modifications shows

that automatic serialization is possible using off-the-shelf

tools.

For more complex web sites that use a multi-component

architecture, cross-component dynamic taint analysis may

be needed. This is an active area of research and auto-

matic support for minimal serialization at the server side

would readily benefit from advances in this area. Recent

techniques proposed for program analysis to identify taint-

style vulnerabilities [22, 16] could help identify taint sink

points in larger web application, where manual identifica-

tion is hard. Similarly, Nanda et al. have recently shown

cross-component dynamic taint tracking for the LAMP ar-

chitecture is possible [25].

Communicating valid suffixes. In our design it is suffi-

cient to communicate {Cs, n} in a secure way, where Cs is

the random number generator seed to use and n is the num-

ber of invocations to generate the set C of valid delimiter

suffixes. Our scheme communicates these as two special

HTML tag attributes, (seed and suffixsetlength),

as part of the HTML head tag of the web page. We assume

that the server and the browser use the same implementation

of the psuedo-random number generator. Once read by the

browser, it generates this set for the entire lifetime of the

page and does not recompute it even if the attacker corrupts

the value of the special attributes dynamically. We have ver-

ified that this scheme is backwards compatible with HTML

handling in current browsers, i.e, these special attributes are

completely ignored for rendering in current browsers7.

Choice of serialization alphabet for encoding delimiters.

We discuss two schemes for encoding delimiters.

• We propose use of byte values from the Unicode Char-

acter Database [37] which are rendered as whitespace

on the major browsers independent of the selected

character set used for web page decoding. Our ratio-

nale for using whitespace characters is its uniformity

across all common character sets, and the fact that this

does not hinder parsing of HTML or script in most

relevant contexts (including between tags, between at-

tributes and values and strings). In certain exceptional

contexts where these may hinder semantics of parsing,

these errors would show up in pre-deployment testing

and can easily be fixed. There are 20 such character

values which can be used to encode start and end de-

limiter symbols. All of the characters, as shown in ap-

pendix A, render as whitespace on cuurent browsers.

To encode the delimiters’ random suffixes we could

use the remaining 18 (2 are used for delimiters them-

selves) as symbols. Thus, each symbol can encode 18

possible values, so a suffix ℓ − symbols long, should

be sufficient to yield an entropy of ℓ × (lg(18)) or

(ℓ × 4.16) bits.

It should be clear that a compliant browser can eas-

ily distinguish pages served from a non-compliant web

server to a randomization compliant web server—it

looks at the seed attribute in the <head> element

of the web page. When a compliant browser views a

non-compliant page, it simply treats the delimiter en-

coding bytes as whitespace as per current semantics,

as this is a non-compliant web page. When a compli-

ant browser renders a compliant web page, it treats any

found delimiter characters as valid iff they have valid

suffixes, or else it discards the sequence of characters

7“current browsers” refers to: Safari, Firefox 2/3, Internet Explorer

6/7/8, Google Chrome, Opera 9.6 and Konqueror 3.5.9 in this paper.

as whitespace (these may occur by chance in the origi-

nal web page, or may be attacker’s spoofing attempts).

Having initialized the enclosed characters as untrusted

in its internal representation, it strips these whitespace

characters away. Thus, the scheme is secure whether

the page is DSI-compliant or not.

• Another approach is to use special delimiter tags,

<qtag>, with an attribute check=suffix, as well.

Qtags have a lesser impact on readability of code than

the above scheme. Qtags have the same encoding

mechanism as <jail> tags proposed informally [7].

We verified that it renders safely in today’s popular

browsers in most contexts, but is unsuitable to be used

in certain contexts such as within strings. Another is-

sue with this scheme is that XHTML does not allow

attributes in end tags, and so they don’t render well in

XHTML pages on non-compliant browsers, and may

be difficult to accepted as a standard.

Policy Specification. Our policies confine untrusted data

only. Currently, we support per-page policies that are en-

forced for the entire web page, rather than varying region-

based policies. By default, we enforce the terminal con-

finement policy which is a default fail-close policy. In most

cases, this policy is sufficient for several web sites to de-

fend against reflected XSS attacks. A more flexible policy

that is useful is to allow certain HTML syntactic constructs

in inline untrusted data, such as restricted set of HTML

markup in user blog posts. We support a whitelist of syn-

tactic HTML elements as part of a configurable policy.

We allow configurable specification of whitelisted

HTML construct names through a allowuser tag at-

tribute for HTML <meta> tag which can have a comma-

separated list of allowed tags. For instance, the following

specification would allow untrusted nodes corresponding to

the paragraph, boldface, line break elements, the attribute

id (in all elements) and the anchor element with optional

href attribute (only with anchor element) in parse tree to

not be flagged as an exploit. The following markup renders

properly in non-compliant browsers since unknown markup

is discarded in the popular browsers.

<meta allowuser=’p,b,br,@id,a@href’>

For security, untrusted data is disallowed to define

allowuser tag without exception. Policy development

and standardization of default policies are important prob-

lems which involve a detail study of common elements that

are safe to allow on most web sites. However, we consider

this beyond the scope of this paper, but deem worthy of fu-

ture work.

6 Implementation

We discuss details of our prototype implementation of

a PLI enabled web browser and a PLI enabled web server

first. Next, we demonstrate an example forum application

that was deployed on this framework requiring no changes

to application code. Finally, we outline the implementation

of a web proxy server used for evaluation in section 7.

DSI compliant browser. We have implemented a proof-

of-concept PLI enabled web browser by modifying Kon-

queror 3.5.9. Before each HTML parsing operation, the

HTML parsing engine identifies special delimiter tags. This

step is performed before any character decoding is per-

formed, and our choice of unicode alphabet for delimiters

ensures that we deal with all character set encodings. The

modified browser simulates a pushdown automaton during

parsing to keep track of delimiter symbols for matching.

Delimited characters are initialized as quarantined, which

is represented by enhancing the type declaration for the

character class in Konqueror with a quarantine bit. Parse

tree nodes that are derived from quarantined characters are

marked quarantined as well. Before any quarantined inter-

nal node is updated to the document’s parse tree, the parser

invokes the policy checker which ensures that the parse tree

update is permitted by the policy. Any internal nodes that

are not permitted by the policy are collapsed with their sub-

tree to be treated as a leaf node and rendered as a string

literal.

We modified the JavaScript interpreter in Konqueror

3.5.9 to facilitate automatic quarantine bit tracking and pre-

vented tainted access through the JavaScript-DOM inter-

face. The modifications required were a substantial imple-

mentation effort compared to the HTML parser modifica-

tions. Internal object representations were enhanced to store

the quarantine bits and handlers for each JavaScript opera-

tion had to be altered to propagate the quarantine bits. The

implemented policy checks ensure that quarantined data is

only interpreted as a terminal in the JavaScript language.

DSI compliant server. We employed PHPTaint [38]

which is an existing implementation dynamic taint track-

ing in the PHP interpreter. It enables taint variables in PHP

and can be configured to indicate which sources of data are

marked tainted in the server. We made minor modifications

to PHPTaint to integrate in our framework. By default when

untrusted data is processed by a built-in sanitization rou-

tine, PHPTaint endorses the data as safe and declassifies(or

clears) the taint; we changed this behavior to not declassify

taint in such situations even though the data is sanitized.

Whenever data is echoed to the output we interpose in PH-

PTaint and surround tainted data with special delimiter tags

with randomized values at runtime. For serialization, we

used the unicode characters U+2029 as a start-delimiter.

Immediately following the start-delimiter are ℓ randomly

chosen unicode whitespace characters, the key, from the re-

maining 18 unicode characters. We have chosen ℓ = 10,

though this is easily configurable in our implementation.

Following the key is the end-delimiter U+2028 to signify

the key has been fully read.

Example application. Figure 9(a) shows a vulnerable

web forum application, phpBB version 2.0.18, running on

a vanilla Apache 1.3.41 web server with PHP 5.2.5 when

viewed with a vanilla Konqueror 3.5.9 with no DSI enforce-

ment. The attacker posts a post containing a script tag which

results in a cookie alert. To prevent such attacks, we de-

ployed the phpBB forum application on our DSI-compliant

web server next. We required no changes to the web ap-

plication code to deploy it on our prototype DSI-compliant

web server. Figure 9(b) shows how the attack is nullified

by our client-server DSI enforcement prototype which em-

ploys PHPTaint to automatically mark forum data (derived

from the database) as tainted, enhances it with minimal se-

rialization which enables a DSI-compliant version of Kon-

queror 3.5.9 to nullify the attack.

Client-side Proxy Server. For evaluation of the 5,328

real-world web sites, we could not use our prototype taint-

enabled PHP based server because we do not have ac-

cess to server code of the vulnerable web sites. To over-

come this practical limitation, we implemented a client-side

proxy server that approximately mimics the server-side op-

erations.

When the browser visits a vulnerable web site, the proxy

web server records all GET/POST data sent by the browser,

and maintains state about the HTTP request parameters

sent. The proxy essentially performs content based taint-

ing across data sent to the real server and the received re-

sponse, to approximate what the server would do in the full

deployment of the client-server architecture.

The web server proxy performs a lexical string match

between the sent parameter data and the data it receives

in the HTTP response. For all data in the HTTP response

that matches, the proxy performs minimal serialization (ap-

proximating the operations of a DSI-compliant server) i.e, it

lexically adds randomized delimiters to demarcate matched

data in the response page as untrusted, before forwarding it

to the PLI enabled browser.

7 Evaluation

To evaluate the effectiveness and overhead of PLI and

PLI enabled browsers we conducted experiments with two

configurations. The first configuration consists of running

Figure 9: (a) A sample web forum application running on a vulnerable version of phpBB 2.0.18, victimized by stored XSS

attack as it shows with vanilla Konqueror browser (b) Attack neutralized by our proof-of-concept prototype client-server DSI

enforcement.

our prototype PLI enabled browser and a server running

PHPTaint with the phpBB application. This configuration

was used to evaluate effectiveness against stored XSS at-

tacks. The second configuration ran our PLI enabled web

browser directing all HTTP requests to the proxy web server

described in section 7. The second configuration was used

to study real-world reflected attacks, since we did not have

access to the vulnerable web server code.

7.1 Experimental Setup

Our experiments were performed on two systems—one

ran a Mac OS X 10.4.11 on a 2.0 GHz Intel processor with

2GB of memory, and the other runs Gentoo GNU/Linux

2.6.17.6 on a 3.4 GHz Intel Xeon processor with 2 GB

of memory. The first machine ran an Apache 1.3.41 web

server with PHP 5.2.5 engine and MySQL back-end, while

the second ran the DSI compliant Konqueror. The two ma-

chines were connected by a 100 Mbps switch. We config-

ured our prototype PLI enabled browser and server to apply

the default policy of terminal confinement to all web re-

quests unless the server overrides with another whitelisting

based policy.

7.2 Experimental Results and Analysis

7.2.1 Attack Detection

Reflected XSS. We evaluated the effectiveness against all

real-world web sites with known vulnerabilities, archived

at the XSSed [43] web site as of 25th July 2008, which re-

sulted in successful attacks using Konqueror 3.5.9. In this

Attack Category # Attacks # Prevented

Reflected XSS 5,328 5,243 (98.4%)

Stored XSS 25 25 (100%)

Figure 10: Effectiveness of DSI enforcement against both

reflected XSS attacks [43] as well as stored XSS attack vec-

tors [12].

category, there were 5,328 web sites which constituted our

final test dataset. Our DSI-enforcement using the proxy

web server and DSI compliant browser nullified 98.4% of

these attacks as shown in Figure 10. Upon further analy-

sis of the false negatives in this experiment, we discovered

that 46 of the remaining cases were missed because the real

web server modified the attack input before embedding it

on the web page—our web server proxy failed to recognize

this server-side modification as it performs a simple string

matching between data sent by the browser and the received

HTTP response. We believe that in full-deployment these

would be captured with server explicitly demarcating un-

trusted data. We could not determine the cause of missing

the remaining 39, as the sent input was not discernible in

the HTTP response web page. We showed that the policy

of terminal confinement, if supported in web servers as the

default, is sufficient to prevent a large majority of reflected

XSS attacks.

Stored XSS. We setup a vulnerable version of phpBB

web blog application (version 2.0.18) on our DSI enabled

web server, and injected 30 benign text and HTML based

posts, and all of the stored attack vectors taken from XSS

Figure 12: Increase in CPU overhead averaged over 5 runs

for different page sizes for a DSI-enabled web server using

PHPTaint [38].

cheat sheet [12] that worked in Konqueror 3.5.9. Of the 92

attack vectors outlined therein, only 25 worked in a vanilla

Konqueror 3.5.9 browser. We configured the policy to allow

only <p>, and <a> HTML tags and and href at-

tributes. No modifications were made to the phpBB appli-

cation code. Our prototype nullified all 25 XSS attacks.

7.2.2 Performance

Browser Performance. To measure the browser perfor-

mance overhead, we compared the page load times of our

modified version of Konqueror 3.5.9 and the vanilla version

of Konqueror 3.5.9. We evaluated against the test bench-

mark internally used at Mozilla for browser performance

testing, consisting of over 350 web pages of popular web

pages with common features including HTML, JavaScript,

CSS, and images[24]. No data on this web pages was

marked untrusted. We measured a performance overhead

of 1.8% averaged over 5 runs of the benchmark.

We also measured the performance of loading all the

pages from the XSSed dataset consisting of 5,328, with un-

trusted data marked with serialization delimiters. We ob-

served a similar overhead of 1.85% when processing web

pages with tainted data.

Web page (or code) size increase often translates to in-

creased corporate bandwidth consumption, and is important

to characterize in a cost analysis. For the XSSed dataset, our

instrumentation with delimiters of length ℓ = 10 increased

the page size by less than 1.1% on average for all the web

pages with marked untrusted data.

Server Performance. We measured the CPU overhead

for the phpBB application running on a DSI compliant web

server with PHPTaint enabled. This was done with ab

(ApacheBench), a tool provided with Apache to measure

performance [1]. It is configured to generate dynamic fo-

rum web pages of sizes varying from 10 KB to 40 KB. In

our experiment, 64,000 requests were issued to the server

with 16 concurrent requests. As shown in Figure 12, we

observed average CPU overheads of 1.2%, 2.9% and 3.1%
for pages of 10 KB, 20 KB, and 40 KB in size respectively.

This is consistent with the performance overheads reported

by the authors of PHPTaint [38]. Figure 11 shows a com-

parison between the vanilla web server and a DSI-compliant

web server (both running phpBB) in terms of the percentage

of HTTP requests completed within a certain response time

frame. For 10 concurrent requests, the two servers perform

nearly very similar, wheres for 30 concurrent requests the

server with PHPTaint shows some degradation for complet-

ing more than 95% of the requests.

7.2.3 False Positives

We observed a fewer false positives rate in our stored XSS

attacks experiment than in the reflected XSS experiment.

In the stored experiment, we did not observe any false

positives. In the reflected XSS experiment, we observed

false positives when we deliberately provided inputs that

matched existing page content. For the latter experiment,

we manually browsed the Global Top 500 websites listed

on Alexa [2] browsing with deliberate intent to raise false

positives. For each website, we visited an average of 3

second-level pages by creating accounts, logging in with

malicious inputs, performing searches for dangerous key-

words, as well as clicking on links on the web pages to sim-

ulate normal user activity.

With our default policy, as expected, we were able to in-

duce false positives on 5 of the web pages. For instance, a

search query for the string “<title>” on Slashdot8 caused

benign data to be returned page to be marked quarantined.

We confirmed that these arise because our client-side proxy

server marks trusted code as untrusted which subsequently

raises alarms when interpreted as code by the browser. In

principle, we expect that full-implementation with a taint-

aware server side component would eliminate these false

positives inherent in the client-side proxy server approxi-

mation.

We also report that even with the client-side proxy server

approximation, we did not raise false positives in certain

cases where the IE 8 Beta XSS filter did. For instance, we

do not raise false positives when searching for the string

“javascript:” on Google search engine. This is because our

DSI enforcement is parser context aware—though all occur-

rences of “javascript:” are marked untrusted in the HTTP

response page, our browser did not raise an alert as un-

trusted data was not interpreted as code.

8http://slashdot.org

Figure 11: Percentage of responses completed within a certain timeframe. 1000 requests on a 10 KB document with (a) 10

concurrent requests and (b) 30 concurrent requests.

8 Comparison with Existing XSS Defenses

We outline the criteria for analytically comparing differ-

ent XSS defenses first, and then discuss each of the existing

defenses next providing a summary of the comparison in

Figure 13.

8.1 Comparison Criteria

To concretely summarize the strengths and weaknesses

of various XSS defense techniques, we present a defender-

centric taxonomy of adaptive attacks to characterize the

ability of current defenses against current attacks as well as

attacks in the future that try to evade the defenses. Adaptive

attackers can potentially target at least the avenues outlined

below.

• Browser inconsistency. Inconsistency in assumptions

made by the server and client lead to various attacks as

outlined in the Section 1.

• Lexical Polymorphism. To evade lexical sanitization,

attackers may find variants in lexical entities.

• Keyword Polymorphism. To evade keyword filters, at-

tackers may find different syntactic constructs to by-

pass these. For instance, in the Samy worm [32],

to inject a restricted keyword innerHTML, the at-

tacker used a semantically equivalent construct “eval

(’inner’+’HTML’)”.

• Multiple Injection Vectors. Attacker can inject non-

script based elements.

• Breaking static structural integrity. To specifically

evade confinement based schemes, attacker can break

out of the static confinement regions on the web page.

• Breaking dynamic structural integrity. Attacks may

target breaking the structure of the dynamically exe-

cuting client-side code, as discussed in Section 2.

Defense against each of the above adaptive attack cate-

gories serves a point of comparing existing defenses. In ad-

dition to these, we analytically compare the potential effec-

tiveness of techniques to defend against stored XSS attacks.

We also characterize whether a defense mechanism enables

flexible server-side specification of policies or not. This is

important because fixation of policies often results in false

positives, especially for content-rich untrusted data, which

can be a serious impediment to the eventual deployability

of an approach.

8.2 Existing Techniques

Figure 13 shows the comparative capabilities of exist-

ing defense techniques at a glance on the basis of criteria

outlined earlier in this section. We describe current XSS

defenses and discuss some of their weaknesses.

8.2.1 Purely server-side defenses

Input Validation and sanitization. Popular server side

languages such as PHP provide standard sanitization func-

tions, such as htmlspecialchars. However, the code

logic to check validity is often concentrated at the input in-

terface of the server, and also distributed based on the con-

text where untrusted data gets embedded. This mechanism

serves as a first line of defense in practice, but is not ro-

bust as it places excessive burden on the web developer for

its correctness. Prevalence of XSS attacks today shows that

these mechanisms fail to safeguard against both static and

dynamic DSI attacks.

Techniques BI P MV S DSI D DSI ST FP

Purely Server-side

Input Validation & Sanitization X X X

Server Output browser-independent policies (using taint-tracking) X X X X X

Server Output Validation browser-based policies (XSS-GUARD [5]) X X X X X X

Purely Browser Side

Sensitive Information Flow Tracking X X X X X

Global Script Disabling X X X X X

Personal Firewalls with URL Blocking X X X

GET/POST Request content based URL blocking X X X X

Browser-Server Cooperation Based

Script Content Whitelisting (BEEP) X X X X X

Region Confinement Script Disabling (BEEP) X X X X X

PLI with Server-specified policy enforcement X X X X X X X

BI Not susceptible to browser-server inconsistency bugs

P Designed to easily defeats lexical and keyword polymorphism based attacks

MV Designed for comprehensiveness against multiple vectors and attack goals (Flash objects as scripting vectors,

iframes insertion for phishing, click fraud).

S DSI Designed to easily defeat evasion attacks that break static DSI (attacks such as 1,2 in Section 2).

D DSI Designed to easily defeat evasion attacks that break dynamic DSI (attacks such as 3,4 in Section 2).

ST Can potentially deal with stored XSS attacks.

FP Allows flexible server configurable policies (important to eliminate false positives for content-rich untrusted data)

Figure 13: Various XSS Mitigation Techniques Capabilities at a glance. Columns 2 - 6 represent security properties, and

columns 7-9 represent other practical issues. A ‘X’ denotes that the mechanism demonstrates the property.

Browser-independent Policy Checking at Output. Taint-

tracking [44, 25, 27, 30] on the server-side aims to central-

ize sanitization checks at the output interface with the use

of taint metadata. Since the context of where untrusted data

are being embedded can be arbitrary, the policy checking

becomes complicated especially when dealing with attacks

that affect dynamic DSI. The primary reason is the lack of

semantics of client side behavior in the policy checking en-

gine at the interface. Another problem with this approach

is that the policy checks are not specific to the browser that

the client uses and can be susceptible to browser-server in-

consistency bugs.

Browser-based Policy Checking at Output. To mitigate

the lack of client-side language semantics at the server

output interface, XSS-GUARD [5] employs a complete

browser implementation on the server output. In princi-

ple, this enables XSS-GUARD to deal with both static and

dynamic DSI attacks, at the expense of significant perfor-

mance overheads. However, this scheme conceptually still

suffers from browser inconsistency bugs as a different tar-

get browser may be used by the client than the one checked

against. Our technique enables the primary benefits of XSS-

GUARD without high performance overheads and making

the policy enforcement consistent with the client browser.

8.2.2 Purely client-side defenses

Sensitive information flow tracking. Vogt et. al. propose

sensitive information flow tracking [39] in the browser to

identify spurious cross-domain sensitive information trans-

fer as a XSS attack. This approach is symptom targeted and

limited in its goal, and hence does not lend easily to other

attack targets outlined in the introduction. It also requires

moderately high false positives in normal usage. This stems

from the lack of specification of the intended policy by the

web server.

Script Injection Blocking. Several techniques are focused

on stopping script injection attacks. For instance, the Fire-

fox NoScript extension block scripts globally on web sites

the user does not explicitly state as trusted. Many web sites

do not render well with this extension turned on, and this re-

quires user intervention. Once allowed, all scripts (includ-

ing those from attacks) can run in the browser.

Personal Firewalls with URL blocking. Noxes [18] is a

client-side rule based proxy to disallow users visiting po-

tentially unsafe URL using heuristics. First, such solutions

are not designed to distinguish trusted data generated by the

server from user-generated data. As a result, they can have

high false negatives (Noxes treats static links in the page

as safe) and have false positives [18] due to lack of server-

side configuration of policy to be enforced. Second, they

are largely targeted towards sensitive information stealing

attacks.

GET/POST Request content based URL blocking. Sev-

eral proposals aim to augment the web browser (or a local

proxy) to block URLs that contain GET/POST data with

known attack characters or patterns. The most recent is an

implementation of this is the XSS filter in Internet Explorer

(IE) 8 Beta [14]. First, from our limited experiments with

the current implementation, this approach does not seem

to detect XSS attacks based on the parsing context. This

raises numerous false positives, one instance of which we

describe in Section 7. Second, their design does not allow

configurable server specified policies, which may disallow

content-rich untrusted data. In general, fixed policies on

the client-side with no server-side specification either raise

false positives or tend to be too specific to certain attack vec-

tors (thus resulting in false negatives). Finally, our prelimi-

nary investigation reveals that they currently do not defend

against integrity attacks, as they allow certain non-script

based attack vectors (such as forms) to be injected in the

web page. We believe this is an interesting avenue and a

detailed study of the IE 8 mechanism would be worthwhile

to understand capabilities of such defenses completely.

8.2.3 Client-server cooperative defenses

This paradigm for XSS defense has emerged to deal with

the inefficiencies of purely client and server based mecha-

nisms. Jim et al. have recently proposed two approaches

in BEEP [15]—whitelisting legitimate scripts and defining

regions that should not contain any scripting code.

Whitelisting of legitimate scripts. First, they target only

script-injection based vectors and hence are not designed to

comprehensively defend against other XSS vectors. Sec-

ond, this mechanism does not thwart attacks (such as attack

4 in Figure 3) violating dynamic DSI that target unsafe us-

age of data by client-side code. Their mechanism checks

the integrity and authenticity of the script code before it

executes, but does not directly extend to attacks that deal

with the safety of data usage. Our technique enforces a dy-

namic parser-level confinement to ensure that data is not

interpreted as code in client-side scripting code.

Region-based Script Disabling. BEEP outlined a tech-

nique to define regions of the web page that can not con-

tain script code, which allows finer-grained region-based

script disabling than those possible by already supported

browser mechanisms [28]. First, their isolation mechanism

using JavaScript string quoting to prevent static DSI attacks

against itself. As discussed in Section 4.1, this mechanism

can be somewhat tricky to enforce for content-rich untrusted

data which allows HTML entities in untrusted data. Second,

this mechanism does not deal with dynamic DSI attacks by

itself, because region based script blocking can not be ap-

plied to script code regions.

9 Discussion

DSI enforcement using a client-server architecture offers

a strong basis for XSS defense in principle. However, we

discuss some practical concerns for a full deployment of this

scheme. First, our approach requires both client and server

participation in implementing our enhancements. Though

we can minimize the developer effort for such changes, our

technique requires both web servers and clients to collec-

tively upgrade to enable any protection.

Second, a DSI-compliant browser requires quarantine bit

tracking across operations of several languages. If imple-

mented for JavaScript, this would prevent attacks vectors

using JavaScript, but not against attacks that using other

languages. Uniform cross-component quarantine bit track-

ing is possible in practice, but it would require vendors of

multiple popular third party web plugins (Flash, Flex, Sil-

verlight, and so on) to cooperate and enhance their language

interpreters or parsers. Automatic techniques to facilitate

such propagation and cross-component dynamic quarantine

bit propagation at the binary level for DSI enforcement are

interesting research directions for future work that may help

address this concern.

Third, it is important to account for end-user usability.

Our techniques aim to minimize the impact of rendering

DSI compliant web pages on existing web browsers for ease

of transition to DSI compliance; however, investigation of

schemes that integrate DSI seamlessly while ensuring static

DSI are important. Recent work but Louw et. al. formu-

lates the problem of isolation of untrusted content in static

HTML markup [21]; they present a comparison of prevalent

isolation mechanisms in HTML and show that there is no

single silver bullet. In contrast, we outline techniques that

address static as well as dynamic isolation of untrusted data.

We hope that our work provides additional insight for devel-

opment of newer language primitives for isolation. Finally,

false positives are another concern for usability. We did not

encounter false positives in our preliminary evaluation and

testing, but this not sufficient to rule out its possibility in a

full-deployment of this scheme.

10 Related Work

XSS defense techniques can be largely classified into de-

tection techniques and prevention techniques. The latter

has been directly discussed in Section 8; in this section, we

discuss detection techniques and other work that relates to

ours.

XSS detection techniques focus on identifying holes in

web application code that could result in vulnerabilities.

Most of the vulnerability detection techniques have focused

on server-side application code. We classify them based on

the nature of the analysis, below.

• Static and Quasi-static techniques. Static analysis [13,

16, 23] and model checking techniques [22] aim to

identify cases where the web application code fails to

sanitize the input before output. Most static analy-

sis tools are equipped with the policy that once data

is passed through a custom sanity check, such as

htmpspecialchars PHP function, then the input

is safe. Balzarotti et al. [3] show that often XSS at-

tacks are possible even if the develop performs certain

sanitization on input data due to deficiencies in saniti-

zation routines. They also describe a combined static

and dynamic analysis to find such security bugs.

• Server-side dynamic detection techniques have been

proposed to deal with the distributed nature of the

server side checks. Taint-tracking [44, 5, 27, 30] on the

server-side aims to centralize sanitization checks at the

output interface with the use of taint metadata. These

have relied on the assumption that server side process-

ing is consistent with client side rendering, which is

a significant design difference. These can be used as

prevention techniques as well. Our work extends the

foundation of taint-tracking to client-side tracking to

eliminate difficulties of server-browser inconsistencies

and to safeguard client-side code as well. Some of the

practical challenges that we share with previous work

on taint-tracking are related to tracking taint correctly

through multiple components of the web server plat-

form efficiently. Cross-component taint tracking [25]

and efficient designs of taint-tracking [33, 31, 19] for

server-side mitigation are an active area of research

which our architecture would readily benefit from.

Several other works have targeted fortification of web

browser’s same-origin policy enforcement mechanisms to

isolate entities from different domains. Browser-side taint

tracking is also used to fortify domain isolation [8], as

well as tightening the sharing mechanisms such as iframe

communication[4] and navigation. These address a class

of XSS attacks that arise out of purely browser-side bugs

or weak enforcement policies in isolating web content

across different web page, whereas in this paper, we have

analyzed the class of reflected and stored XSS attacks

only. MashupOS[41] discussed isolation and communica-

tion primitives for web applications to specify trust asso-

ciated with external code available from untrusted source.

Our work introduces primitives for isolation and confine-

ment of inline untrusted data that is embedded in the web

page.

Finally, the idea of parser-level isolation is a pervasively

used mechanism. Prepared statements [9] in SQL are built

on this principle, and Su et al. demonstrated a parser-level

defense technique against SQL injection attacks[35]. As we

show, for today’s web applications the problem is signif-

icantly different than dealing with SQL, as untrusted data

is processed dynamically both on the client browser and

in the web server. The approach of using randomization

techniques has been proposed for SQL injection attacks [6],

control hijacking in binary code [17], and even in infor-

mal proposals for confinement in HTML using <jail>

tag [7, 21]. Our work offers a comprehensive framework

that improves on the security properties of <jail> ele-

ment for static DSI (as explained in Section 4), and provides

dynamic integrity as well.

11 Conclusion

We proposed a new approach that models XSS as a priv-

ilege escalation vulnerability, as opposed to a sanitization

problem. It employs parser-level isolation for confinement

of user-generated data through out the lifetime of the web

application. We showed this scheme is practically possible

in an architecture that is backwards compatible with current

browsers. Our empirical evaluation over 5,328 real-world

vulnerable web sites shows that our default policy thwarts

over 98% of the attacks, and we explained how flexible

server-side policies could be used in conjunction, to provide

robust XSS defense with no false positives.

12 Acknowledgments

We are thankful to Adam Barth, Chris Karloff and David

Wagner for helpful feedback and insightful discussions dur-

ing our design. We also thank Robert O’Callahan for pro-

viding us with the Mozilla Firefox test suite and Nikhil

Swamy for discussions during writing. We are grateful

to our anonymous reviewers for useful feedback on ex-

periments and suggestions for improving our work. This

work is supported by the NSF TRUST grant number CCF-

0424422, NSF TC grant number 0311808, NSF CAREER

grant number 0448452, and the NSF Detection grant num-

ber 0627511.

References

[1] ab. Apache HTTP server benchmarking tool.

http://httpd.apache.org/docs/2.0/

programs/ab.html.

[2] alexa.com. Alexa top 500 sites. http://www.

alexa.com/site/ds/top sites?ts mode=

global&lang=none, 2008.

[3] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,

E. Kirda, C. Kruegel, and G. Vigna. Saner: Composing

Static and Dynamic Analysis to Validate Sanitization in Web

Applications. In Proceedings of the IEEE Symposium on Se-

curity and Privacy, Oakland, CA, May 2008.
[4] A. Barth, C. Jackson, and J. C. Mitchell. Securing frame

communication in browsers. In Proceedings of the 17th

USENIX Security Symposium (USENIX Security 2008),

2008.
[5] P. Bisht and V. N. Venkatakrishnan. XSS-GUARD: precise

dynamic prevention of cross-site scripting attacks. In Detec-

tion of Intrusions and Malware, and Vulnerability Assess-

ment, 2008.
[6] S. W. Boyd and A. D. Keromytis. Sqlrand: Preventing sql

injection attacks. In Proceedings of the 2nd Applied Cryp-

tography and Network Security (ACNS) Conference, pages

292–302, 2004.
[7] C. M. C. Brendan Eich. Javascript: Mobility & ubiq-

uity. Presentation. http://kathrin.dagstuhl.

de/files/Materials/07/07091/07091.

EichBrendan.Slides.pdf.
[8] S. Chen, D. Ross, and Y.-M. Wang. An analysis of browser

domain-isolation bugs and a light-weight transparent de-

fense mechanism. In Proceedings of the 14th ACM con-

ference on Computer and communications security, pages

2–11, New York, NY, USA, 2007. ACM.
[9] H. Fisk. Prepared statements. http://dev.

mysql.com/tech-resources/articles/4.

1/prepared-statements.html, 2004.
[10] M. V. Gundy and H. Chen. Noncespaces: using randomiza-

tion to enforce information flow tracking and thwart cross-

site scripting attacks. 16th Annual Network & Distributed

System Security Symposium, 2009.
[11] R. Hansen. Clickjacking. http://ha.ckers.org/

blog/20081007/clickjacking-details/.
[12] R. Hansen. Xss cheat sheet. http://ha.ckers.org/

xss.html.
[13] Y. Huang, F. Yu, C. Hang, C. Tsai, D. Lee, and S. Kuo. Se-

curing web application code by static analysis and runtime

protection. DSN, 2004.
[14] IE 8 Blog: Security Vulnerability Research

& Defense. IE 8 XSS filter architecture

and implementation. http://blogs.

technet.com/swi/archive/2008/08/18/

ie-8-xss-filter-architecture-implementation.

aspx, 2008.
[15] T. Jim, N. Swamy, and M. Hicks. Beep: Browser-enforced

embedded policies. 16th International World World Web

Conference, 2007.
[16] N. Jovanovic, C. Krügel, and E. Kirda. Pixy: A static anal-

ysis tool for detecting web application vulnerabilities (short

paper). In IEEE Symposium on Security and Privacy, 2006.
[17] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering

code-injection attacks with instruction-set randomization. In

Proceedings of the 10th ACM conference on Computer and

communications security, 2003.
[18] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes:

a client-side solution for mitigating cross-site scripting at-

tacks. In Proceedings of the 2006 ACM symposium on Ap-

plied computing, 2006.

[19] L. C. Lam and T. Chiueh. A general dynamic information

flow tracking framework for security applications. In Pro-

ceedings of the 22nd Annual Computer Security Applica-

tions Conference on Annual Computer Security Applications

Conference, 2006.

[20] J. Lavoie. Myspace.com - intricate script injection.

www.derkeiler.com/pdf/Mailing-Lists/securityfocus/vuln-

dev/2006-04/msg00016.pdf.

[21] M. T. Louw, P. Bisht, and V. Venkatakrishnan. Analysis of

hypertext isolation techniques for XSS prevention. Work-

shop on Web 2.0 Security and Privacy (W2SP), 2008.

[22] M. Martin and M. S. Lam. Automatic generation of XSS and

SQL injection attacks with goal-directed model checking. In

17th USENIX Security Symposium, 2008.

[23] M. C. Martin, V. B. Livshits, and M. S. Lam. Finding appli-

cation errors and security flaws using PQL: a program query

language. In Object-Oriented Programming, Systems, Lan-

guages, and Applications, 2005.

[24] Mozilla Foundation. Tp2 pageloader framecycle test.

http://mxr.mozilla.org/mozilla/source/

tools/performance/pageload/.

[25] S. Nanda, L.-C. Lam, and T. Chiueh. Dynamic multi-

process information flow tracking for web application se-

curity. In Proceedings of the 8th ACM/IFIP/USENIX inter-

national conference on Middleware, 2007.

[26] Netcraft. Banks hit by cross-frame phishing attacks.

http://news.netcraft.com/archives/2005/

03/17/banks hit by crossframe phishing

attacks.html, 2005.

[27] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and

D. Evans. Automatically hardening web applications using

precise tainting. 20th IFIP International Information Secu-

rity Conference, 2005.

[28] NoScript. Noscript. http://noscript.net/, 2008.

[29] S. D. Paola and G. Fedon. Subverting ajax. In CCC Confer-

ence, 2006.

[30] T. Pietraszek and C. V. Berghe. Defending against injection

attacks through context-sensitive string evaluation. In RAID,

2004.

[31] F. Qin, C. Wang, Z. Li, H. seop Kim, Y. Zhou, and Y. Wu.

Lift: A low-overhead practical information flow tracking

system for detecting security attacks. In Proceedings of the

39th Annual IEEE/ACM International Symposium on Mi-

croarchitecture, 2006.

[32] Samy. I’m popular. Description of the MySpace worm by

the author, including a technical explanation., Oct 2005.

[33] P. Saxena, R. Sekar, and V. Puranik. Efficient fine-grained

binary instrumentationwith applications to taint-tracking. In

Proceedings of the sixth annual IEEE/ACM international

symposium on Code generation and optimization, 2008.

[34] A. Sotirov. Blackbox reversing of XSS filters. RECON,

2008.

[35] Z. Su and G. Wassermann. The essence of command injec-

tion attacks in web applications. 2006.

[36] Symantec Corp. Symantec internet security threat report.

Technical report, Symantec Corp., April 2008.

[37] Unicode, Inc. Unicode character database. http://

unicode.org/Public/UNIDATA/PropList.txt,

2008.

[38] W. Venema. Taint support for PHP.

ftp://ftp.porcupine.org/pub/php/php-5.2.3-taint-

20071103.README.html, 2007.
[39] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel,

and G. Vigna. Cross-Site Scripting Prevention with Dy-

namic Data Tainting and Static Analysis. In Proceeding

of the Network and Distributed System Security Symposium

(NDSS), San Diego, CA, February 2007.
[40] W3C. HTML 5 specification. http://www.w3.org/

TR/html5/.
[41] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection

and communication abstractions for web browsers in mashu-

pos. In SOSP, 2007.
[42] Web Application Security Consortium. Web

application security statistics project 2007.

http://www.webappsec.org/projects/

statistics/wasc wass 2007.pdf.
[43] XSSed.com. Famous XSS exploits. http://xssed.

com/archive/special=1, 2008.

[44] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy en-

forcement: A practical approach to defeat a wide range of

attacks. USENIX Security Symposium, 2006.

A Unicode Whitespace Points

Table 1 contains the Unicode points used to implement

the delimiters as discussed in Section 6.

U+0009 U+000A U+000B U+000C U+000D

U+0020 U+00A0 U+2000 U+2001 U+2002

U+2003 U+2004 U+2005 U+2006 U+2007

U+2008 U+2009 U+200A U+2028 U+2029

Table 1: Unicode Whitespace Points

