
Dynamic Taint Analysis for Automatic Detection, Analysis,
and Signature Generation of Exploits on Commodity Software

James Newsome
jnewsome@ece.cmu.edu

Carnegie Mellon University

Dawn Song
dawnsong@cmu.edu

Carnegie Mellon University

Abstract

Software vulnerabilities have had a devastating effect
on the Internet. Worms such as CodeRed and Slammer
can compromise hundreds of thousands of hosts within
hours or even minutes, and cause millions of dollars of
damage [25, 42]. To successfully combat these fast auto-
matic Internet attacks, we need fast automatic attack de-
tection and filtering mechanisms.

In this paper we propose dynamic taint analysis for au-
tomatic detection of overwrite attacks, which include most
types of exploits. This approach does not need source code
or special compilation for the monitored program, and
hence works on commodity software. To demonstrate this
idea, we have implemented TaintCheck, a mechanism that
can perform dynamic taint analysis by performing binary
rewriting at run time. We show that TaintCheck reliably
detects most types of exploits. We found that TaintCheck
produced no false positives for any of the many different
programs that we tested. Further, we describe how Taint-
Check could improve automatic signature generation in
several ways.

1. Introduction

Software vulnerabilities such as buffer overruns and for-
mat string vulnerabilities have had a devastating effect on
the Internet. Worms such as CodeRed and Slammer ex-
ploit software vulnerabilities and can compromise hun-
dreds of thousands of hosts within hours or even min-
utes, and cause millions of dollars of damage [25, 42]. To
successfully combat fast Internet worm attacks, we need
automatic detection and defense mechanisms. First, we
need automatic detection mechanisms that can detect new
attacks for previously unknown vulnerabilities. A detec-
tion mechanism should be easy to deploy, result in few
false positives and few false negatives, and detect attacks
early, before a significant fraction of vulnerable systems
are compromised. Second, once a new exploit attack is

detected, we must quickly develop filters (a.k.a. attack
signatures) that can be used to filter out attack packets ef-
ficiently, and hence protect vulnerable hosts from compro-
mise until the vulnerability can be patched. Because a new
worm can spread quickly, signature generation must be
automatic—no manual intervention can respond quickly
enough to prevent a large number of vulnerable hosts from
being infected by a new fast-spreading worm.

We need fine-grained attack detectors for commodity
software. Many approaches have been proposed to de-
tect new attacks. These approaches roughly fall into two
categories: coarse-grained detectors, that detect anoma-
lous behavior, such as scanning or unusual activity at a
certain port; and fine-grained detectors, that detect attacks
on a program’s vulnerabilities. Coarse-grained detectors
may result in frequent false positives, and do not provide
detailed information about the vulnerability and how it is
exploited. Thus, it is desirable to develop fine-grained de-
tectors that produce fewer false positives, and provide de-
tailed information about the vulnerability and exploit.

Several approaches for fine-grained detectors have been
proposed that detect when a program is exploited. Most of
these previous mechanisms require source code or special
recompilation of the program, such as StackGuard [14],
PointGuard [13], full-bounds check [19, 37], Libsafe-
Plus [5], FormatGuard [12], and CCured [27]. Some of
them also require recompiling the libraries [19, 37], or
modifying the original source code, or are not compatible
with some programs [27, 13]. These constraints hinder the
deployment and applicability of these methods, especially
for commodity software, because source code or specially
recompiled binaries are often unavailable, and the addi-
tional work required (such as recompiling the libraries and
modifying the original source code) makes it inconvenient
to apply these methods to a broad range of applications.
Note that most of the large-scale worm attacks to date are
attacks on commodity software.

Thus, it is important to design fine-grained detectors
that work on commodity software, i.e., work on arbitrary



binaries without requiring source code or specially re-
compiled binaries. This goal is difficult to achieve be-
cause important information, such as type information,
is not generally available in binaries. As a result, exist-
ing exploit detection mechanisms that do not use source
code or specially compiled binary programs, such as Lib-
Safe [6], LibFormat [36], Program Shepherding [22], and
the Nethercote-Fitzhardinge bounds check [28], are typi-
cally tailored for narrow types of attacks and fail to detect
many important types of common attacks (see Section 7
for details).

We need automatic tools for exploit analysis and sig-
nature generation. Because fine-grained detectors are
expensive and may not be deployed on every vulnerable
host, once a new exploit attack is detected, it is desir-
able to generate faster filters that can be widely deployed
to filter out exploit requests before they reach vulnera-
ble hosts/programs. One important mechanism is content-
based filtering, where content-based signatures are used to
pattern-match packet payloads to determine whether they
are a particular attack. Content-based filtering is widely
used in intrusion detection systems such as Snort [32],
Bro [31], and Cisco’s NBAR system [43], and has been
shown to be more effective than other mechanisms, such
as source-based filtering for worm quarantine [26]. How-
ever, these systems all use manually generated databases
of signatures. Manual signature generation is clearly too
slow to react to a worm that infects hundreds of thousands
of machines in a matter of hours or minutes. We need to
have automatic exploit analysis and signature generation
to quickly generate signatures for attack filtering after an
exploit attack has been detected.

Our contributions. In this paper, we propose a new
approach, dynamic taint analysis, for the automatic de-
tection, analysis, and signature generation of exploits on
commodity software. In dynamic taint analysis, we label
data originating from or arithmetically derived from un-
trusted sources such as the network as tainted. We keep
track of the propagation of tainted data as the program ex-
ecutes (i.e., what data in memory is tainted), and detect
when tainted data is used in dangerous ways that could
indicate an attack. This approach allows us to detect over-
write attacks, attacks that cause a sensitive value (such as
return addresses, function pointers, format strings, etc.) to
be overwritten with the attacker’s data. Most commonly
occurring exploits fall into this class of attacks. After an
attack has been detected, our dynamic taint analysis can
automatically provide information about the vulnerability,
how the vulnerability was exploited, and which part of the
payload led to the exploit of the vulnerability. We show
how this information could be used to automatically gen-

erate signatures for attack filtering. We have developed an
automatic tool, TaintCheck, to demonstrate our dynamic
taint analysis approach. TaintCheck offers several unique
benefits:

• Does not require source code or specially com-
piled binaries. TaintCheck operates on a normally
compiled binary program. This makes TaintCheck
simple and practical to use for a wide variety of pro-
grams, including proprietary programs and commod-
ity programs for which no source code is available.

• Reliably detects most overwrite attacks. Taint-
Check’s default policy detects format string attacks,
and overwrite attacks that attempt to modify a pointer
used as a return address, function pointer, or func-
tion pointer offset. Its policy can also be extended
to detect other overwrite attacks, such as those that
attempt to overwrite data used in system calls or
security-sensitive variables.

• Has no known false positives. In our experiments,
TaintCheck gave no false positives in its default con-
figuration. As we discuss in Section 3, in many
cases when a false positive could occur, it is a symp-
tom of a potentially exploitable bug in the monitored
program. For programs where the default policy of
TaintCheck could generate a false positive, we show
in Section 3 that it is straightforward to configure
TaintCheck to reduce or eliminate those false posi-
tives.

• Enables automatic semantic analysis based signa-
ture generation.

We propose a new approach for automatic signature
generation: using automatic semantic analysis of at-
tack payloads to identify which parts of the payload
could be useful in an attack signature. Previous work
in automatic signature generation uses content pat-
tern extraction to generate signatures [21, 24, 41].
The information provided by semantic analysis could
be used to generate a signature directly, or as hints to
content pattern extraction techniques. Because se-
mantic analysis provides information about the vul-
nerability and how it is exploited, it could potentially
allow an accurate signature to be automatically gen-
erated using fewer payloads than would be necessary
using content pattern extraction alone. By requir-
ing fewer attack payloads, semantic analysis could
generate a signature at an earlier stage of a worm
epidemic, thus minimizing damage caused by a new
worm.

TaintCheck could be used to perform automatic se-
mantic analysis of attack payloads, because it moni-
tors how each byte of each attack payload is used by



the vulnerable program at the processor-instruction
level. As a first step, we show that TaintCheck can
be used to identify the value used to overwrite a re-
turn address or function pointer. The most significant
bytes of this value can be used as part of a signature.
We also show that for text-based protocols such as
HTTP, it can be used as a signature by itself, with
only a small false positive rate.

Moreover, we show how TaintCheck can be used as
an accurate classifier both in existing automatic sig-
nature generation systems, and in an automatic se-
mantic analysis signature generation system. As an
accurate classifier, TaintCheck can be used to accu-
rately identify new attacks. It can also be used to
verify the quality of generated signatures by deter-
mining whether requests that match a new signature
actually contain an attack.

TaintCheck adds a new point in the design space of au-
tomatic detection and defense, and is the first approach
that achieves all the above properties.

The current implementation of TaintCheck slows server
execution between 1.5 and 40 times. However, our proto-
type has not been optimized. Several techniques described
in Section 4 will lead to a more efficient implementation.
Additionally, we show in Section 5 that monitoring even
a small fraction of incoming requests with TaintCheck
could help to detect a new worm in the early stages of
an epidemic.

The rest of the paper is organized as follows. We de-
scribe TaintCheck’s design and implementation, and how
it detects various attacks, in Section 2. We show Taint-
Check is able to detect a wide variety of attacks with few
false positives and negatives in Section 3. We evaluate the
effectiveness and performance of TaintCheck in Section 4.
We discuss how TaintCheck can be applied to detection of
new attacks in Section 5, and to automatic signature gen-
eration in Section 6. We present related work in Section 7,
and our conclusions in Section 8.

2. TaintCheck design and implementation

TaintCheck is a novel mechanism that uses dynamic
taint analysis to detect when a vulnerability such as a
buffer overrun or format string vulnerability is exploited.
We first give an overview of our dynamic taint analysis
approach, and then describe how we use this approach in
the design and implementation of TaintCheck.

Dynamic taint analysis Our technique is based on the
observation that in order for an attacker to change the ex-
ecution of a program illegitimately, he must cause a value
that is normally derived from a trusted source to instead be
derived from his own input. For example, values such as

jump addresses and format strings should usually be sup-
plied by the code itself, not from external untrusted inputs.
However, an attacker may attempt to exploit a program by
overwriting these values with his own data.

We refer to data that originates or is derived arithmeti-
cally from an untrusted input as being tainted. In our dy-
namic taint analysis, we first mark input data from un-
trusted sources tainted, then monitor program execution to
track how the tainted attribute propagates (i.e., what other
data becomes tainted) and to check when tainted data is
used in dangerous ways. For example, use of tainted data
as jump addresses or format strings often indicates an ex-
ploit of a vulnerability such as a buffer overrun or format
string vulnerability.

Note that our approach detects attacks at the time of
use, i.e., when tainted data is used in dangerous ways.
This significantly differs from many previous approaches
which attempt to detect when a certain part of memory
is illegitimately overwritten by an attacker at the time of
the write. It is not always possible at the time of a write
to detect that the overwrite is illegitimate, especially for
approaches not using source code or specially recompiled
binaries. In contrast, our approach does not rely on de-
tection at the time of overwrite and is independent of the
overwriting method, and thus can detect a wide range of
attacks.

Design and implementation overview TaintCheck per-
forms dynamic taint analysis on a program by running
the program in its own emulation environment. This al-
lows TaintCheck to monitor and control the program’s ex-
ecution at a fine-grained level. Specifically, we imple-
mented TaintCheck using Valgrind [29]. Valgrind is an
open source x86 emulator that supports extensions, called
skins, which can instrument a program as it is run.1

Whenever program control reaches a new basic block,
Valgrind first translates the block of x86 instructions into
its own RISC-like instruction set, called UCode. It then
passes the UCode block to TaintCheck, which instruments
the UCode block to incorporate its taint analysis code.
TaintCheck then passes the rewritten UCode block back
to Valgrind, which translates the block back to x86 code
so that it may be executed. Once a block has been instru-
mented, it is kept in Valgrind’s cache so that it does not
need to be reinstrumented every time it is executed.

1Note that while Memcheck, a commonly used Valgrind extension,
is able to assist in debugging memory errors, it is not designed to detect
attacks. It can detect some conditions relevant to vulnerabilities and at-
tacks, such as when unallocated memory is used, when memory is freed
twice, and when a memory write passes the boundary of a malloc-
allocated block. However, it does not detect other attacks, such as over-
flows within an area allocated by one malloc call (such as a buffer field
of a struct), format string attacks, or stack-allocated buffer overruns.



TaintTracker

 

TaintSeed TaintAssert

Data from
Socket

Buffer
Malloc’d

Detected!
Add

Untainted Data

(via double−free)
Copy

Use as
Fn Pointer

Attack

Figure 1. TaintCheck detection of an attack. (Exploit Analyzer not shown).

To use dynamic taint analysis for attack detection, we
need to answer three questions: (1) What inputs should
be tainted? (2) How should the taint attribute propagate?
(3) What usage of tainted data should raise an alarm as
an attack? To make TaintCheck flexible and extensible,
we have designed three components: TaintSeed, Taint-
Tracker, and TaintAssert to address each of these three
questions in turn. Figure 1 shows how these three com-
ponents work together to track the flow of tainted data
and detect an attack. Each component has a default policy
and can easily incorporate user-defined policies as well.
In addition, each component can be configured to log in-
formation about taint propagation, which can be used by
the fourth component we have designed, the Exploit An-
alyzer. When an attack is detected, the Exploit Analyzer
performs post-analysis to provide information about the
attack, including identifying the input that led to the at-
tack, and semantic information about the attack payload.
This information can be used in automatic attack signature
generation, as we show in Section 6.

2.1. TaintSeed

TaintSeed marks any data that comes from an untrusted
source of input as tainted. By default, TaintSeed considers
input from network sockets to be untrusted, since for most
programs the network is the most likely vector of attack.
TaintSeed can also be configured to taint inputs from other
sources considered untrusted by an extended policy, e.g.,
input data from certain files or stdin.

Each byte of memory, including the registers, stack,
heap, etc., has a four-byte shadow memory that stores a
pointer to a Taint data structure if that location is tainted,
or a NULL pointer if it is not. We use a page-table-like
structure to ensure that the shadow memory uses very little
memory in practice. TaintSeed examines the arguments
and results of each system call, and determines whether
any memory written by the system call should be marked
as tainted or untainted according to the TaintSeed pol-
icy. When the memory is tainted, TaintSeed allocates a
Taint data structure that records the system call number,
a snapshot of the current stack, and a copy of the data
that was written. The shadow memory location is then

set to a pointer to this structure. This information can
later be used by the Exploit Analyzer when an attack is
detected. Optionally, logging can be disabled, and the
shadow memory locations can simply store a single bit
indicating whether the corresponding memory is tainted.

2.2. TaintTracker

TaintTracker tracks each instruction that manipulates
data in order to determine whether the result is tainted.
UCode Instructions fall into three categories: data
movement instructions that move data (LOAD, STORE,
MOVE, PUSH, POP, etc.), arithmetic instructions that
perform arithmetic operations on data (ADD, SUB, XOR,
etc.), and those that do neither (NOP, JMP, etc.). The
default policy of TaintTracker is as follows: for data
movement instructions, the data at the destination will be
tainted if and only if any byte of the data at the source
location is tainted; for arithmetic instructions, the result
will be tainted if and only if any byte of the operands is
tainted. While arithmetic instructions also affect the pro-
cessor’s condition flags, we do not track whether the flags
are tainted, because it is normal for untrusted data to in-
fluence them. Note that for both data movement and arith-
metic instructions, literal values are considered untainted,
since they originate either from the source code of the pro-
gram or from the compiler.

A special case is for constant functions where the out-
put of the function does not depend on the inputs. For
example, a common IA-32 idiom to zero out a register,
“xor eax, eax”, always sets eax to be zero regard-
less of whether the original value in eax is tainted or not.
TaintTracker recognizes these special cases such as xor
eax, eax and sub eax, eax, and sets the result lo-
cation to be untainted. Note that there can be more gen-
eral cases of constant functions where a sequence of in-
structions computes a constant function. We do not han-
dle these more general cases. However, such cases will
only make the dynamic taint analysis conservative and it
has not been an issue in practice.

In order to track the propagation of tainted data, Taint-
Tracker adds instrumentation before each data movement
or arithmetic instruction. When the result of an instruc-



tion is tainted by one of the operands, TaintTracker sets
the shadow memory of the result to point to the same Taint
structure as the tainted operand. Optionally, TaintTracker
can instead allocate a new Taint structure with information
about the relevant instruction (including the operand loca-
tions and values, and a snapshot of the stack) that points
back to the previous Taint structure. When an attack is
detected, the Exploit Analyzer can follow this chain of
Taint structures backwards to determine how the tainted
data propagated through memory.

2.3. TaintAssert

TaintAssert checks whether tainted data is used in ways
that its policy defines as illegitimate. TaintAssert’s default
policy is designed to detect format string attacks, and at-
tacks that alter jump targets including return addresses,
function pointers, or function pointer offsets. When Taint-
Check detects that tainted data has been used in an illegit-
imate way, signalling a likely attack, it invokes the Exploit
Analyzer to further analyze the attack.

The following are potentially illegitimate ways in which
tainted data might be used. TaintAssert’s policy can be
specified to check for any of these independently.

• Jump addresses By default, TaintAssert checks
whether tainted data is used as a jump target, such as
a return address, function pointer, or function pointer
offset. Many attacks attempt to overwrite one of
these in order to redirect control flow either to the
attacker’s code, to a standard library function such
as exec, or to another point in the program (possi-
bly circumventing security checks). In contrast, there
are very few scenarios in which tainted data would be
used as a jump target during normal usage of a pro-
gram, and we have not found any such examples in
our testing. Hence, these checks detect a wide variety
of attacks while generating very few false positives.

Note that jump tables are a possible exception to this
rule. A jump table could use user input as an offset to
a jump address. This is an acceptable programming
practice if there are checks in place to sanitize the
tainted data. gcc does not appear to construct jump
tables in this way in practice, but other compilers or
hand-coded assembly might. See Section 3 for fur-
ther discussion of this scenario.

We implemented these checks by having TaintCheck
place instrumentation before each UCode jump in-
struction to ensure that the data specifying the jump
target is not tainted. Note that IA-32 instructions that
have jump-like behavior (including call and ret)
are translated into UCode jump instructions by Val-
grind.

• Format strings By default, TaintAssert also checks
whether tainted data is used as a format string argu-
ment to the printf family of standard library func-
tions. These checks detect format string attacks, in
which an attacker provides a malicious format string
to trick the program into leaking data or into writing
an attacker-chosen value to an attacker-chosen mem-
ory address. These checks currently detect whenever
tainted data is used as a format string, even if it does
not contain malicious format specifiers for attacks.
This could be used to discover previously unknown
format string vulnerabilities. Optionally, TaintAssert
can instead only signal when the format string both
is tainted and contains dangerous format specifiers
such as %n. This option is useful when a vulnera-
bility is already known, and the user only wants to
detect actual attacks.

To implement these checks, we intercept calls to the
printf family of functions (including syslog)
with wrappers that request TaintCheck to ensure that
the format string is not tainted, and then call the orig-
inal function. For most programs, this will catch
any format string attack and not interfere with nor-
mal functionality. However, if an application uses its
own implementation of these functions, our wrappers
may not be called.

• System call arguments TaintAssert can check
whether particular arguments to particular system
calls are tainted, though this is not enabled in Taint-
Check’s default policy. This could be used to detect
attacks that overwrite data that is later used as an ar-
gument to a system call. These checks are imple-
mented using Valgrind’s callback mechanism to ex-
amine the arguments to each system call before it is
made.

As an example, we implemented an optional pol-
icy to check whether the argument specified in any
execve system call is tainted. This could be used
to detect if an attacker attempts to overwrite data that
is later used to specify the program to be loaded via
an execve system call. We disabled this check by
default, because some programs use tainted data in
this way during normal usage. A notable example is
that Apache uses part of a URL string as the argu-
ment to execve when a CGI is requested.

• Application or library-specific checks TaintAssert
can also be configured to detect attacks that are spe-
cific to an application or library. It can do this by
checking specified memory ranges at specified points
of the program. In particular, it can be configured to
check whether a particular argument to a particular



function is tainted whenever that function is called.
An example of this is checking the format strings
supplied to printf-style functions, as described
above.

To implement this, TaintCheck could be told to
check whether a particular address range or register
is tainted whenever the program counter reaches a
particular value, or whenever it is used in a certain
way. The address range specified could be absolute,
or could be relative to the current stack frame. This
policy is application dependent and is disabled by de-
fault.

These checks are sufficient to catch a wide range of at-
tacks. There are two other types of checks we also con-
sidered, but decided not to use. The first is tracking which
flags are tainted, and checking when a tainted flag is used
to alter control flow. This could detect when the attacker
overwrites a variable that affects the behavior of the pro-
gram. However, tainted data is used to alter control flow
on a regular basis, and it is unclear whether there is a reli-
able way to differentiate the normal case from an attack.

The second type is checking whether addresses used in
data movement instructions are tainted. This could detect
when an attacker overwrites a data pointer in order to con-
trol where data is moved to or loaded from. However, it is
common to use tainted data as an offset to data movement
instructions, particularly in the case of arrays.

2.4. Exploit Analyzer

When TaintAssert detects that tainted data has been
used in a way violating its security policy, thus signal-
ing a likely exploit, the Exploit Analyzer can provide use-
ful information about how the exploit happened, and what
the exploit attempts to do. These functions are useful for
identifying vulnerabilities and for generating exploit sig-
natures.

Information logged by TaintSeed and TaintTracker
shows the relevant part of the execution path in between
tainted data’s entry into the system, and its use in an ex-
ploit. By backtracing the chain of Taint structures, the Ex-
ploit Analyzer provides information including the original
input buffer that the tainted data came from, the program
counter and call stack at every point the program operated
on the relevant tainted data, and at what point the exploit
actually occurred. The Exploit analyzer can use this infor-
mation to help determine the nature and location of a vul-
nerability quickly, and to identify the exploit being used.

The Exploit Analyzer can optionally allow an attack to
continue in a constrained environment after it is detected.
We currently implement an option to redirect all outgoing
connections to a logging process. This could be used to

Return Address
Jump Address

Function Pointer
Fn Ptr Offset

System Call Args
Function Call Args

Buf
fer

 O
ve

rfl
ow

For
mat 

Stri
ng

Dou
ble

 F
ree

Hea
p S

mas
hDefault Policy

Optional Policy

Figure 2. Attack detection coverage.

collect additional samples of a worm, which can be used
to help generate a signature for that worm.

The Exploit Analyzer could also be used to provide se-
mantic information about the attack payload. This infor-
mation can be used to automatically generate attack sig-
natures more accurately and with fewer samples than is
possible with purely content-based analysis of the attack
payload. To demonstrate this idea, the Exploit Analyzer
currently identifies the value used to overwrite the return
address. We show in Section 6 that the most significant
bytes of this value can be used in a signature of the attack.
Note that our techniques are related to dynamic program
slicing [4, 23], although dynamic program slicing consid-
ers control-flow dependencies and is often based on source
code analysis.

3. Security analysis of TaintCheck

In this section, we analyze the attacks that can be de-
tected by TaintCheck and the false positives and false neg-
atives incurred by TaintCheck.

Attacks detected by TaintCheck Figure 2 classifies
overwrite attacks by the type of value that is overwritten,
and by the method used to perform the overwrite. In gen-
eral, TaintCheck is capable of detecting any overwrite at-
tack that overwrites a value that would not normally be
tainted. TaintCheck’s default policy is that jump targets
and format strings should not be tainted, allowing it to
detect attacks that overwrite jump targets (such as return
addresses, function pointers, and function pointer offsets),
whether altered to point to existing code (existing code at-
tack) or injected code (code injection attack), and all for-
mat string attacks. It’s important to note that most of the
worm attacks we have seen to date fall into these cate-
gories, including all the major worms such as the Slam-
mer Worm and the CodeRed Worm. TaintCheck’s policy
can also be customized in order to detect an even wider
range of attacks, as described in Section 2.3



False negative analysis A false negative occurs if an at-
tacker can cause sensitive data to take on a value of his
choosing without that data becoming tainted. This can be
achieved if the altered data does not originate and is not
arithmetically derived from untrusted inputs, but is still in-
fluenced by untrusted inputs. In particular, because we do
not consider the tainted attribute of flags, the attacker can
alter data by influencing the control flow of conditional
branches to evade tainting. For example, suppose the vari-
able x is tainted. A structure of the form if (x == 0)
y = 0; else if (x == 1) y = 1; ... is se-
mantically the same as y = x but would not cause y to
become tainted, since the value for y is only influenced
indirectly by x, via the condition flags. If the attacker
could later cause y to overwrite a sensitive value, the at-
tack would be undetected. Another potential problem is if
tainted data is used as an index into a table. For example,
IIS translates ASCII input into Unicode via a table [15].
The resulting translation is not tainted, because the values
were copied from hard-coded literals, rather than arith-
metically derived from the input.

Other false negatives can occur if TaintCheck is config-
ured to trust inputs that should not be trusted. The current
default configuration of not trusting data read from net-
work sockets is sufficient to detect most remote attacks.
However, an attacker may be able to control data from
other input sources, depending on the application. An ex-
ample of this is a vulnerability in the innd news server, in
which data from the network is first written to a file on
disk, and then read back into memory [1, 15]. These types
of false negatives can be minimized by using a more re-
strictive policy of what inputs should be tainted. In our
experiments, marking data read from files other than dy-
namically loaded libraries did not cause false positives,
except in the case of some configuration files. In those
cases, it is straightforward to configure TaintCheck not to
taint data read from those files.

Analysis and handling of false positives In cases
where TaintCheck detects that tainted data is being used
in an illegitimate way even when there is no attack tak-
ing place, it can mean one of two things. First, it could
mean that the program contains a vulnerability that should
be fixed. For example, the program may be using an
unchecked input as a format string. In this case, the best
solution is to fix the vulnerability, possibly using Taint-
Check’s Exploit Analyzer to help understand it. Another
possibility is to configure TaintCheck to only signal an at-
tack if some other condition is also true- for example, if a
tainted format string actually does contain dangerous for-
mat specifiers (such as %n).

The other possibility is that the program performs san-
ity checks on the tainted data before it is used, ensuring

that the operation is actually safe. For example, the pro-
gram might use tainted data as a format string, but only
after it has ensured that it does not contain any malicious
format specifiers such as %n (which would signify a pos-
sible format string attack). Another example is that a pro-
gram could use tainted data as a jump target in a jump
table, after checking that it is within expected bounds.
Fortunately, these cases occur relatively rarely and usu-
ally at fixed places (program counters) in programs. Most
of these false positives can be detected by running pro-
grams on legitimate inputs through a training phase. In
these cases, TaintCheck can either be configured to ignore
the particular failed taint assertion, or, if additional infor-
mation is available, to untaint the data immediately after
it has been sanity checked. The latter option is safer, since
an attacker may attempt to overwrite the data again after
it has been sanity checked.

4. Evaluation

We evaluate TaintCheck’s compatibility and incidence
of false positives in Section 4.1, its effectiveness against
various attacks in Section 4.2, and its performance in Sec-
tion 4.3.

4.1. Compatibility and false positives

We used TaintCheck to monitor a number of programs
in order to check for false positives, and to verify that
the programs were able to run normally. We tested sev-
eral server programs: apache, ATPhttpd, bftpd, cfingerd,
and named; client programs: ssh and firebird; and non-
network programs: gcc, ls, bzip2, make, latex, vim,
emacs, and bash.

All of these programs functioned normally when run
under TaintCheck, and no false positives occurred using
TaintCheck’s default policy of tainting data from network
sockets and asserting that jump targets and format strings
are untainted. In our evaluation using named, we replayed
a trace containing 158,855 DNS queries to the primary
nameserver at Princeton University. This nameserver is
also the secondary server for a top level European do-
main, and handles outbound queries for Princeton users.
Hence, this trace contains a diverse set of requests from
a diverse set of clients. Our named server was config-
ured to resolve each request by performing a recursive
query. The TaintCheck-monitored named server behaved
correctly and did not generate any false positives.

To further test for false positives, we tried running all
of the client programs and non-network programs with
a policy to taint data read from standard input, and data
read from files (except for files owned by root, notably
including dynamically loaded libraries). The only addi-
tional false positives that resulted were in vim and firebird.



In both cases, the program appears to be using data read
from one of its respective configuration files as an offset to
a jump address. This could easily be fixed by configuring
TaintCheck to trust the corresponding configuration files.

4.2. Evaluation of attack detection

We tested TaintCheck’s ability to detect several types
of attacks, including several synthetic and actual exploits.
Most of these attacks attempted to use a vulnerability to
overwrite a sensitive value. The one exception is an infor-
mation leak attack in which a user-supplied format string
contained format specifiers, causing the program to out-
put data from the stack. As Table 1 shows, TaintCheck
successfully detected each attack. For the format string
attacks that attempted to overwrite another value, Taint-
Check detected both that a tainted format string was being
used, and that the other value had been overwritten. Addi-
tionally, TaintCheck successfully identified the value used
to overwrite the return address in the ATPhttpd exploit.
We show in Section 6 how this can be useful when gener-
ating a signature for buffer overflow attacks.

4.2.1. Synthetic exploits

In this section, we evaluate TaintCheck using synthetic ex-
ploits on buffer overruns that overwrite return addresses,
function pointers, and format string vulnerabilities. In all
these evaluations, TaintCheck successfully detected all at-
tacks and resulted in no false positives.

Detecting overwritten return address In order to test
TaintCheck’s ability to detect an overwritten return ad-
dress, we wrote a small program with a buffer overflow
vulnerability. The program uses the dangerous “gets”
function in order to get user input. An input that is too
long will overflow the buffer and begin overwriting the
stack. We performed a test in which the return address is
overwritten with the address of an existing function in the
code. TaintCheck was able to detect the attack because the
return address was tainted from user input.

Detecting overwritten function pointer In a similar
test, we verified TaintCheck’s ability to detect an over-
written function pointer. We wrote a program with a stack
buffer overflow vulnerability where the overrun buffer
could overwrite a function pointer on the stack. Again,
TaintCheck correctly detected the attack because the func-
tion pointer was tainted by user input during the buffer
overrun.

Detecting format string vulnerability Finally, we
wrote another program to verify TaintCheck’s ability to

detect a tainted format string, which can lead to a format
string attack. This program took a line of input from the
user, and printed it back by using it as the format string in
a call to printf. When we ran this program under Taint-
Check, TaintCheck correctly detected that a tainted format
string was being used in printf. As a further test, we
wrote a program with a buffer overrun vulnerability that
allowed the attacker to overwrite a format string. An at-
tacker might choose to overwrite the format string to per-
form a format string attack instead of directly overwriting
the return address in order to evade some buffer-overflow
protection mechanisms. Again, we found that TaintCheck
was able to determine correctly when the format string
was tainted.

4.2.2. Actual exploits

In this section, we evaluate TaintCheck on exploits to three
vulnerable servers: a web server, a finger daemon, and an
FTP server. In all these evaluations, TaintCheck success-
fully detected all the attacks and incurred no false posi-
tives during normal program execution.

ATPhttpd exploit ATPhttpd [35] is a web server pro-
gram. Versions 0.4b and lower are vulnerable to several
buffer overflow vulnerabilities. We obtained an exploit
that sends the server a malicious GET request [34]. The
request asks for a very long filename, which is actually
shellcode and a return address. The filename overruns a
buffer, causing the return address to be overwritten. When
the function attempts to return, it jumps instead to the
shellcode inside the file name. The attacker is then given
a remote shell.

TaintCheck correctly detected that the return address
was tainted when the server was attacked, and did not
generate any false positives when serving normal GET
requests. TaintCheck also correctly identifies the return
address value that overwrites the previous value. As we
show in Section 6, this can sometimes be used as a signa-
ture for an attack.

cfingerd exploit cfingerd is a finger daemon that con-
tains a format string vulnerability in versions 1.4.2 and
lower. We obtained an exploit for this vulnerability that
works as follows. When cfingerd prompts for a user name,
the exploit responds with a string beginning with “ver-
sion”, and also containing malicious code. Due to another
bug, cfingerd copies the whole string into memory, but
only reads to the end of the string “version”. Thus, the
malicious code is allowed to reside in memory, and the
string appears to be a legitimate query.

cfingerd later contacts the identd daemon running on
the querier’s machine. The exploit runs its own identd,



Program Overwrite Method Overwrite Target Detected
ATPhttpd buffer overflow return address ✔

synthetic buffer overflow function pointer ✔
synthetic buffer overflow format string ✔

synthetic format string none (info leak) ✔

cfingerd syslog format string GOT entry ✔
wu-ftpd vsnprintf format string return address ✔

Table 1. Evaluation of TaintCheck’s ability to detect exploits

responding with a string that will be later used as a for-
mat string to the syslog function. When cfingerd uses
this format string, the entry for the exit function in the
global offset table is overwritten to point to the malicious
code that was inserted in the first step. When cfingerd fin-
ishes processing the query, it attempts to exit, but is caused
to execute the attacker’s code instead.

During normal usage, TaintCheck correctly detects that
tainted data is being used as a format string. When we
used the exploit, TaintCheck detected the tainted format
string, and later detected when the program attempted to
use the tainted pointer in the global offset table.

wu-ftpd exploit Version 2.6.0 of wu-ftpd has a format
string vulnerability in a call to vsnprintf. We ob-
tained an exploit for this vulnerability that uses the for-
mat string to overwrite a return address. TaintCheck suc-
cessfully detects both that the format string supplied to
vsnprintf is tainted, and that the overwritten return ad-
dress is tainted.

4.3. Performance evaluation

We measured TaintCheck’s performance using two
“worst-case” workloads (a CPU-bound workload and a
short-lived process workload), and what we consider to be
a more common workload (a long-lived I/O-bound work-
load). For each workload, we measured the performance
when the program was run natively, when it ran under
Nullgrind (a Valgrind skin that does nothing), when it ran
under Memcheck (a commonly used Valgrind skin that
checks for run-time memory errors, such as use of unini-
tialized values), and when it ran under TaintCheck. Our
evaluation was performed on a system with a 2.00 GHz
Pentium 4, and 512 MB of RAM, running RedHat 8.0.

CPU-bound: bzip2 In order to evaluate the penalty
from the additional instrumentation that TaintCheck
writes into the monitored binary at run-time, we evalu-
ated the performance of bzip2, a CPU-bound program.
Specifically, we measured how long bzip2 took to com-
press a 15 MB package of source code (Vim 6.2). When
run normally, the compression took 8.2 seconds to com-

plete. When run under Valgrind’s Nullgrind skin, the task
took 25.6 seconds (3.1 times longer). When using Mem-
Check, it took 109 seconds (13.3 times longer). When us-
ing TaintCheck, it took 305 seconds (37.2 times longer).
Note that this is a worst-case evaluation as the applica-
tion is completely CPU-bound. (Also note that we dis-
cuss optimization techniques at the end of this section, one
of which in early implementation improves performance
overhead to 24 times slowdown.)

Short-lived: cfingerd When a program starts, each ba-
sic block is rewritten on demand to include TaintCheck’s
instrumentation. While basic block caching amortizes this
penalty over a long execution time, it can be more sig-
nificant for very short-lived processes. In order to evalu-
ate this case, we timed how long cfingerd 1.4.2 takes to
start and serve a finger request. cfingerd runs under inetd,
which means it restarts for each request.

Without Valgrind, the request took an average of .0222
seconds. Using the Nullgrind skin, the request took 13
times as long. The Memcheck skin took 32 times as long,
and TaintCheck took 36 times as long.

Common case: Apache For many network services, the
latency that a user experiences is due mostly to network
and/or disk I/O. For these types of services, we expect
that the TaintCheck’s performance penalty should not be
as noticeable to the user. To evaluate this type of work-
load, we used the Apache 2.0.49 web server.

In these tests we requested different web pages from
the server, and timed how long it took to connect, send
the request, and receive the response. In order to pre-
vent resource contention between the client process and
the server process, the client was run from another ma-
chine connected to the server by a 100 Mbps switch. We
requested a dynamically generated CGI shell script and
static pages of sizes 1 KB to 10 MB. For each test, we re-
quested the same page one hundred times, (thus allowing
the document to stay in the server’s cache) and used the
median response time. Figure 3 shows the performance
overhead for each type of request.



CGI
6.63 ms

1 KB
.987 ms

10 KB
2.05 ms

100 KB
9.79 ms

1 MB
86.4 ms

10 MB
851 ms

0

5

10

15

20

25

30
Pe

rf
or

m
an

ce
 O

ve
rh

ea
d 

Fa
ct

or

No Valgrind
Nullgrind
Memcheck
TaintCheck

Figure 3. Performance overhead for Apache.
Y-axis is the performance overhead factor:
execution time divided by native execution
time. Native execution times are listed be-
low each experiment.

We expected the overhead for the shell script to be rel-
atively large, since the web server must spawn a shell and
execute the script each time it is requested. Thus, Val-
grind must retranslate and reinstrument the code for the
shell on each request. Despite this, the performance over-
head was roughly on par with the results for static page
requests. For static page requests we found that the per-
formance overhead was relatively small. As we expected,
the penalty for running under Valgrind grows less apparent
as the size of the request grows. This is because the server
becomes less processor-bound, and more I/O bound. Note
that even in the worst case of a small, 1 KB page, Taint-
Check only causes the response time to be approximately
25 ms instead of 1 ms on a local, high-speed network. This
delay is unlikely to be very noticeable to a user, especially
if the page were being loaded over a wide area network.

Improving performance Note that the current imple-
mentation is a research prototype and is not yet opti-
mized for performance. There are several ways that we
can improve the performance of TaintCheck. First, some
performance overhead is due to the implementation of
Valgrind. We used Valgrind because it is open source
and relatively easy to use. However, as we showed in
our evaluation, programs run several times slower under
Valgrind even when no additional instrumentation is per-
formed. Another x86 emulator, DynamoRio, offers much
better performance than Valgrind, due to better caching
and other optimization mechanisms. According to Kiri-
ansky et. al. [22], DynamoRio causes a bzip2 benchmark
to run approximately 1.05 times slower than when run na-

tively. Our tests show that bzip2 runs 3.1 times slower un-
der Valgrind then when run natively. Hence, TaintCheck
could run significantly faster if it were implemented on
a more efficient binary-rewriting mechanism such as Dy-
namoRio.

Second, when performing instrumentation, we could
statically analyze each basic block to eliminate redundant
tracking code. This optimization would significantly re-
duce the amount of instrumentation added, causing the
instrumented program to run significantly faster. A pre-
liminary implementation of this optimization allowed our
bzip2 benchmark to run only 24 times slower than na-
tive speed, instead of 37 times slower as in our non-
optimized implementation. We expect that further opti-
mization could yield an even larger performance improve-
ment.

5. Detection and analysis of new attacks

TaintCheck’s properties make it a valuable tool for de-
tecting new attacks. An early warning of a new worm
or exploit can buy time to enable other countermeasures,
such as generating and disseminating an attack signature
to filter traffic, and eventually, patching vulnerable sys-
tems. In Section 6, we show how TaintCheck can also as-
sist in creating a signature for a new attack so that it can be
filtered out at network perimeters. In this section, we de-
scribe the usage scenario for TaintCheck. TaintCheck can
be used at an individual site where it can either be used in
conjunction with other detectors to reduce their false pos-
itives rate, or to provide additional attack information; or
be used independently to check sampled requests. To en-
able faster detection of a new worm, TaintCheck can also
be used in a distributed setting.

5.1. Individual usage

Individual sites can use TaintCheck to detect or prevent
attacks on themselves.2 Ideally, a site could use Taint-
Check to protect its services all of the time. However, this
is impractical in many cases because of TaintCheck’s per-
formance overhead. While a more optimized implementa-
tion of TaintCheck could run much faster than the current
implementation, there will always be some performance
penalty for dynamic taint analysis.

There are several ways that TaintCheck could be used
to detect new attacks. One approach is to use it in con-
junction with a faster detector in order to reduce its false
positive rate and provide additional information about an

2Note that if TaintCheck does not detect an exploit, it could be be-
cause the particular version of the server being used is not vulnerable. In
order to be certain that a request does not contain an exploit, the system
needs to check against every version of the server that it is interested
in protecting. An individual site can protect itself by checking only the
versions of the server that it actually uses.



attack. In particular, we show how TaintCheck can be
combined with honeypots, or with operating system ran-
domization [10, 20, 8]. TaintCheck can also be used by
itself, sampling requests when it is unable to keep up with
all incoming requests. This approach could detect new
attacks that other detectors may miss.

TaintCheck-enabled honeypots A honeypot is a net-
work resource with no legitimate use. Any activity on a
honeypot is likely to be malicious, making them useful for
detecting new attacks [24]. However, not everything sent
to a honeypot is necessarily an exploit. Requests could be
relatively innocuous probes or sent by mistake by legiti-
mate users. An attacker who discovers a honeypot could
also raise false alarms by sending innocuous requests to
the honeypot. This is particularly a problem if requests
sent to the honeypot are used to automatically generate
attack signatures.

A honeypot could use TaintCheck to monitor all of its
network services. This would allow it to verify whether
requests that it receives are exploits before deciding what
action to take, and provide additional information about
detected attacks.

TaintCheck plus OS randomization Several tech-
niques have been proposed to randomize parts of the op-
erating system, such as the location of the stack [10], the
location of the heap [10, 8], the system call interface [10],
or even the instruction set [20]. These techniques make
it difficult for an attacker’s code to run correctly on an
exploited system, typically causing a program to crash
once it has been exploited, thus minimizing the damage
caused. However, these techniques alone cannot prevent
future attacks. The attacker is free to attack the vulnerable
program again and again, usually causing the program to
crash, and possibly even exploiting the program if he is
lucky enough to guess the randomized values [38]. Fur-
ther, it is not possible to identify which request caused the
program to crash, or whether that request was actually an
attack.

It is possible to identify which request contained an at-
tack, if any, by using TaintCheck to analyze a log of recent
requests after a program crashes. Once an exploit request
has been identified, it is possible to take a number of ac-
tions, including generating a signature for the attack, or
simply blocking future requests from the sender.

Standalone TaintCheck We can use TaintCheck inde-
pendently on randomly sampled incoming requests. De-
pending how the sampling is done, TaintCheck can be
used to detect or prevent new attacks with probability pro-
portional to the sampling rate. This is particularly impor-

tant when other detection mechanisms fail to detect such
new attacks.

In order to prevent attacks, sampled requests can be
redirected to a server that is protected by TaintCheck (pos-
sibly on the same machine as the normal server). This ap-
proach has two drawbacks. First, legitimate requests that
are sent to the protected server are served somewhat more
slowly. However, for I/O-bound services, this difference
may not be noticeable as shown in Section 4. Second,
an attacker may be able to detect that he is using the pro-
tected server by measuring the response time. In that case,
he may be able to abort his request before the exploit takes
place, later resending it in hope that it would go to the un-
protected server. For that reason, it may be desirable to
choose what requests to sample on a per user basis rather
than a per request basis.

The other approach is to allow sampled requests to use
the normal server, and replay them in parallel to the Taint-
Check protected server. In this case, when an attack is
detected the unprotected server may have already been
compromised. However, the system could immediately
quarantine the potentially compromised server, and notify
administrators, thus minimizing any damage.

In either case, once a new attack has been detected by
TaintCheck, it is possible to prevent further attacks by us-
ing TaintCheck to protect the normal server (with a 100%
sampling rate) until the vulnerability can be fixed or an
attack signature can be used to filter traffic. We discuss
using TaintCheck to help generate a signature in Section
6.

5.2. Distributed usage

Sites using TaintCheck could also cooperate for faster
attack detection. Once one site has detected a new attack,
the information about the attack can be used by anyone to
defend against the attack. Ideally, a signature for an attack
could be generated as soon as one site running TaintCheck
detects the attack. This signature could then be used by
everyone to efficiently filter out attack requests, thus pre-
venting further exploits.

As a concrete example, suppose that a worm author de-
velops a hit list of vulnerable servers and hard codes it
into a worm [42]. Such a worm could spread even more
quickly than fast scanning worms such as Blaster. The
worm author could also throttle the spread of the worm,
which may allow it to infect more machines before the
worm was detected than if it spread as quickly as possible.
Whether by brute force or by stealth, such a worm could
infect a very large number of machines before it was no-
ticed. However, if TaintCheck is deployed on d fraction
of the vulnerable servers, each of which samples requests
with probability s, we would expect to detect the worm by
the time that 1

ds
vulnerable servers are compromised. For



example, if 10% of the vulnerable servers sample 10% of
their incoming traffic with TaintCheck, the worm should
be detected around the time that 100 servers have been
compromised. If there are 1 million vulnerable hosts, this
means the new attack can be detected after only 0.01%

vulnerable servers are compromised. By automatically
generating and distributing a signature for the worm, fur-
ther compromises of other vulnerable hosts would be sig-
nificantly reduced.

6. Automatic signature generation

Once a new exploit or worm is detected, it is desirable to
generate a signature for it quickly, so that exploit requests
may be filtered out, until the vulnerability can be patched.
We first propose a new approach for automatic signature
generation: using automatic semantic analysis of attack
payloads. We describe the advantages of this approach,
and describe how it could be implemented using Taint-
Check. We then show several ways that TaintCheck can be
used as a classifier in order to enhance automatic signature
generation systems (both existing ones using content pat-
tern extraction, and future ones using automatic semantic
analysis).

6.1. Automatic semantic analysis based signature
generation

Previous automatic signature generation techniques use
content pattern extraction to generate signatures [21, 24,
41]. That is, they consider attack payloads as opaque byte
sequences, and attempt to find patterns that are constant
across attack payloads to use as signatures.

We propose a new approach for automatic signature
generation: using automatic semantic analysis of attack
payloads to identify which parts of the payloads are likely
to be constant (i.e., useful in a signature). Semantic anal-
ysis could potentially allow an accurate signature to be
generated given fewer attack payloads than are necessary
in systems that use only content pattern extraction. By
requiring fewer attack payloads, semantic analysis could
generate a signature at an earlier stage of a worm epi-
demic, thus minimizing damage caused by a new worm.

TaintCheck could be used to perform automatic seman-
tic analysis of attack payloads, because it monitors how
each byte of each attack payload is used by the vulnerable
program at the processor-instruction level. As a first step,
we have implemented a feature that allows TaintCheck to
identify the value used to overwrite a function pointer or
return address. We also describe several other promising
directions for using TaintCheck to perform automatic se-
mantic analysis.

Figure 4 illustrates how an automatic signature gener-
ation system could use TaintCheck to detect new attacks,

and to perform semantic analysis of attack payloads. In
some cases, the semantic information could be used di-
rectly as a signature. Otherwise, it can be used to give
hints to a content pattern extractor, possibly allowing it to
generate an accurate signature with fewer payloads than it
would require otherwise.

Obtaining overwrite values In Section 4 we show that
TaintCheck can identify the value used to overwrite a re-
turn address or a function pointer. For most code-injection
exploits, this value needs to point to a fixed area for the ex-
ploit to work correctly; i.e., usually at least the three most
significant bytes of this value must remain constant. For
many exploits, this value must occur literally in the attack
payload. In other exploits, the server may perform a de-
coding step (such as URL decoding) in order to obtain the
actual pointer. TaintCheck can distinguish between these
two cases, and trace back to determine which bytes of
the encoded payload correspond to the decoded address.
Hence, TaintCheck is often able to produce a signature
automatically based on the three most significant bytes of
a value used to overwrite a jump target such as a return
address or function pointer. Similarly, for existing-code
attacks, there are typically only a few places that are use-
ful for the attack to jump to (e.g., a few global library entry
points). Thus, similar techniques will work for identifying
signatures for existing-code attacks as well.

While a three-byte signature may seem short, it could
be specific enough for protocols with an uneven distribu-
tion of byte sequences (e.g., text-based protocols such as
HTTP). In our analysis of a week-long trace of incoming
and outgoing HTTP requests containing 59250 connec-
tions from the Intel Research Pittsburgh Lab, 99.97% of
all three-byte sequences occurred in less than .01% of all
connections, and 91.8% of all three-byte sequences never
occurred at all. To further test this idea, we used Taint-
Check to identify the return address used in the ATPhttpd
exploit discussed in Section 4.2.2. We found that the three
most significant bytes of this value occurred in only one
request in the week-long trace. The request was a POST
request that was used to upload a binary file. This corre-
sponds to a false positive rate of .0017%. Hence, the three
most significant bytes of the value used to overwrite a re-
turn address or function pointer, which can be identified
by TaintCheck, are often distinctive enough to be used as a
reasonably accurate signature by themselves, at least until
a more descriptive signature can be found or the vulnera-
bility can be repaired. When it is not specific enough to be
used by itself, it can still be used as part of a more specific
signature. Note that our analysis is also consistent with the
findings in [30], which offers a more extensive analysis
of the usage of return addresses as signatures. In exper-
iments using 19 different real exploits and traces, [30]



Internet

Firewall / Filter

Internal
Network

Legitimate(?) Requests

Known W
orms

New
 W

or
m S

ign
atu

res

New Worm Samples + Semantic Information

TaintCheckContent Pattern Extractor

(based on semantic analysis)

New Worm Signatures

�����
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

	�	�	�	
	�	�	�	
	�	�	�	


�
�
�


�
�
�


�
�
�


�������
�������
�������
�������

����
����
����
����
����
����

���������
���������
���������
���������
���������

���������
���������
���������

�������
�������
�������

���������
���������
�������
�������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 4. Using TaintCheck to detect new attacks and perform automatic semantic analysis.

demonstrates that using a range of return addresses (ap-
proximately the three most significant bytes) as a signa-
ture can filter out nearly 100% worm attack packets while
only dropping 0.01% of legitimate packets.

Note that attacks exploiting a format string vulnerabil-
ity may not have a constant return address that we can
leverage for a signature, because a format string vulnera-
bility often enables the attacker to overwrite any location
in memory with any value. However, in order to perform
the overwrite, the format string supplied by the attacker
often needs to contain certain format modifiers such as
%n. When TaintCheck detects a format string attack, it
can determine whether the format string is directly copied
from the attack packet; if so, then we could use such for-
mat modifiers and use this as part of the attack signature.

Potential techniques for further semantic analysis In
future work, we plan to investigate more advanced tech-
niques of semantic analysis to assist automatic signature
generation.

One possibility is for TaintCheck to keep track of
whether each byte of the request is used in any signifi-
cant way, and how it is used. This could be helpful for
identifying filler bytes, which could be (but don’t have to
be) completely different in each instance. These bytes
could be completely random, or the attacker could use
these bytes to form red herring patterns, fooling the sys-
tem into generating useless or harmful signatures. If any
byte is not used to affect a branch, used to perform a cal-
culation, used in a system call, or executed by the worm,

it is likely a filler byte. While an attacker may attempt to
perform meaningless operations on the filler bytes in order
to fool such a technique, it may be possible to extend the
Exploit Analyzer with dynamic slicing techniques [4, 23]
to identify which operations are “meaningful” and which
are not. Additionally, any bytes used only after the exploit
has taken place may not be essential to exploit the vulner-
ability. Hence, they could be different in other instances of
a polymorphic worm (one that uses encryption and code
obfuscation so that no two instances are identical [44]), or
in different exploits for the same vulnerability. Using such
bytes in a signature may make the signature more specific
than it needs to be, leading to future false negatives. Con-
versely, bytes that are used by the program before it is
exploited may be necessary to make the program follow
the control path leading to the exploit.

Another technique that could be used to determine
which parts of the request are irrelevant to the exploit is
to flip bits in the attack packet and see whether the exploit
still succeeds. If the attack can still succeed after a certain
bit is flipped, then we will know that that the value of that
bit will not affect the success of the exploit and hence may
not be invariant for new attacks on the same vulnerability.

6.2. Classifier and signature verifier

In addition to automatic semantic analysis based sig-
nature generation, TaintCheck has direct applications to
other aspects of automatic signature generation. Taint-
Check can be used as a classifier in order to enhance au-
tomatic signature generation systems (both existing ones



using content pattern extraction, and future ones using au-
tomatic semantic analysis). As we have shown in Section
5, TaintCheck can be used to detect new attacks so that
signatures can be generated for them. TaintCheck could
also be used to verify the quality of newly generated signa-
tures, by determining whether requests matching a newly
generated signature actually contain an attack.

Classifying attack payloads Previous automatic signa-
ture generation systems such as Earlybird [41], Honey-
comb [24], and Autograph [21] use coarse grained attack
detectors to find samples of new attacks. Each of these
techniques can potentially identify innocuous requests as
malicious requests, either by accident, or as the result of
an attacker “feeding” the system innocuous requests (e.g.,
by sending them to a known honeypot). When this hap-
pens, a signature could be generated that matches legit-
imate requests, causing a denial of service attack if that
signature is used to filter traffic. Moreover, these sys-
tems need to wait until multiple (potentially many) pay-
loads are captured before generating a signature, in order
to decrease the probability of a signature being generated
for legitimate requests that were incorrectly identified as
worms. Thus, they suffer from a tradeoff between false
positive rate and speed of signature generation.

As we have shown in Section 5, TaintCheck can be used
either by itself or in conjunction with other classifiers to
help accurately detect new attacks. The system can be
nearly certain that a request is malicious if TaintCheck de-
termines that an exploit occurred, since TaintCheck offers
a very low incidence of false positives. Hence, there is no
need to wait for other similar requests to be classified as
malicious to be confident that the request is actually mali-
cious, as done in previous signature-generation systems.

Another technique that we have implemented in Taint-
Check is an option to allow a worm to attempt to spread in
a confined environment after it has exploited the protected
server, while redirecting all outgoing connections to a log-
ging process. In this way, any number of samples can be
generated from just one worm sample. These additional
samples can be used to help identify which parts of the
worm are invariant across different instances of the worm.
These invariant portions can then be used to generate a
signature.

In future work, we plan to investigate more advanced
techniques for TaintCheck to further assist in automatic
signature generation as a classifier. For example, Taint-
Check can not only detect exploit attacks, but also distin-
guish between different vulnerabilities and different ex-
ploits. Thus, TaintCheck can not only be a one-bit classi-
fier, i.e., whether a payload contains an exploit attack or
not, but also be a more sophisticated classifier, i.e., clas-
sify different payloads into different groups according to

the vulnerability and the exploit. Pattern extraction meth-
ods can then be used in each group, and thus, generate
more accurate signatures.

Signature and alarm verification TaintCheck can also
be used to verify signatures and alarms. In a single-user
setting, this can be used to verify the quality of a newly
generated signature. In a distributed system where attack
signatures and alarms to new attacks are disseminated, at-
tackers or incompetent participants may inject bogus or
low quality signatures and alarms that will cause denial-
of-service attacks on legitimate traffic. Thus, the receiver
needs to validate the signatures and the alarms received
to ensure that they are valid and will not cause denial-of-
service attacks. TaintCheck can be used as the verifier to
check that the remotely generated signatures and alarms
are valid. In particular, it could measure the false positive
rate of the signatures by validating whether the matched
requests really contain exploits, and by validating whether
the sample requests in the alarms are real attacks.

7. Related work

Program Shepherding. Program Shepherding [22] is
the closest related work to TaintCheck. Program Shep-
herding is a runtime monitoring system that keeps track
of whether code has been modified since it was loaded
from disk, and checks each control transfer to ensure that
the destination is to a basic block that has not been modi-
fied. Thus, Program Shepherding can prevent code injec-
tion attacks. It also prevents some existing code attacks by
ensuring that control transfers to a library can only go to
exported entry points, and that return addresses point
to just after a call instruction. However, these tech-
niques do not prevent many existing-code attacks (e.g.,
overwrite a function pointer to the exec library call). In
contrast, TaintCheck can prevent these existing-code at-
tacks. Moreover, TaintCheck, via dynamic taint analysis,
provides detailed information how the vulnerability is ex-
ploited. Program Shepherding does not.

Other runtime detection mechanisms Many ap-
proaches have been proposed to detect when certain vul-
nerabilities are exploited by attacks. Most of these pre-
vious mechanisms require source code or special recom-
pilation of the program, such as StackGuard [14], Point-
Guard [13], full-bounds check [19, 37], LibsafePlus [5],
FormatGuard [12], and CCured [27]. Many of them re-
quire recompiling the libraries [19, 37], modifying the
original source code, or are not compatible with some pro-
grams [27, 13]. These issues hinder the deployment and
the applicability of these methods in attack defense for



commodity software, since source code is often unavail-
able.

Several other approaches for runtime attack detection
have been proposed that do not require source code
or specially compiled binary programs, such as Lib-
Safe [6], LibFormat [36], Program Shepherding [22], and
the Nethercote-Fitzhardinge bounds check [28]. However,
they fail to detect many types of attacks. For example,
LibSafe only catches buffer overflows related to certain
string-handling functions, LibFormat only detects certain
format modifiers in format strings and thus can have high
false positives and false negatives, and the Nethercote-
Fitzhardinge bounds check has significant false positives
and false negatives. In contrast, TaintCheck detects a
wider range of attacks and incurs fewer false positives.

Other approaches have been proposed for more coarse-
grained attack detection, including system call interpo-
sition (e.g. Systrace [33], GSWTK [17], Tron [7],
Janus [18], and MAPbox [3]). These approaches detect
attacks by detecting anomalous system call sequences in a
program. They do not give detailed information about the
vulnerability and how it is exploited, and require building
models for each protected program.

Other taint-based approaches Static taint analysis has
been used to find bugs in C programs [16, 39, 46] or to
identify potentially sensitive data in Scrash [9]. Perl [2]
does runtime taint checking to see whether data from un-
trusted sources are used in security-sensitive ways such as
as an argument to a system call.

Chow et. al. independently and concurrently proposed
to use whole-system simulation with tainting analysis to
analyze how sensitive data are handled in large programs
such as Apache and Emacs [11]. The tainting propagation
in TaintCheck is similar to the one in [11]. However,
their work focuses on analyzing the lifetime of sensitive
data such as passwords, where our work concerns attack
detection and defense.

Minos independently and concurrently proposed hard-
ware extension to perform Biba-like data integrity check
of control flow to detect attacks at runtime [15]. Their
work uses hardware and OS modifications to perform
Biba integrity checks at the whole-system level. In con-
trast, TaintCheck requires no hardware or OS modifica-
tions, and can be very flexible and fine-grained to detect
attacks that were not addressed in Minos such as format
string vulnerabilities3 and attacks that overwrite security-
sensitive variables such as system call arguments. Taint-
Check is also able to perform more detailed analysis of

3Minos can detect some forms of format string vulnerabilities if they
alter the control flow, however, our work can detect format string vulner-
abilities even when they do not alter control flow.

detected attacks, which can be used for automatic signa-
ture generation.

Other signature generation approaches and defense
systems Several automatic signature generation meth-
ods have recently been proposed, including Early-
bird [41], Honeycomb [24], and Autograph [21]. Early-
bird [41] monitors traffic and generates signatures which
consist of the Rabin fingerprints of the most commonly
occurring 39 byte substrings in the monitored traffic. Hon-
eycomb [24] classifies traffic that is sent to a honeypot as
malicious, and generates signatures based on the longest
common substrings found in traffic sent to the honeypot.
Autograph [21] uses distributed monitoring points to de-
termine what hosts are performing port scans. All traffic
from hosts that have been seen performing port scans is
classified as malicious. Autograph then uses a file chunk-
ing technique to split requests into blocks, and generates
a signature consisting of the most common blocks seen in
malicious traffic.

As we showed in Section 6, TaintCheck can be used as
a classifier to reduce the false positive and/or false nega-
tive rates of the classifiers used in these systems. Taint-
Check can also provide semantic analysis of attack pay-
loads, which can be used to generate signatures with fewer
samples than by using content-analysis alone. Finally,
TaintCheck can also be used to verify the signatures and
alarms produced by such systems.

Shield [45] presents an alternative approach to content-
based filtering. Shield uses the characteristics of a vul-
nerability to manually generate a signature for any exploit
of that vulnerability before an exploit is seen in the wild.
This is a promising approach, but it does not help in the
case that the worm utilizes a vulnerability that was previ-
ously unknown, or only recently became known.

Sidiroglou and Keromytis propose a worm vaccine ar-
chitecture to automatically generate patches for vulnera-
bilities [40].

8. Conclusion
In order to combat the rapid spread of a new worm be-

fore it can compromise a large number of machines, it is
necessary to have automatic attack detection and defense
mechanisms. In this paper we have proposed dynamic
taint analysis and shown how it can be used to detect and
analyze most types of software exploits, without requir-
ing source code or special compilation of a program, thus
allowing it to easily be used on commodity software. It
reliably detects many attacks, and we have found no false
positives in our tests. In addition, because it monitors the
execution of a program at a fine-grained level, TaintCheck
can be used to provide additional information about the
attack. It is currently able to identify the input that caused



the exploit, show how the malicious input led to the ex-
ploit at a processor-instruction level, and identify the value
used to overwrite the protected data (e.g. the return ad-
dress).

Furthermore, we have shown that TaintCheck is particu-
larly useful in an automatic signature generation system—
it can be used to enable semantic analysis based signature
generation, enhance content pattern extraction based sig-
nature generation, and verify the quality of generated sig-
natures.

9. Acknowledgments

We would like to thank David Brumley, Mike Bur-
rows, Jedediah Crandall, Debin Gao, Brad Karp, Angelos
Keromytis, Nicholas Nethercote, Jonathon Shapiro, Peter
Szor, Helen Wang, Felix Wu, Avi Yaar, and Lidong Zhou
for providing feedback and assistance on this project. We
also thank the anonymous reviewers for their insightful
feedback.

References

[1] ISC innd 2.x remote buffer overflow vulnerability. http:
//securityfocus.com/bid/1316.

[2] Perl security manual page. http://www.perldoc.
com.

[3] A. Acharya and M. Raje. MAPbox: Using parameterized
behavior classes to confine applications. In the Proceedings
9th USENIX Security Symposium, 2000.

[4] H. Agrawal and J. Horgan. Dynamic program slicing. In
Proc. SIGPLAN, 1990.

[5] K. Avijit, P. Gupta, and D. Gupta. Tied, libsafeplus: Tools
for runtime buffer overflow protection. In USENIX Security
Symposium, August 2004.

[6] A. Baratloo, N. Singh, and T. Tsai. Transparent run-time
defense against stack smashing attacks. In USENIX Annual
Technical Conference 2000, 2000.

[7] A. Berman, V. Bourassa, and E. Selberg. Tron: Process-
specific file protection for the unix operating system. In the
Proceedings of the USENIX Technical Conference on UNIX
and Advanced Computing Systems, 1995.

[8] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfus-
cation: An efficient approach to combat a broad range of
memory error exploits. In USENIX Security Symposium,
2003.

[9] P. Broadwell, M. Harren, and N. Sastry. Scrash: A system
for generating security crash information. In the Proceed-
ings of the 12th USENIX Security Symposium, 2003.

[10] M. Chew and D. Song. Mitigating buffer overflows by op-
erating system randomization. Technical Report CMU-CS-
02-197, Carnegie Mellon University, December 2002.

[11] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding data lifetime via whole sys-
tem simulation. In USENIX Security Symposium, August
2004.

[12] C. Cowan, M. Barringer, S. Beattie, and G. Kroah-
Hartman. FormatGuard: automatic protection from printf

format string vulnerabilities. In Proceedings of the 10th
USENIX Security Symposium, August 2001.

[13] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Point-
Guard: Protecting pointers from buffer overflow vulnera-
bilities. In 12th USENIX Security Symposium, 2003.

[14] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beat-
tie, A. Grier, P. Wagle, Q. Zhang, and H. Hinton. Stack-
Guard: automatic adaptive detection and prevention of
buffer-overflow attacks. In Proceedings of the 7th USENIX
Security Symposium, January 1998.

[15] J. R. Crandall and F. T. Chong. Minos: Architectural sup-
port for software security through control data integrity. In
To appear in International Symposium on Microarchitec-
ture, December 2004.

[16] J. Foster, M. Fahndrich, and A. Aiken. A theory of type
qualifiers. In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementa-
tion (PLDI), 1999.

[17] T. Fraser, L. Badger, and M. Feldman. Hardening COTS
software with generic software wrappers. In the Proceed-
ings of the IEEE Symposium on Security and Privacy, pages
2–16, 1999.

[18] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A
secure environment for untrusted helper applications. In
the Proceedings of the 6th USENIX Security Symposium,
San Jose, CA, USA, 1996.

[19] R. Jones and P. Kelly. Backwards-compatible bounds
checking for arrays and pointers in C programs. In Pro-
ceedings of the Third International Workshop on Automated
Debugging, 1995.

[20] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering
code-injection attacks with instruction-set randomization.
In Proceedings of the 10th ACM conference on Computer
and Communication Security, 2003.

[21] H.-A. Kim and B. Karp. Autograph: toward automated,
distributed worm signature detection. In Proceedings of the
13th USENIX Security Symposium, August 2004.

[22] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure
execution via program shepherding. In Proceedings of the
11th USENIX Security Symposium, August 2002.

[23] B. Korel and J. Laski. Dynamic slicing of computer pro-
grams. In J. Systems and Software, volume 13, 1990.

[24] C. Kreibich and J. Crowcroft. Honeycomb - creating in-
trusion detection signatures using honeypots. In Proceed-
ings of the Second Workshop on Hot Topics in Networks
(HotNets-II), November 2003.

[25] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,
and N. Weaver. Inside the slammer worm. In IEEE Security
and Privacy, volume 1, 2003.

[26] D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet
quarantine: Requirements for containing self-propagating
code. In 2003 IEEE Infocom Conference, 2003.

[27] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-
safe retrofitting of legacy code. In Proceedings of the Sym-
posium on Principles of Programming Languages, 2002.

[28] N. Nethercote and J. Fitzhardinge. Bounds-checking entire
programs without recompiling. In Proceedings of the Sec-
ond Workshop on Semantics, Program Analysis, and Com-
puting Environments for Memory Management (SPACE
2004), Venice, Italy, Jan. 2004. (Proceedings not formally
published.).



[29] N. Nethercote and J. Seward. Valgrind: A program super-
vision framework. In Proceedings of the Third Workshop
on Runtime Verification (RV’03), Boulder, Colorado, USA,
July 2003.

[30] A. Pasupulati, J. Coit, K. Levitt, and F. Wu. Buttercup:
On network-based detection of polymorphic buffer over-
flow vulnerabilities. In IEEE/IFIP Network Operation and
Management Symposium, May 2004.

[31] V. Paxson. Bro: a system for detecting network intruders in
real-time. Computer Networks, 31(23-24), December 1999.

[32] T. S. Project. Snort, the open-source network intrusion de-
tection system. http://www.snort.org/.

[33] N. Provos. Improving host security with system call poli-
cies. In the Proceedings of the 12th USENIX Security Sym-
posium, 2003.

[34] r code. ATPhttpd exploit. http://www.cotse.
com/mailing-lists/todays/att-0003/
01-atphttp0x06.c.

[35] Y. Ramin. ATPhttpd. http://www.redshift.com/
˜yramin/atp/atphttpd/.

[36] T. J. Robbins. libformat. http://www.
securityfocus.com/tools/1818, 2001.

[37] O. Ruwase and M. Lam. A practical dynamic buffer over-
flow detector. In Proceedings of the 11th Annual Net-
work and Distributed System Security Symposium, Febru-
ary 2004.

[38] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu,
and D. Boneh. On the effectiveness of address space ran-
domization. In ACM Computer and Communication Secu-
rity Symposium, 2004.

[39] U. Shankar, K. Talwar, J. Foster, and D. Wagner. Detecting
format-string vulnerabilities with type qualifiers. In Pro-
ceedings of the 10th USENIX Security Symposium, 2001.

[40] S. Sidiroglou and A. D. Keromytis. A network worm vac-
cine architecture. In Proceedings of the IEEE International
Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), Workshop on Enter-
prise Security, pages 220–225, June 2003.

[41] S. Singh, C. Estan, G. Varghese, and S. Savage. The Early-
Bird system for real-time detection of unknown worms.
Technical Report CS2003-0761, University of California,
San Diego, August 2003.

[42] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the
Internet in your spare time. In 11th USENIX Security Sym-
posium, 2002.

[43] C. Systems. Network-based application recognition.
http://www.cisco.com/univercd/cc/td/
doc/product/software/ios122/122newf%t/
122t/122t8/dtnbarad.htm.

[44] P. Szor. Hunting for metamorphic. In Virus Bulletin Con-
ference, 2001.

[45] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier.
Shield: Vulnerability-driven network filters for preventing
known vulnerability exploits. In ACM SIGCOMM, August
2004.

[46] X. Zhang, A. Edwards, and T. Jaeger. Using CQual for
static analysis of authorization hook placement. In the Pro-
ceedings of the 11th USENIX Security Symposium, 2002.


