
Enterprise Security: A Community of Interest Based Approach

Patrick McDaniel∗
mcdaniel@cse.psu.edu

Subhabrata Sen†
sen@research.att.com

Oliver Spatscheck†
spatsch@research.att.com

Jacobus Van der Merwe†
kobus@research.att.com

Bill Aiello‡
aiello@cs.ubc.ca

Charles Kalmanek†
crk@research.att.com

Abstract

Enterprise networks today carry a range of mission crit-
ical communications. A successful worm attack within an
enterprise network can be substantially more devastating to
most companies than attacks on the larger Internet. In this
paper we explore a brownfield approach to hardening an
enterprise network against active malware such as worms.
The premise of our approach is that if future communica-
tion patterns are constrained to historical “normal” com-
munication patterns, then the ability of malware to exploit
vulnerabilities in the enterprise can be severely curtailed.
We present techniques for automatically deriving individual
host profiles that capture historical communication patterns
(i.e., community of interest (COI)) of end hosts within an en-
terprise network. Using traces from a large enterprise net-
work, we investigate how a range of different security poli-
cies based on these profiles impact usability (as valid com-
munications may get restricted) and security (how well the
policies contain malware). Our evaluations indicate that
a simple security policy comprised of our Extended COI-
based profile and Relaxed Throttling Discipline can effec-
tively contain worm behavior within an enterprise without
significantly impairing normal network operation.

1 Introduction

The outbreak of the witty worm [6], which ironically
spread through vulnerabilities in commercial desktop se-
curity software, illustrates the importance of multi-facet
security countermeasures. This was arguably the first
widespread worm to have a truly malicious payload. It also
appears that the release of the worm was coordinated across
many hosts, making it nearly impossible to identify its ori-
gin. Because the desktop security mechanisms were totally

∗SIIS Laboratory, CSE, Pennsylvania State University
†AT&T Labs – Research
‡Computer Science, University of British Columbia

compromised, little could be done to prevent infection. The
perimeter defenses (e.g., firewalls) only marginally aided
the suppression of these worms because of the difficulty of
defining and implementing perimeter defenses.

This lack of security is particularly troublesome in the
context of corporate enterprise networks. While the Inter-
net itself is becoming an increasingly important part of to-
day’s economy, corporate enterprise networks still carry the
vast majority of mission critical communications. There-
fore, a successful worm attack within an enterprise network
will be substantially more devastating to most companies
than attacks on the Internet. Furthermore, worms can spread
in enterprise networks even if they are completely isolated
from the Internet. For example, worms might be introduced
by laptops that are used both outside and within the enter-
prise, or by unauthorized software installations within the
enterprise. These attacks are exacerbated by the sheer size
of enterprise networks: enterprise networks can span multi-
ple continents, connect tens of thousands of machines, and
be used by hundreds of thousands of employees.

The goal of our work is to improve the protection against
worms and similar security threats within enterprise net-
works. While these networks can be quite large they do
provide certain properties which make it easier to protect
them. In particular they typically have a known network
topology, have knowledge of all end hosts allowed on the
network, can control the configuration on all routers and
switches within the network and can install software on ev-
ery host deployed in the enterprise. We denote all hosts
within the enterprise network in question as internal hosts
and all other hosts as external hosts. The standard role of
firewalls is to protect internal hosts from potentially ma-
licious external hosts that typically translate into rules for
dropping or passing packets originating from external hosts
destined for internal hosts. We acknowledge that even in-
ternal nodes may become malicious when they are compro-
mised. Thus each internal node should also be protected
from other internal hosts. In the simplest instantiation of our
framework, this translates into a set of rules for dropping or

allowing packets where both the origin and destination are
internal hosts. In the most general case, the set of rules may
define an arbitrary subset of the 4-tuple defined by origin
and destination IP addresses, protocol, and destination port
number where the origin and destination IP addresses are
for internal hosts. The design space for such a set of rules
is defined along three principle axes: security, usability, and
manageability.
Enterprise policies must be manageable to be usable in

real networks. Hence, we restrict ourselves to simple poli-
cies throughout. Moreover, for all the policies, we describe
methods for automatically populating the rules defining the
allowed internal-to-internal communication. The primary
focus of the paper is an analysis of the usability and secu-
rity, and the tradeoffs between them, of the chosen set of
manageable policies.
If one envisions designing and deploying an enterprise

network, including all hardware and software, from the
ground up, it may be possible to design and enforce quite
rigid internal-to-internal communication policies. But our
work does not require such a greenfield approach. Rather
our work is aimed at a brownfield environment–an existing
large, complex enterprise network. In such an environment,
it is (in our experience) nearly impossible to impose rules
after the fact without severely affecting usability. This is
due both to the diversity of user requirements and to the
complexity of explicit and implicit host communications.
Moreover, it may be nearly impossible to “reverse engineer”
by hand the implicit, existing enterprise-wide policy–even
with many hands.
In this paper, we present methods for automatically gen-

erating the policies based on several weeks of training data.
The essential premise of this approach is that if future
communication patterns are constrained to historical “nor-
mal” communication patterns, then the ability of malware
(e.g., worms) to exploit vulnerabilities in the enterprise is
severely curtailed. Of course, such a history-based ap-
proachmay hinder both usability and security. For usability,
this approach may block a perfectly legitimate communica-
tion if it didn’t occur in the training period, which is unde-
sirable. To handle such possibilities, our policies have two
components. The first is a profile. This is a set of rules
defining internal-to-internal packets that are allowed. Sev-
eral of the policies we introduce allow for a specified rate
of out-of-profile communication. The rate, and the action
to take when the rate is exceeded is given by the throttling
discipline (TD), a second component of our policies. Our
history-based approach may also compromise security if il-
legitimate communication is part of the training set. We
assume that after creation, the profile is scrubbed for illegit-
imate rules based on the behavior of knownworms. We rely
on multiple heuristics introduced in our previous work [16]
to reduce the amount of illegitimate rules before the profiles

are derived.
We should make a brief note here about enforcement of

our policies. Our internal-to-internal communication poli-
cies can be enforced at either the origin or the destination,
or the switch or hub just upstream or downstream, respec-
tively, and the work presented in this paper is agnostic to
that decision. However, the motivating perspective of the
paper, i.e., of viewing enterprise hosts as potentially mali-
cious, suggests that enforcement should be as close to the
potentially malicious entity as possible, i.e., at the originat-
ing hosts or the upstream switch. This is consistent with the
accepted security practice of deploying the enforcement as
close to the source as possible. As a specific example of
the advantage of such a placement, several fast spreading
worms such as Slammer effectively implemented a denial-
of-service on enterprise networks even for uninfected ma-
chines as the worm overwhelmed the capacity of many LAN
segments. Policy enforcement of out-of-profile traffic at the
origin mitigates this type of bandwidth DoS.
As we shall discuss in depth below, a primary conclu-

sion of our analysis is that in order for a policy to have
both reasonable security and usability, it must differenti-
ate between communications that use fixed server port num-
bers and those that use somewhat random port numbers that
are defined on the fly (e.g., agreed upon over the fixed-
port communication). We refer to the latter as ephemeral
ports. In principle, given the profile of allowed fixed-port
communication, it is possible to dynamically populate and
enforce rules for ephemeral-port communication. All such
approaches, however, require an additional protocol and/or
modifications to existing protocol software. While such ap-
proaches may eventually allow for fined-grained control of
ephemeral ports, in the interest of deployability, in this work
we considered only a restricted design space of policies that
are enforceable in a host or a switch without the use of addi-
tional protocols or the modification of existing application
software.
The remainder of the paper is structured as follows. Sec-

tion 2 presents related work. Section 3 introduces the data
set we used. In Section 4 we describe our approach of build-
ing end host profiles and describes the different throttling
disciplines that we investigate. We then evaluate the usabil-
ity and security of our policies in Section 5 and Section 6
respectively. The paper concludes in Section 7.

2 Related Work

Administrators in the early days of the Internet relied al-
most exclusively on network perimeter defenses. Perime-
ter defenses were primarily implemented through firewalls
that physically govern the traffic entering and leaving the
network. Managing the often low-level access controls on
firewalls has shown to be quit complex and multiple efforts

2

have focused to ease this burden on the network operator
[4, 1, 2, 10, 18].
Despite those efforts, perimeter defenses became less ef-

fective as the Internet grew. Enterprises began to employ the
myriad of technologies and applications at their disposal,
e.g., multi-media, B2B applications, remote data. These
services required significantly more access to resources ex-
ternal to the enterprise. Hence, the perimeter was neces-
sarily weakened as more channels to these services were
opened. Bellovin addressed the dissolving perimeter by ap-
plying the firewall policies at each end-point [3, 9]. Cen-
tralized entities in his distributed firewall system distribute
firewall policies to each host in the network. Because global
policy is enforced through the aggregate behavior of host,
the dissolving perimeter is less problematic. Personal fire-
walls (e.g., host-level firewalls) are now common features
of almost all commercial and open source operating sys-
tems. There are several differences between [3, 9] and the
work presented in this paper. We also envision enforce-
ment of communication policies at, or close to, the end-host.
However, our policies treat the end-host as potentially hos-
tile and seek to protect the rest of the enterprise network by
blocking illegitimate packets emanating from that end-host.
The perspective of [3, 9] is to protect each end host from
other potentially hostile hosts and is primarily concerned
with blocking illegitimate packets at the destination. In ad-
dition, we consider the issues of brownfield deployment and
out-of-profile throttling disciplines.
Our work is also related to more recently proposed,

introspective network systems. Early systems such as
GrIDS [15] used models of normal connectivity graphs to
detect malicious behavior. These solutions were useful in
detecting scanning attacks. As worm and virus behavior be-
gan to be better understood [14, 12], previous graph based
mechanisms were replaced with more sophisticated behav-
ioral models. For example, Staniford’s CounterMalice [13]
uses the network infrastructure to detect and counteract ma-
licious activity. A model of normal activity is gleaned
from historical data reflecting both number of unique IP ad-
dresses to which a connection is attempted and the num-
ber of failed connection attempts. This model of normal
behavior is used to detect abnormal behavior that is then
blocked. This virus throttling [17] can greatly reduce the
infection rate of a worm. Our work differs from these ear-
lier approaches in a number of ways. First is our use of
communities of interest (COI) to derive the model of nor-
mal behavior. This builds on our earlier analysis of COI in
enterprise networks [16] and is, to our knowledge, the first
application of the COI concept to data networks. Second,
is the fact that we use the model of normal behavior not to
detect abnormal behavior, but to control the extent to which
abnormal communication is allowed. This is a subtle but
significant difference because there is no “detection phase”

and therefore hosts are protected as soon as the security pol-
icy is in place.

3 Experimental Data Collection and Prepro-
cessing

To perform the analysis presented in this paper, we col-
lected eleven weeks worth of flow records from a single site
in a large enterprise environment consisting of more than
400 distributed sites connected by a private IP backbone
and serving a user population in excess of 50,000 users.
The flow records were collected from a number of LAN
switches using the Gigascope network monitor [5]. The
LAN switches and Gigascope were configured to moni-
tor all traffic for more than 300 hosts that included desk-
top machines, notebooks and lab servers. A 150 host sub-
set of these 300 machines communicated during the entire
eleven-week period. We refer to this smaller set as the lo-
cal hosts and they form the focal point of our analysis. In
addition to some communication amongst themselves, the
local hosts mostly communicated with other hosts in the
enterprise network (referred to as internal hosts) as well as
with hosts outside the enterprise (i.e., external hosts). The
latter communication is excluded from our analysis. Dur-
ing the eleven-week period we collected flow records cor-
responding to more than 4.5 TByte of network traffic. In
this study we only considered TCP and UDP traffic. We
also removed weekend data from our data set, thus ensur-
ing a more consistent per-day traffic mix. Our measurement
infrastructure generated “raw” flow records that were pro-
cessed using the same techniques described in [16]. In sum-
mary this processing removed all unwanted (abnormal) traf-
fic from the data, dealt with DHCP issues, and tagged data
with client/server designations based on whether a host was
initiating communication or listening on a socket to allow
other hosts to communicate with it.

4 Securing the End Host

Our approach is to devise an individual policy for each
end host based on the historical set of other hosts in the
enterprise with which it interacts, i.e., its Community of In-
terest (COI). We perform this task in two steps. First, we
develop a COI Profile of each end host. The goal of the
profile is to capture what communication is normal for a
particular host. Due to the cleaning that we perform on our
data, we make the reasonable assumption that the data set
we use for our analysis contains only legitimate traffic. In
the second step we define Throttling Disciplines (TDs) that
define what should happen if a host attempts to communi-
cate outside of its profile. For each host, the combination
of its profile and TD is used to restrict and control future

3

communication. We focus in particular on policies that can
be easily implemented as access control lists (ACLs) on the
switch that connects the host to the rest of the network. It
should be immediately apparent that restricting communi-
cation in this way would have desirable security properties,
because communication outside the “normal” profile can be
restricted. At the same time, however, communication is
never static and the system should minimize disruptions of
legitimate traffic that falls outside of the historical profiles.
Indeed, this tension between the usability of our approach
and its security benefits forms the basis for our evaluation
in Sections 5 and 6.

4.1 COI Profiles

In our approach, all COI profiles are constructed by ana-
lyzing historic network communication for hosts within an
enterprise network during a profile training period. The
goal of a COI profile is twofold. First it captures the his-
toric communication of a set of end hosts, and second, this
history is used to predict the host’s future communication
behavior.
Profiles differ in terms of the domain knowledge used to

construct them, i.e., protocol specific information. Themost
basic of such profiles that we denote as Simple COI Pro-
files do not consider any domain specific knowledge, rather
it only considers information from the 4-tuple: (protocol,
client IP, server port, server IP). 1 Not surprisingly a Simple
COI Profile that considers port level information will have
great difficulty predicting the host’s future communication
behavior in the presence of applications that use ephemeral-
port communication such as FTP and most streaming pro-
tocols. To compensate for the presence of ephemeral-port
communication we investigate two alternate approaches. In
the first approach we still consider only Simple COI Profiles
but use wild cards for some of the fields in the four-tuple.
As we will see this approach leads to profiles with unaccept-
able security properties. To address this we also investigate
a heuristic that compensates for ephemeral communication
while still considering the server port within the profile that
we call the Extended COI Profile.

4.1.1 Simple COI Profiles

For a given set of clients we define pure history based pro-
files at the following three levels of granularity:

1. Protocol, Client, Server Port, Server Profile (PC-
SPP) - The PCSPP profile contains all (protocol, client

1We refrain from considering client port for two reasons. First, client
port numbers are not typically meaningful and therefore will have no bear-
ing on the client profile. Second, as we will show in Section 5, a profile
that considers server ports is already overly restrictive thus hampering its
usability.

IP, server port, server IP) tuples of historic communi-
cations for the given set of clients. This profile most
closely represents past communication.

2. Protocol, Client, Server Profile (PCSP) – The PCSP
profile contains all the (protocol, client IP, server IP
address) tuples for the given set of clients. In other
words, in this case, if a particular client communicated
with a particular server on any port, we consider com-
munication on all ports between the client and server
to be part of the profile.

3. Protocol, Server Profile (PSP) – The PSP profile con-
tains all (protocol, server IP address) tuples for the
given set of clients. For this profile, if any client com-
municated with a server, then communication between
all clients and this server (on all ports) is considered
part of the profile.

4.1.2 Extended COI Profile

The observation that historical communication on
ephemeral ports is not a very good predictor of port
numbers used for future ephemeral communication is key
to deriving an Extended COI profile. Intuitively there are
three parts to our approach. First, we partition the training
data into ephemeral and non-ephemeral communication.
Second, the non-ephemeral training data is used directly
to derive the first part of the Extended COI. Third, for
the ephemeral training data, we assume that past commu-
nication is a good predictor of the future occurrence of
ephemeral communication between the hosts in question.
However, such future communication might not be on
the observed server ports, and therefore we derive a more
relaxed (inclusive) profile for the Extended COI profile.
A critical part of this approach is the accurate partition-

ing of the training data. Rather than relying on various man-
ually derived heuristics (e.g., thresholding or application
heuristics), we opted to use an automated data clustering ap-
proach. Rather than attempting to identify ephemeral com-
munications directly, we go through two rounds of identify-
ing (and removing from the training data), non-ephemeral
communication. For each transport protocol, i.e., TCP and
UDP, the following steps are executed:

1. Non-ephemeral Global: In the first step the algorithm
considers the set of server ports and identifies those
ports that are heavy hitters in terms of the number of
associated connections that are used by large numbers
of servers. Intuitively, this identifies the ports associ-
ated with popular fixed-port services that are running
on multiple servers. We model this as a multidimen-
sional clustering problem where the 2 dimensions are
(i) number of connections per port and (ii) number of
servers using that port. Each port can be represented as

4

a point in this 2-dimensional space. We then use the k-
means unsupervised statistical clustering algorithm [7]
to separate the heavy hitter ports from the others.
Given a set of points in an n-dimensional space, and a
desired number of partitions k, k-means performs an it-
erative partitioning which minimizes the sum, over all
clusters, of the within-cluster sums of point-to-cluster-
centroid distances. Our inputs to the k-means algo-
rithm are all ports that were used as server ports on
multiple servers. Each port p is represented by the tu-
ple (np, sp) where np is the number of connections on
that server port and sp the number of servers that used
port p. We set k to 2 to separate the heavy hitter cluster,
and used squared Euclidean distance as the distance
measure for clustering.

Before applying k-means clustering we perform the
following operations. (i) Log transformation: in order
to reduce the effect of outliers at the high end of the
value range, transform the data values for each vari-
able to a logarithmic scale. (ii) Scale Standardization:
The 2 variables have different scales. We normalize
them on a common scale to avoid one variable from
dominating the other in the clustering. We selected the
widely used z-score normalization. Z-Score is defined
as x = (v − mean(v))/stdev(v), where v is the in-
put variable, and the transformed scores have a mean
of zero and a standard deviation of one.

The k-means algorithm uses randomly selected initial
centroid locations. Poorly placed centroids may drive
the k-means clustering to a local minimum. To ad-
dress this possibility, we repeat the k-means clustering
100 times, each with a new set of randomly selected
initial cluster centroid positions, and select the solu-
tion with the lowest value for the total sum of within-
cluster point-to-centroid distances. The k-means step
yields 2 distinct clusterings of the points. The first one
corresponds to points clustered around low values of
number of connections and number of servers. The
second cluster consists of points that have high val-
ues along these dimensions. The ports corresponding
to these points are selected as the global ports for the
transport protocol prot being considered. We derive
the following profile for these ports. The tuple (c, s,
p, prot) is added to the profile if there was a client c
communicating with a server s on global server port p
with protocol prot.

2. Non-ephemeral Per-Server: We remove from the
training data all the communications associated with
the global ports identified above. In the next step we
aim to identify from among the remaining ports, those
(server, port) pairs that have significant communica-
tions. Intuitively, each such pair corresponds to that

server running non-ephemeral communications over
that server port. We use the k-means clustering (de-
scribed above), with k = 2 for clustering based on
number of connections from each (server, server port)
pair. We select the heavy hitter cluster as the set of
per-server ports. The tuple (c, s, p, prot) is added to
the profile if there was a client c communication with
a server s on server port p with protocol prot, where
the pair (s,p) belongs to the heavy hitter (server, server
port) set. For each server s, we also compute the list of
ports Ps, which will be used in the next step, that are
either in the global port list or in the heavy hitter port
list.

3. Ephemeral: The next step is to identify, from the re-
maining communications those client-server pairs that
communicate on many ports, i.e., client-server pairs
engaging in ephemeral communication. We use k-
means clustering to cluster the client-server pairs into
a heavy-hitter and non-heavy-hitter cluster based on
the number of ports these pairs communicate on. For
the identified heavy user pairs (c, s), we add rules to
the profile that would allow communication between
the pair on all ports, except the set of global ports
or the per-server heavy hitter ports (set Ps) for that
server. This exclusion is geared specifically to protect
the ports in Ps which are running popular fixed-port
services.

4. Non-Ephemeral Unclassified: In the final step all re-
maining communications that have not been classified
through the preceding steps are added to the profile
as non-ephemeral communication. I.e., if there was
a client c communicating with a server s on server port
p with protocol prot, then we add the tuple (c, s, p,
prot) to the profile.

4.2 Throttling Disciplines

We consider the following Throttling Disciplines (TDs):
(i) n-r-Strict: A n-r-strict TD blocks all out-of-profile
communication and blocks all communication of a client if
the number of out-of-profile attempts exceed a threshold n
within a time period r. n might be 0 in which case all com-
munication is blocked as soon as one out-of-profile commu-
nication is attempted. (ii) n-r-Relaxed: A n-r-relaxed TD
allows n out-of-profile communications to succeed within a
time period r. If the number of out-of-profile interactions
exceed a threshold n within a time period r, all future com-
munication is blocked. For n = 0 this policy is equal to
the 0-strict policy. (iii) n-r-Open: A n-r-open TD allows
n out-of-profile communications within a time period r. It
blocks all out-of-profile communications when the number

5

of out-of-profile interactions exceed a threshold n within a
time period r, but never blocks in-profile communications.

5 Usability

In this section we discuss the usability of the profiles and
throttling disciplines we proposed. In particular we evalu-
ate three aspects of usability. First we discuss the different
profile sizes that will impact the complexity required to im-
plement such a profile on a network device. Secondly we
investigate how well profiles built using the first four weeks
of our data set match communication in the next four weeks
to provide some insight in how well profiles predict future
communication. In the last evaluation of this section we
simulate the three TDs.

5.1 Profile Properties

Since our profiles need to be specified within the net-
work device (switch/router/firewall) that enforces our TDs,
the size of each profile is of particular importance. Using
the profiles we derived from the first four weeks, we com-
puted the number of rules needed to specify the profile. In
this context a rule has slightly different definitions for the
different profiles. For simple history based profiles, a rule
is defined as the n-tuple covering the fields included in the
profile. This means that the PCSPP rules are defined as the
following 4-tuple (c, s, p, prot). The PCSP rules are a 3-
tuple covering (c, s, prot) and the PSP rules are a 2-tuple
including (s, prot) . In contrast, the Extended COI Pro-
file has two types of rules. The first type of rules covers
all non-ephemeral communication and is represented by a
4-tuple identical to the PCSPP rules. The second type of
rule describes ephemeral communication. These rules are
represented by a tuple representing a client, a server and a
set of port ranges. We denote these rules as range rules.
As expected the rule counts for the three simple COI pro-

files (PSP, PCSP, PCSPP), shown in Table 1, show an in-
creasing number of rules as more IP header fields are added
to the profile. These profiles show a 4.2 to 6.3 fold increase
in rules going from a purely server IP address and protocol
based rule set to a rule set based on client IP address, server
IP address and protocol. Interestingly, the further increase
in profile rules if the server port is added is 59% for TCP
whereas for UDP the profile size increases 374%. This re-
sult confirms the intuition that TCP server ports are more
stable than UDP server ports.
The number of rules needed to specify the Extended COI

profile is only slightly larger than the number of rules in
the PCSPP profile. In both the UDP and TCP cases we
required less than 400 ephemeral rules for our client set of
150 hosts. Overall we can conclude that our profile sizes are
quite manageable. Even for the largest profile (Extended

COI) we require on average less than 100 rules per client to
capture the clients communication pattern.
Next we consider the question of how well the history-

based profiles predict future behavior of clients. Figure 1
shows the empirical CDF of connections per client in weeks
5 to 8 of our data sets. In the rest of this section we will use
weeks 5 to 8 as test weeks to validate the profiles we derived
from the data collected in weeks 1 to 4. Therefore, a basic
understanding of the traffic in weeks 5 to 8 is of interest.
First we can observe that we see similar distributions in all
4 weeks for the empirical CDF of the number of client con-
nections. This allows us to conclude that each of the 4 test
weeks has a comparable mix of client traffic. In addition we
observe that more than 45% of the clients have more than
1000 connections within the enterprise network per work
week, a reasonable model for normal user behavior.
Using these test weeks, we counted the number of con-

nections not within the PCSPP profile. Figure 2 depicts the
empirical CDF of such connections. The number of missed
connections is fairly high. For example, 20% of the clients
miss at least 100 connections per week in each of the weeks.
Although this number is not outrageously high, it is still
fairly significant. Note that the miss count is really a con-
servative estimate of the true user impact and does not ac-
count for collateral impact. For example, the 0-r-Strict TD
will block all the out-of-profile connections, as well as all
in-profile communications during a blocking event. This
highlights the need for a policy that allows for some level
of out-of-profile communications to accommodate normal
changes in communication patterns.

5.2 User Impact

We estimate the impact on a user for a given profile via
simulation of all combinations of profiles and policies un-
der various parameter settings. The goal of the simulator is
to determine how many legal connections would have been
blocked in the simulated environment. The simulator uses
an out-of-profile counter c that counts the number of out-
of-profile connections. It is either reset after the time period
r specified in the TD or manually by the network opera-
tor following an investigation of the event. As our data has
been cleaned, in this section we assume that all events are
caused by “good” traffic that happens to be out-of-profile.
An event occurs when the out-of-profile counter c exceeds
the threshold n of allowed out-of-profile communications
before c is being reset. Therefore, the simulator considers
the following parameters:
• Profile: The derived profiles namely, PSP, PCSP, PC-
SPP, and extended COI.

• TD: The throttling policies namely, STRICT, RE-
LAXED, and OPEN.

• n: The allowed out-of-profile threshold. We investi-
gated values of 0, 1, 5, 10, 15, and 20.

6

Algorithm Protocol n-tuple rules range rules Total
PSP TCP 705 0 705
PCSP TCP 3001 0 3001
PCSPP TCP 4775 0 4775
Extended COI TCP 4443 338 4781
PSP UDP 316 0 316
PCSP UDP 2014 0 2014
PCSPP UDP 9563 0 9563
Extended COI UDP 9193 389 9582

Table 1. Profile Sizes

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 1 10 100 1000 10000100000

 CD
F

 conn_total

W5
W6
W7
W8

Figure 1. Total Connections per Client

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 1 10 100 1000 10000

 CD
F

 conn_outprof

W5
W6
W7
W8

Figure 2. Missed Connections per client in
PCSPP

• r: The counter-reset-timer r is the time interval2 in
which we reset c to zero. We investigated 1 hour and 1
day.

• Block Time: The time period it takes an operator to
investigate an event and unblock a client. After a client
is unblocked c is set to zero. We investigated values of
1 minute, 10 minutes and 1 hour.

• Test Week: The week for which we performed the
simulation. We used all test weeks which are weeks
5-8.

The simulator measures the number of blocked connections
and blocking events.

5.2.1 Simple COI Profile Based Simulation Results

We performed simulations for all Simple COI based pro-
files under the various parameter settings. To reduce the
parameter space, we then grouped all results for a given pro-
file, TD, n, block time, and r set into a single representing
the numberof blocked connections per (client, week) tuple.
Since the test weeks have similar empirical distributions, as
shown in Figures 1 and 2, we believe that this combination
has minimal impact on the results presented while simplify-
ing the presentation of the results in this multidimensional
parameter space.
Blocked Events: Figure 3 depicts the number of events

for the 50%-tile and 90%-tile of (client, week) tuples. These
2An alternate approach to resetting c after a fixed interval would be to

use a sliding window of size r. We chose the interval-based approach since
it lends itself to a simpler implementation

two figure covers all three TDs since the number of events is
independent of the chosen TD. The reason for this indepen-
dence is that an event is triggered when the TD threshold n
is reached, which represents the start of an event in all three
TDs. TD-specific blocking action is taken for the duration
of the block time, but does not come into play if we are only
considering event counts. The out-of-profile count, c, is re-
set either after an event or after the reset time expires. The
times in this cycle do not depend on the TD used, therefore,
the event count is independent of the TD.
In Figure 3 the block time was fixed to 10 minutes to

investigate a blocking event. As expected the graphs show
that the number of events decreases as n increases. In fact
for n = 10 the 50%tile graph shows only 1 event per (client,
week) pair for the most restrictive Simple COI based pro-
file. The 90%tile event graph shows that the event count
increases by more than an order of magnitude.

Blocked Connections: In Figures 4, 5, and 6, we show
the 50 and 90%tile results of the number of blocked connec-
tions for OPEN, RELAXED and STRICT TDs respectively.
It is not surprising that the OPEN TD performs best in both
the 50%tile and 90%tile. This is because the in profile com-
munication is never blocked. However, as we will see in the
security analysis (Section 6) this TD allows all vulnerable
in-profile servers to be infected by a spreading worm. In
contrast the RELAXED and STRICT TD block all commu-
nications after an event which has a modest impact on the
50%tile number of connections blocked per (client, week)
but a dramatic impact on the 90%tile number of connections

7

0

1

2

3

4

5

6

0 5 10 15 20

 No
. o

f e
ven

t_b
lk

N

pcspp,RST =86400
pcsp,RST =86400
psp,RST =86400

pcspp,RST =3600
pcsp,RST =3600
psp,RST =3600

(a) 50%tile

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20

 No
. o

f e
ven

t_b
lk

N

pcspp,RST =86400
pcsp,RST =86400
psp,RST =86400

pcspp,RST =3600
pcsp,RST =3600
psp,RST =3600

(b) 90%tile
Figure 3. Number of Blocking Events using 10 minute block time

0

5

10

15

20

25

30

0 5 10 15 20

 No
. o

f co
nn

_b
lk

N

pcspp,RST =86400
pcsp,RST =86400
psp,RST =86400

pcspp,RST =3600
pcsp,RST =3600
psp,RST =3600

(a) 50%tile

0

100

200

300

400

500

600

0 5 10 15 20
 No

. o
f co

nn
_b

lk
N

pcspp,RST =86400
pcsp,RST =86400
psp,RST =86400

pcspp,RST =3600
pcsp,RST =3600
psp,RST =3600

(b) 90%tile
Figure 4. Blocked Connections for OPEN policy using 10 minute block time

blocked per (client, week). The reason is for this is that if
a busy client triggers an event, many in profile communica-
tions suffer. In addition the STRICT TD always blocks out
of profile communications even if no event occurs. Com-
pared to the RELAXEDTD, this slightly increases the num-
ber of blocked connections per (client, week) for small n (in
fact the two TDs are equal for n = 0) but shows a larger im-
pact for large n.
It is not surprising that the Simple COI based profiles are

becoming substantially less usable as additional IP header
fields are considered. For example, for the RELAXED
TD in Figure 5, the number of blocked connection in the
90%tile graph differs by three orders of magnitude between
PSP and PCSPP for n = 1. Although this would indicate
that from a usability point of view we should choose one
of the less restrictive profiles, we will see in Section 6 that
the security properties of the PSP and PCSP profiles are not
acceptable for a large number of environments.
Another observation we can make from Figures 3 to 6

is that r, which we varied between 1 hour (RST=3600 sec-
onds) and 1 day (RST=86400 seconds), does seem to impact
the results sub-linearly. In nearly all cases a doubling in n
improves the results approximately the same amount as the
reductions of the r from 1 day to 1 hour. Since the amount
of out of profile communication which is possible without
triggering an event is limited by the rate oprate = n/r it
seems beneficial to chose a r of 1 day which is 24 times

larger than the 1 hour reset time and compensate for the
increase in events or blocked connections by doubling n.
The resulting oprate is therefore 12 times smaller while we
preserve the same usability characteristics. The oprate is
particularly important for slow spreading worms which can
only spread undetected (without triggering an event) if they
initiate out of profile connections with a rate smaller than
oprate.
Blocked Time: Based on the results of previous experi-

ments, we chose n = 10, r =1 day and the RELAXED TD
for the remaining evaluations. This choice was motivated
by the fact that for the tested TDs and parameter settings a
larger n seems to produce diminishing returns. In addition,
as discussed above, choosing a r of 1 day greatly reduces
the undetected probing a slow spreading worm can perform
without impacting the number of events or blocked connec-
tions per (client, week) substantially. The relaxed TD was
chosen since the OPEN TD, as we will see later, is too per-
missive from a security perspective while the STRICT TD
produces a higher user impact.
Using these settings we now investigate the impact of the

block time. This parameter is determined by how quickly
network operators react and is not a parameter that can be
chosen freely. The results, shown in Figure 7, indicate that
the number of connections blocked per (client, week) in-
creases sub-linearly with increasing block time. We observe
that a block time of 10 minutes (which requires the network

8

0

20

40

60

80

100

120

140

0 5 10 15 20

 No
. o

f co
nn

_b
lk

N

pcspp,RST =86400
pcsp,RST =86400
psp,RST =86400

pcspp,RST =3600
pcsp,RST =3600
psp,RST =3600

(a) 50%tile

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20

 No
. o

f co
nn

_b
lk

N

pcspp,RST =86400
pcsp,RST =86400
psp,RST =86400

pcspp,RST =3600
pcsp,RST =3600
psp,RST =3600

(b) 90%tile
Figure 5. Blocked Connections for RELAXED policy using 10 minute block time

0

20

40

60

80

100

120

140

0 5 10 15 20

 No
. o

f co
nn

_b
lk

N

pcspp,RST =86400
pcsp,RST =86400
psp,RST =86400

pcspp,RST =3600
pcsp,RST =3600
psp,RST =3600

(a) 50%tile

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20
 No

. o
f co

nn
_b

lk
N

pcspp,RST =86400
pcsp,RST =86400
psp,RST =86400

pcspp,RST =3600
pcsp,RST =3600
psp,RST =3600

(b) 90%tile
Figure 6. Blocked Connections for STRICT policy using 10 minute block time

operator to react to events within that time) provides accept-
able results with 7 blocked connections per (client, week)
for the 50%tile PCSPP profile.

5.2.2 Impact of Extended COI

As we have discussed before, a substantial part of the
out-of-profile connections in the PCSPP profile are due to
ephemeral ports. Our goal with developing the Extended
COI profile is to attempt to more accurately predict such
ephemeral communication. We now investigate the benefits
in terms of usability of the ExtendedCOI profile by compar-
ing it to the PCSPP profile with the parameter set derived in
the previous section. Table 2 shows the absolute number of
events and blocked connections for the 50, 80 and 90%tile
(client, week) value. It also shows the relative improvement
of the events and blocked connections for those percentiles.
We focused this table on the 50-90% tile range since the
lower percentiles already produce few events and blocked
connections. The results show that the number of blocked
connections improves between 43% to 66% for the 50%tile,
between 30% to 39% for the 80th percentile, and between
15% to 33% for the 90th percentile—overall a substantial
improvement over the PCSPP profile. The number of events
is also reduced, however, it seems that the improvements are
smaller which indicates that busier hosts benefit more.

6 Security

This section details our simulation-based security evalu-
ation of the COI approach. We use the data and methodol-
ogy identified in the preceding sections to derive a network
model and source TD and profiles. The worm simulation
used throughout models propagation in simulated (discrete)
rounds within a modeled enterprise network. The simu-
lated worm can compromise hosts through a fixed port over
which the worm is propagated, e.g., port 80/http. An in-
fected host can comprise exactly one other host in a round.
Hence, modulo the mitigation technique used, the number
of worms attempting to compromise other hosts grows at
each round. In this way, the simulation models the expo-
nential behavior of worm propagation within the enterprise.
We use two metrics to evaluate security. The infectedmetric
indicates the number of hosts infected at the end of the ex-
periment. This reflects the degree to which the tested poli-
cies contain the worm outbreak. The second metric, time
to completion measures the number of rounds till comple-
tion of the experiment. This measures how quickly a worm
is contained or, in the case of saturation, how quickly all
vulnerable hosts are compromised.
Each compromised host in the simulation has a fixed

probability s of successfully compromising another simu-
lated host in a round. This parameter models the ability of
the worm to identify a vulnerable host to attempt to compro-

9

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500 3000 3500 4000

 No
. o

f co
nn

_b
lk

Block Time (sec)

pcspp
pcsp
psp

(a) 50%tile

0

500

1000

1500

2000

2500

3000

0 500 1000150020002500300035004000

 No
. o

f co
nn

_b
lk

Block Time (sec)

pcspp
pcsp
psp

(b) 90%tile
Figure 7. Blocked Connections per (client, week) vs Block duration (RELAXED policy 1 day reset time
and n = 10)

Comparison Type PCSPP Exten. Change % PCSPP Exten. Change % PCSPP Exten. Change %
50% 80% 90%

Events 1 1 0 7 5 27 16 14 11
Open BC 3 1 66 71 42 39 190 160 15
Relaxed BC 7 3 57 266 160 39 1632 1090 33
Strict BC 37 21 43 451 313 30 1782 1340 24

Table 2. Extended COI and Simple COI based profiles events and blocked connections (BC)

mise. A host can be compromised if (a) the host is reach-
able by the infecting host according to the tested profile
and TD, and (b) the policy has not restricted communica-
tion to the victim host/port, and (c) if the victim host is not
already compromised. If a host is infected during one round
of the simulation, then it will attempt to infect other hosts
in subsequent rounds. Every out-of-profile communication
attempt by a host is deemed a miss. As defined in Section 4,
TD determines how the host is restricted once it reaches the
n threshold of misses. To restate the TDs, the n-r-STRICT
and n-r-RELAXED will prevent any further compromise
attempts by that host once the threshold is reached, and the
n-r-OPENwill prevent any out-of-profile attempts once the
threshold is reached. For our simulation we assumed that r
is much larger then the time to spread the worm. For brevity
we, therefore, do not consider the impact of r, i.e., assume
r = ∞.

An experiment terminates when all hosts are compro-
mised or there are no hosts that can compromise any re-
maining uninfected hosts. The network is saturated if all
compromisable hosts are compromised (which represents
the worst-case, total infection of the network). Conversely,
a worm is contained when the worm can no longer spread
because of profile and TD restrictions, but there remain
hosts that are vulnerable to compromise. The simulation
uses the source data used in the profile creation to seed the
experiments. We conservatively assume all hosts that have
the target port in their profile, either as a client or a server
port, are vulnerable. In practice, there may be other ports
vulnerable in the network that were unused over the 8 week

sampling period. On first glance, this may appear to under-
estimate the possible spread of the worm. However, because
unused ports will not show up in any profile, they offer no
additional opportunity for comprise in a n-r-STRICT pol-
icy, and only up to the threshold in the n-r-RELAXED and
n-r-OPEN policies. Conversely, many worms are only able
to compromise hosts that are listening on a particular port,
i.e., will only exploit a vulnerability in the server interface.
Our simulation of client ports as also being vulnerable is
more conservative, as it would require the compromising
of the client based on client request, e.g., a buffer overflow
in the response to some client driven request. In practice,
client-side vulnerabilities are less frequently observed and
are more difficult to exploit. Hence, the propagation of
worms in real networks is likely to be less successful than
that reported.

Each experiment seeds a single simulated host as com-
promised and models infection behavior, round by round,
until the experiment terminates. We repeat the simulation
for each seeded host with a different seed and show the
measurements taken over all experiments. Hence, each ex-
periment is for a TD/profile/parameter is repeated a num-
ber of times equal to the number of vulnerable hosts. For
our evaluation we chose ports for which a reasonably large
number of exploits is actively being monitored by a large
tier 1 ISP e.g., 25, 80, 53, 135, 137, 139, 443, 445. We
repeat the simulation over the three TDs (n-r-STRICT, n-
r-RELAXED, and n-r-OPEN) and four profiles (PC-SPP,
PCSP, PSP, and Extended COI). Table 3 summarizes the
number of infectable hosts tested ports. Note that by con-

10

COI Profiles
Port PC-SPP PCSP PSP Extended
25/tcp 40 135 135 40
80/tcp 91 135 135 91
53/udp 128 151 151 128
135/tcp 54 135 135 54
137/udp 119 151 151 119
137/tcp 0 135 135 61
139/tcp 98 135 135 98
443/tcp 69 135 135 69
445/tcp 90 135 135 90

Table 3. Vulnerable hosts by protocol

struction, all hosts will be modeled as vulnerable in the
PCSP and PSP policies because they do not restrict com-
munication based on port.

6.1 Baseline Infection Rates

Figure 8 depicts the analytically developed spread of a
worm in a network with no worm mitigation in place. This
represents the worst-case scenario where all hosts are vul-
nerable and there is no countermeasure in place to detect
and mitigate the worm behavior. Capped at 10,000 host in-
fections, these tests show how the success of the worm in
finding other victims affects the length of time it takes to
saturate the network. The curves demonstrate why worms
are so dangerous—even for worms with very small infec-
tion rates (1 in 10,000 attempts leads to an infection), there
exists a point of critically at which the outbreak is growing
at a rate faster than can reasonably be controlled. Highly
effective worms (for example 100%, such as those with hit-
lists [14]) essentially infect the entire network immediately,
where it takes only 14 rounds to infect the entire network.
The slope of the infections is slightly less steep in the worms
with lower rate. However, they are still extremely danger-
ous: using Slammer’s average rate of 7 infections a sec-
ond [11], it would take slightly less than 4 seconds for a
worm to infect a network of 10,000 hosts.
Studied hereafter, there are two goals of a countermea-

sure illustrated by these graphs. First, obviously, it is desir-
able to completely contain the outbreak. Stopping an infec-
tion before it saturates the local network, and possibly more
importantly, before it becomes uncontrollable within the In-
ternet is essential to quashing it. However, as described by
Staniford et al., it is not always possible to stop the worm.
In this case, slowing the rate of infection is the primary
goal: decreasing the slope of infection is enormously use-
ful because it allows other countermeasures to be enacted.
Such other countermeasures span from simple (turning off
vulnerable hosts) to the exceptionally complex (real-time
patching [8]) countermeasures.

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000

Ho
st

s
In

fe
ct

ed

Round

No Mitigation

0.01%
0.1%

1%
5%

10%
100%

Figure 8. Unabated worm propagation

6.2 Worm Containment

An initial set of experiments sought to measure the effec-
tiveness of the STRICT and RELAXEDTD. Figure 9 shows
a CCDF of the results of tests that simulate a worm attack-
ing port 137 with s = 0.01(1%) and n = 10 under STRICT
and RELAXED TDs. This aggressive worm successfully
compromises a host one out of every one hundred tries but is
largely ineffective. It is quashed in short order because any
infected host is shut down before it can do much damage:
that is after ten misses, the host is prevented from communi-
cating over the network. The STRICT policies almost never
goes beyond a single host – no out of profile communication
is ever allowed. However, the RELAXED policy allows a
small amount of additional spread (by allowing some infec-
tions to occur that are out of profile).
The simulation of worm behavior under the OPEN TD

lead to more polar results. Either the worm was largely con-
tained as in the preceding experiments (infecting< 5 hosts)
or all hosts were compromised. Figure 10 illustrates this
phenomenon for the same experimental setup as above, e.g.,
port 137, s = 0.01(1%), and n = 10 for the OPEN policy.
Note that the profile types begin to exhibit different levels
of effectiveness at this point. The PSP policy is essentially
ineffective against the worm: over 98% of the tests ended
with 140 of the 151 hosts being infected and over 50% of the
tests ended with all the hosts being infected. Almost all net-
works protected by a PSP profile are saturated, save a van-
ishingly small number of cases where the mechanisms pre-
vent infection of a few largely inactive hosts. Similarly, in
the PCSP profile, the worm’s behavior was largely divided,
where 47% of the tests resulted in 3 or fewer infections and
46% of the tests resulted 139 or more infections. The Ex-
tended COI and PCSPP profiles performed essentially the
same, where the contained/full infection rates occurred at
around 30%. This similarity is a reflection of the profile
construction, which, for this port, is identical. Note that the

11

 0.001

 0.01

 0.1

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

CC
DF

Infected Hosts

PSP/Strict
PCSP/Strict

PCSPP/Strict
Extended COI/Strict

PSP/Relaxed
PCSP/Relaxed

PCSPP/Relaxed
Extended COI/Relaxed

Figure 9. Worm infections on port 137,
s=0.01, n = 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

CC
DF

Infected Hosts

PSP/Open
PCSP/Open

PCSPP/Open
Extended COI/Open

Figure 10. Worm infections on port 137,
s=0.01, n = 10

polar results are not surprising. The containment/total in-
fection split essentially places a probabilistic roadblock in
worm spread. Based on the worm aggressiveness and effec-
tiveness, one can select a profile and TD that simply pre-
vents it from reaching the point of criticality. Moreover, the
Extended COI and PCSPP policies are significantly more
effective in preventing the spread of the worm.

6.3 Worm Moderation

A key question asks how long the worm can continue
to survive in a restricted network. Each network reaches a
point at which the worm has compromised as many hosts as
is possible under the enforced profiles and TDs. We use the
same set of experiments to characterize the worm lifetime,
e.g., port 137, s = 0.01(1%), and n = 10. A worm lifetime
is measured in either the amount of time it continues to in-
fect hosts (where containment is achieved) or the length of
time that is required to saturate the network. Interestingly,
we desire to reduce the lifetime in the former case, e.g., to
contain the worm as quickly as possible, and lengthen the
lifetime in the latter, i.e., to allow for the worm to be recog-
nized and other countermeasures employed.
Figure 11 shows the lifetime of the worm in the simu-

lated environments under the STRICT and RELAXED poli-
cies. The lifetimes reflect the effective containment illus-
trated in the preceding section. Almost all experiments end
in 10 rounds. The 10 round lower bound occurs when the
worm stays alive while it consumes its n = 10 out-of-
profile grace connections, after which it is completely shut
down and thus contained. Note that a compromised host
will find another host that is infectable by somebody with
probability 0.1. In the Extended COI, PCSP, and PCSPP
profile, just because the host is infectable does not mean that
the host is infectable by the client attempting the infection.

Hence, because these otherwise infectable hosts can count
as misses for those clients, few hosts survive more than the
10 rounds. Conversely, the PSP profile does not restrict
client behavior, and hence we see many more outbreaks—
as expected, around 10% of the hosts compromise one or
more hosts under the PSP profile.
The ability of our approach to slow worm propagation

is illustrated in Figure 12. As in the preceding section, the
OPEN policy leads to polar behavior. Either the worm is
contained quickly or the network is saturated after a long
period. The interesting aspect of this graph is not the con-
tainment, but the saturation. The expected baseline infec-
tion rates state that, under the experimental parameters, the
worm should saturate the network in 482 rounds for Ex-
tended COI and PCSPP, and 506 rounds in the PSP and
PCSP profiles. Our experiments show that this actual time
to saturation is significantly longer, where the worm needs
up to four times longer to saturate the network. Depending
on the network size and available detection and defensive
apparatus, this may allow sufficient time to enact effective
countermeasures.
We performed the experiments detailed in the preceding

sections for all the protected ports. Summarized in table 4,
the results were largely similar to those in the preceding
experiments. All ports exhibited polar results: either all
hosts were compromised or very few were. For example,
the appendix shows that the diverse ports 53 (DNS) and 80
(HTTP) exhibit the similar protective characteristics as port
137 (NETBIOS) in the preceding section.
Our experiments showed how the parameter s influences

the worm success. We found that highly effective (s > 10)
worms are largely impossible to stop under RELAXED and
OPEN TDs. However, even a worm with perfect accuracy
(e.g., a flash worm) is only able to infect one third of the
hosts in a PSP profile, and essentially no hosts using the Ex-

12

Port Policy s(%) n PSP PCSP PCSPP Intelligent
135/tcp strict 1 10 0.768% 0.741% 1.852% 1.852%
135/tcp strict 5 10 0.872% 0.741% 1.852% 1.852%
135/tcp strict 5 100 14.044% 0.785% 1.852% 1.852%
135/tcp strict 10 100 31.048% 0.818% 1.852% 1.852%
135/tcp strict 25 1000 33.421% 10.126% 1.852% 1.852%
135/tcp strict 100 1000 33.421% 12.617% 1.852% 1.852%
135/tcp relaxed 1 10 0.842% 0.793% 2.143% 2.109%
135/tcp relaxed 5 10 1.383% 1.495% 3.841% 3.738%
135/tcp relaxed 5 100 98.938% 98.996% 99.280% 99.331%
135/tcp relaxed 10 100 99.997% 99.995% 100.000% 100.000%
135/tcp relaxed 25 1000 100.000% 100.000% 100.000% 100.000%
135/tcp relaxed 100 1000 100.000% 100.000% 100.000% 100.000%
135/tcp open 1 10 92.060% 61.871% 1.989% 1.972%
135/tcp open 5 10 95.734% 50.209% 16.907% 10.065%
135/tcp open 5 10 98.621% 98.886% 99.949% 99.074%
135/tcp open 10 100 100.000% 100.000% 99.983% 100.000%
135/tcp open 25 1000 100.000% 100.000% 100.000% 100.000%
135/tcp open 100 1000 100.000% 100.000% 100.000% 100.000%
53/udp strict 1 10 0.673% 0.662% 0.781% 0.781%
53/udp strict 10 10 0.969% 0.667% 0.781% 0.781%
53/udp relaxed 1 10 0.739% 0.732% 0.861% 0.854%
53/udp relaxed 10 10 6.125% 6.456% 6.796% 6.110%
53/udp open 1 10 98.719% 46.456% 0.897% 0.858%
53/udp open 10 10 99.737% 75.157% 54.831% 55.530%
80/tcp strict 1 10 0.763% 0.741% 1.099% 1.099%
80/tcp strict 10 10 1.152% 0.752% 1.099% 1.099%
80/tcp relaxed 1 10 0.815% 0.815% 1.177% 1.220%
80/tcp relaxed 10 10 6.505% 6.549% 7.457% 7.946%
80/tcp open 1 10 91.907% 50.486% 25.999% 26.186%
80/tcp open 10 10 96.524% 78.875% 62.764% 67.534%
137/tcp open 1 10 91.536% 51.254% N/A 7.041%
137/tcp open 10 10 96.840% 79.597% N/A 64.888%

Table 4. Broad security experiments - number of hosts infected per policy on the tested ports

13

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25

CC
DF

Worm lifetime (rounds)

PSP/Strict
PCSP/Strict

PCSPP/Strict
Extended COI/Strict

PSP/Relaxed
PCSP/Relaxed

PCSPP/Relaxed
Extended COI/Relaxed

Figure 11. Worm lifetimes on port 137,
s=0.01, n = 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

CC
DF

Worm lifetime (rounds)

PSP/Open
PCSP/Open

PCSPP/Open
Extended COI/Open

Baseline expected lifetime (119 hosts)
Baseline expected lifetime (151 hosts)

Figure 12. Worm lifetimes on port 137,
s=0.01, n = 10

tended COI. The reason for this is that the there are many
hosts that may be infectable, but only a minute few that are
actually within a particular Extended COI profile. Alter-
ing the policy threshold n similarly affects the result: there
are demonstrable result changes in almost all policies when
changing the n parameter from 10 to 100. As the thresh-
old increases, the worm has more opportunity to infect out-
of-profile hosts. Hence, as is seen on port 135 in the RE-
LAXED TD, increasing n allows a containable worm to
saturate the network.

7 Conclusions and Future Work

In this paper we presented a brownfield approach to hard-
ening an enterprise network against internally spreading
malware. We presented techniques for automatically deriv-
ing four different individual host profiles (PSP, PCSP, PC-
SPP and extended COI) to capture historical communica-
tion patterns (i.e., community of interest (COI)) of end hosts
within an enterprise network. Using traces from a large en-
terprise network, we explore how three different security
policies based on these profiles and TDs impact both the
usability of the end host as well as the spread of worms and
similar security threats. The main conclusions are: (i) The
results validate a key premise of our approach that if future
communication patterns are constrained to historical “nor-
mal” communication patterns, then the ability of malware
(e.g., worms) to exploit vulnerabilities in the enterprise can
indeed be severely curtailed. (ii) While the overall approach
is promising, the selection of the correct profile and throt-
tling discipline are both crucial to achieving effective secu-
rity and usability properties. PSP and PCSP possess good
usability but were too permissive resulting in poor security
impact, while PCSPP had good security but poor usability,

due to its inability to accommodate ephemeral communi-
cations. Among the throttling disciplines, n − r − Open
had good usability but was largely ineffective against worm
attacks, while n − r − Strict was very effective in worm
defense but lacked good usability. (iii) Allowing a small
number (n = 10) of out-of-profile communications per host
before the throttling action is initiated, can substantially im-
prove the usability (by accommodating new valid commu-
nications), while maintaining good security properties of
the policy. (iv) A simple security policy comprised of our
Extended COI profile and n-r-Relaxed Throttling Discipline
which allows a small number of out-of-profile communica-
tions per host, achieves both high protection against worms
and other threats, as well as low impact on the usability of
end hosts.
We have shown that our profiles are sufficiently stable

for weeks at a time, but still need to address how these
profiles will be updated as communication patterns change
over longer time periods. One possible option is to recom-
pute the profiles periodically including the not-blocked out-
of-profile communications in the recomputation process.
An alternate approach is to have the network operator add
rules for legitimate out of profile communications manually
whenever the network operator investigates an event. We
are currently investigating the tradeoffs of these and other
options.

8 Acknowledgements

We would like to thank Haowen Chan for his many con-
tributions to early work in automated policy generation, to
Will Enck, Lisa Johansen, and Patrick Verkaik for their ed-
itorial comments, and to the anonymous reviewers for their
insightful technical comments.

14

References

[1] K. Al-Tawil and I. A. Al-Kaltham. Evaluation and testing
of internet firewalls. International Journal of Network Man-
agement, 9(3):135–149, 1999.

[2] Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool. Firmato: A
novel firewall management toolkit. In IEEE Symposium on
Security and Privacy, pages 17–31, 1999.

[3] S. Bellovin. Distributed Firewalls. ;login:, pages 39–47,
Nov. 1999.

[4] W. Cheswick and S. Bellovin. Firewalls and Internet Secu-
rity: Repelling the Wily Hacker. Addison-Wesley, Reading,
MA, 1994.

[5] Chuck Cranor et. al. Gigascope: a stream database for net-
work applications. In Proceedings of ACM SIGMOD, June
2003.

[6] Cooperative Association for Internet Data Analysis
(CAIDA). The Spread of the Witty Worm, March 2004.
http://www.caida.org/analysis/security/
witty/.

[7] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning: Data Mining, Inference and Predic-
tion. Springer, 2001.

[8] M. Hicks. Dynamic Software Updating. PhD thesis, De-
partment of Computer and Information Science, University
of Pennsylvania, August 2001. Winner of the 2002 ACM
SIGPLAN Doctoral Dissertation award.

[9] S. Ioannidis, A. D. Keromytis, S. Bellovin, and J. M. Smith.
Implementing a Distributed Firewall. In Proceedings of
Computer and Communications Security (CCS) 2000, pages
190–199, Nov. 2000. Athens, Greece.

[10] A. Mayer, A. Wool, and E. Ziskind. Fang: A Firewall Anal-
ysis Engine. In 2000 IEEE Symposium on Security and Pri-
vacy, pages 177–187. IEEE, May 2000. Oakland, CA.

[11] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,
and N. W. ver. Inside the slammer worm. IEEE Security and
Privacy, 1(4):33–39, 2003.

[12] D. Moore, C. Shannon, G. M. Voelker, and S. Savage.
Internet Quarantine: Requirements for Containing Self-
Propagating Code. In Proceedings of IEEE INFOCOM
2003. IEEE, March 2003. San Francisco, CA.

[13] S. Staniford. Containment of Scanning Worms in Enterprise
Networks. Journal of Computer Security, 2004. to appear.

[14] S. Staniford, V. Paxson, and N. Weaver. How to own the
internet in your spare time. In Proceedings of the 11th
USENIX Security Symposium, pages 149–167. USENIX As-
sociation, 2002.

[15] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger,
J. Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip, and
D. Zerkle. GrIDS A Graph-Based Intrusion Detection Sys-
tem for Large Networks. In Proceedings of the 19th National
Information Systems Security Conference, 1996.

[16] W. Aiello, C. Kalmanek, P. McDaniel, S. Sen, O. Spatscheck
and J. Van der Merwe. Analysis of Communities of Interest
in Data Networks, March 2005. Passive and Active Mea-
surement Workshop.

[17] M. M. Williamson. Throttling viruses: Restricting prop-
agation to defeat malicious mobile code. In Proceedings
of the 18th Annual Computer Security Applications Confer-
ence, pages 61–68. IEEE Computer Society, 2002.

[18] A. Wool. Architecting the Lumeta Firewall Analyzer. In
Proceedings of the 10th USENIX Security Symposium, pages
85–97, August 2001. Washington, DC.

15

