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Abstract

This paper explores practical and conceptual im-
plications of using Server-Aided Signatures (SAS).
SAS is a signature method that relies on partially-
trusted servers for gemerating public key signatures
for reqular users. Besides its two primary goals of
1) aiding small, resource-limited devices in comput-
ing heavy-weight (normally expensive) digital sig-
natures and 2) fast certificate revocation, SAS also
offers signature causality and has some interesting
features such as built-in attack detection for users
and DoS resistance for servers.

1 Introduction

Digital signatures represent a basic building
block for many secure applications. Their uses
range from electronic commerce transactions to se-
cure email, secure content (code, video, audio) dis-
tribution and other, more specialized applications
such as document notarization. Traditionally, digi-
tal signatures are based on asymmetric (public key)
cryptographic techniques which, at least in some
settings, makes them computationally expensive.

While digital signatures are rapidly becoming
ubiquitous, one of the major recent trends in com-
puting has been towards so-called “smart” devices,
such as PDAs, cell phones and palmtops. Although
such devices come in many shapes and sizes and are
used for a variety of purposes, they tend to have one
feature in common: limited computational capabil-
ities and equally limited power (as most operate on
batteries). This makes them ill-suited for complex
cryptographic computations such as large number
arithmetic present in virtually all public key con-
structs.

Furthermore, in many envisaged setting, such as
cell telephony and wireless web access, personal de-

vices are in constant contact with a fixed, wired in-
frastructure. Consequently, access to more powerful
(in terms of both CPU speed and not dependent on
batteries) computing platforms is available to end-
users.

At the same time, increased use of digital sig-
natures accentuates the need for effective revoca-
tion methods. Revocation of cryptographic cre-
dentials and certificates has been an issue for a
long time. However, only now the problem is be-
coming truly visible, e.g., the recent Verisign fiasco
where a wrong certificate was issued (ostensibly to
Microsoft) and its subsequent revocation was both
slow and painful. Furthermore, current CRL-based
revocation methods scale poorly and are not widely
used in practice. For example, many current web
browsers do not bother checking CRLs.

Effective revocation is not only useful but vital in
some organizational settings (e.g., government and
military) where digital signatures are used on im-
portant electronic documents and in accessing crit-
ical resources. Consider a situation when a trusted
user (Alice) does something that warrants immedi-
ate revocation of her security privileges. Alice might
be fired, transferred or she may suspect that her
private key has been compromised. Ideally — imme-
diately following revocation — no one should be able
to perform any cryptographic operations involving
Alice’s certificate, i.e., sign with her private key.

In addition, when a cryptographic certificate is
revoked (or simply expires) digital signatures gen-
erated prior to revocation (or expiration) may need
to remain valid. This is difficult to achieve with
current revocation methods since CRLs (and sim-
ilar methods like OCSP [1]) do not provide a se-
cure means of distinguishing between pre- and post-
revocation signature activity. The only way to do
so is by using a secure timestamping service for all
signatures. Although a secure timestamping ser-
vice may provide a secure means of distinguishing



between pre- and post-revocation signature, it has
not been widely adopted due to its prohibitive cost.
Finally, we note that compromise of a private key
can lead to an unlimited number of fraudulent sig-
natures being generated and distributed by the ad-
versary. As often happens in the event of compro-
mise, contact with the revocation authority (CA)
may not be immediate, e.g., in a sporadically con-
nected wireless network. Therefore, it is important
to find a way to limit potential damage.

In this paper we present a method, called Server-
Aided Signatures (SAS), that is designed to ad-
dresses the aforementioned issues. Its goals are
three-fold:

1. Assist small, limited-power devices in comput-
ing digital signatures

2. Provide fast revocation of signing capability
3. Limit damage from potential compromise

The rest of the paper is organized as follows.
Next section provides a brief synopsis of our work
and its contributions. Section 5 describes the SAS
method in greater detail; it is followed by the secu-
rity analysis in Section 6. Denial of service issues are
addressed in Section 7. Then, implementation and
performance measurements are discussed in Section
8. The paper concludes with the summary of bene-
fits and drawbacks of SAS.

2 Synopsis

The signature method (SAS) discussed here is
based largely on a weak non-repudiation technique
due to Asokan et al. [2]. The most notable feature
of the SAS method is its on-line nature. Specifi-
cally, each SAS signature is generated with the aid
of a partially-trusted server called a SEM (short for
SEcurity Mediator). This feature can be viewed as
a mixed blessing. Although it offers a number of
benefits which are summarized below, the require-
ment for on-line help for each signature is clearly a
burden. We discuss the drawbacks, both real and
perceived, in Section 9.

Informally, a SAS signature is computed as fol-
lows (see also Figure 1):

e First, a prospective signer (Alice) contacts her
SEM and provides the data to be signed as well
as a one-time ticket.

e SEM checks Alice’s revocation status and, if
not revoked, computes a half-signature over the

data as well as other parameters (including the
one-time ticket). SEM then returns the results
to Alice.

e Alice verifies SEM’s half-signature and pro-
duces her own half-signature. Put together,
the two respective half-signatures constitute a
regular, full SAS signature. This signature is
accompanied by SEM’s and Alice’s certificates.

The two half-signatures are inter-dependent and
each is worthless in and of itself. This is despite
the SEM’s half-signature being a traditional digi-
tal signature: in the context of SAS, a traditional
signature computed by a SEM is not, by itself, a
SAS signature. The half-signature computed by a
user (Alice, in our example) is actually a one-time
signature [3].
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Figure 1. SAS architecture

Verifying a SAS signature is easy: verifier (Bob)
obtains the signature and verifies the two halves
along with the two accompanying certificates.

The main idea is that a SEM, albeit only partially
trusted, is more secure, and much more capable (in
terms of CPU and power consumption) than an av-
erage user. It can therefore serve a multitude of
users. Also, because of its “superior” status, SEM
is much less likely to be revoked or compromised.
Since a signer (Alice) is assumed to have much less
computing power then a SEM, the latter performs
the bulk of the computation, whereas, Alice does
comparatively little work. In the event that Al-
ice’s certificate is revoked, the SEM simply refuses
to perform any further signatures on Alice’s behalf.
(See Figure 1.) Thus, revocation is both implicit
and fast.

The general system model of SAS is a good fit for
many mobile settings. For example, as mentioned



in Section 1, cell phones are only usable when in
touch, via a nearby base station, with a fixed infras-
tructure. Each phone-call requires communication
with the infrastructure. This communication can
be overloaded to piggyback SAS protocol messages.

3 Related Work

The SAS method is based on a weak non-
repudiation technique proposed by Asokan et al. in
[2]. In very general terms, SAS is an instantiation
of a mediated cryptographic service. Recent work
by Boneh et al. [4] on mediated RSA (mRSA) is
another example of mediated cryptography. mRSA
provides fast revocation of both signing and decryp-
tion capability. However, the computation load on
the client end is increased in mRSA, which is some-
thing that SAS aims to minimize.

In [5] Reiter and McKenzie propose a the same
additive splitting technique to improve the security
for portable devices where the private-key opera-
tions are password-protected. Recently, they also
proposed another scheme for the more challenging
problem of mediated (2-party) DSA signatures [6].
Ganesan[7] also exploited (earlier, in 1996) the same
idea for improving Kerberos security as part of the
Yaksha system.

Another way to look at SAS is as an
instantiation of “hybrid” multi-signatures [8].
Viewed more broadly, the SAS method can
be included in the more general framework of
threshold cryptography[9] and secure multi-party
computation[10].

There is also much related work on the topic
of certificate revocation; including CRLs, A-CRLs,
CRTs, 2-3 lists and skip-lists. This is reviewed in
more detail in Appendix B.

4 Background

In this section we go over some preliminaries nec-
essary for the remainder of the paper.

4.1 Hash Functions

Informally, a one-way function f() is a func-
tion such that, given an input string x it is easy
to compute f(x), whereas, given a randomly chosen
y, it is computationally infeasible to find an = such
that f(xz) = y. A one-way hash function h() is a
one-way function that operates on arbitrary-length
inputs to produce a fixed length digest. If y = h(z),

y is commonly referred to as the hash of x and x is
referred to as the pre-image of y. A one-way hash
function h() is said to be collision-resistant if it is
computationally hard to find any two distinct input
strings z, 2’ such that h(x) = h(z').

Several secure and efficient collision-resistant
one-way hash functions have been proposed, e.g.,
SHA or MD5 [11]. In the rest of the paper, h()
denotes a collision-resistant one-way hash function.

A collision-resistant one-way hash function can
be recursively applied to an input string. The no-
tation h’(z) is the result of applying h() i times
starting with the input x, that is:

h(h(z))...))

i times

hi(z) = h(h(...

Recursive application results in a hash-chain gener-
ated from the original input:

= h(z),h (z), ..., h"(x)

Hash chains have been widely used since early 1980-
s starting with the well-known Lamport’s method
[12].

4.2 Model and Notation

We distinguish among 3 types of entities:

o Regular Users — entities who generate and ver-
ify SAS signatures.

o Security Mediators (SEMs) — partially-trusted
entities assisting regular users in generating
SAS signatures.

o Certification Authorities (CAs) — trusted off-
line entities that issue certificates and link the
identities of regular users with SEMs.

SEMs and CAs are verifiable third parties from the
users’ point of view.

All participants agree on a collision-resistant one-
way hash function family ‘H and a digital signature
scheme. In SAS, the latter is fixed to be the RSA
scheme [13]. Furthermore, each signer (Alice) se-
lects a “personalized” hash function hs() € H. In
essence, ha() can be thought of as a keyed hash
(e.g., [14]) with a known key set to the identity of
the signer. When applied recursively, we also in-
clude the index of the hash function link in each
computation, i.e., hij(x) can be thought of as a
keyed hash where the known key is the concatena-
tion of the signer’s identity (Alice) and the index of
the link, i.



In order to minimize computation overhead for
regular users, h() must be efficient and the digi-
tal signature scheme must be efficient for verifiers.
(This is because, as will be seen below, verification
is done by regular users, whereas, signing is done
by much more powerful SEMs.) SHA and MD5 are
reasonable choices for the former, while RSA [13]
satisfies the efficient verification requirement when
used with a small exponent such as 3, 17 or 65,537.

4.3 Communication Channel

We assume that the communication channel be-
tween each user and a SEM is reliable (but nei-
ther private nor authentic). Reliability of the chan-
nel implies that the underlying communication sys-
tem provides sufficient error handling to detect,
with overwhelming probability, all corrupted pack-
ets. One way to achieve this is by having each proto-
col packet accompanied by its hash. Furthermore,
timeouts and retransmissions are likewise handled
by the communication system with the assumption
that a packet eventually gets through.

We note that, even if the user is disconnected
from the network! after sending a signature request
to its SEM and before receiving a reply, the user
will eventually obtain the correct reply (if the re-
quest ever reached the SEM) whenever the commu-
nication channel is re-established. Specifically, as
described in the next section, a SEM always replies
with the last signature it computed for a given user.

5 SAS Description
We now turn to the detailed protocol description.
5.1 Setup

To become a SAS signer, Alice first generates
a secret quantity SKY randomly chosen from the
range of h4(). Starting with this value, Alice com-
putes a hash-chain:

{SKY,SK},...SK" ' SK% } where

SK) = 1, (SKY) = ha(SKEY ") for1< j < n

The last value, SK7, is referred to as Alice’s SAS
root key. It subsequently enables Alice to produce
(n —1) SAS signatures.

Each SEM is assumed to have a secret/public
RSA key-pair (SKsem, PKsem) of sufficient length.

IThis can happen if a wireless device, e.g., a cell phone,
is momentarily out of range of any base station.

(We use the notation [z]*¢™ to denote SEM’s sig-
nature on string ). Each CA also has its own key-
pair much like any traditional CA. In addition to
its usual role of issuing and revoking certificates a
CA also maintains a mapping between users and
SEMs that serve them. This relationship is many
to one, i.e., a SEM serves a multitude of users. Ex-
actly how many depends on many factors, such as:
SEM’s hardware platform, average user signature
request frequency, network characteristics, etc. We
expect the number and placement of SEMs in an
organizational network to closely resemble that of
OCSP Validation Agents (VAs) [1].

In order to obtain a SAS certificate Cert,, Al-
ice composes a certificate request and submits it to
the CA via some (usually off-line) channel. Alice’s
SAS certificate has, for the most part, the same for-
mat as any other public key certificate; it includes
values such as the holder’s distinguished name, or-
ganizational data, expiration/validity dates, serial
number, public token key, and so forth. Addition-
ally, a SAS certificate contains two other fields:

1. Maximum number of signatures n that the en-
closed public key can be used to generate, and

2. Certificate serial number and, either the distin-
guished name or the Internet-style hostname of
the SEM that will serve Alice in the context of
Cert A-

Once issued, Alice’s SAS certificate Cert4 can be

made publicly available via a directory service such
as LDAP [15].

5.2 SAS Signature Protocol

The protocol proceeds as follows. (In the initial
protocol run the signature counter ¢ = n — 1; it
is decremented after each run. This counter is
maintained by both SEM and Alice.)

Step 1. Alice starts by sending a request con-
taining: [Alice,m,i, SKY] to its assigned SEM. If
Alice does not wish to reveal the message to the
SEM, m can be replaced with a suitable keyed (or,
more accurately, randomized) hash such as the well-
known HMAC [14]. (In that case, Alice would send
HMAC,(m) where r is a one-time random value
used a key in the HMAC computation.)

Alice may also (optionally) enclose her SAS
certificate.

Step 2. Having received Alice’s request, SEM
obtains Certs (either from the request or from



local storage) and checks its status. If revoked,
SEM replies with an error message and halts the
protocol. Otherwise, SEM compares the signature
index in the request to its own signature counter.
In case of a mismatch, SEM replies to Alice with
the lowest-numbered half-signature produced in
the last protocol run and aborts.

Next, SEM proceeds to verify the received public
key (SKY) based on Alice’s SAS root key contained
in the certificate. (If this is Alice’s initial request,
the signature counter is initialized to n — 1, as
mentioned above.) Specifically, SEM checks that
R (SKY) = SK%. In case of a mismatch, SEM
replies to Alice with the last recorded half-signature
and aborts the protocol.

Next, SEM signs the requested message with its
private key to produce: [Certa,m,i, SKi4]9¥M.
Other attributes may also be included in SEM’s
half-signature, e.g., a timestamp. SEM decrements
Alice’s signature counter, records the half-signature
and returns the latter to Alice.

In the above, SEM assures that — for a given SAS
certificate — exactly one signature is created for
each [i, SK%] tuple. We refer to this property as
the SAS Invariant.

Step 3. Alice (who is assumed to be in possession
of SEM’s certificate at all times) verifies SEM’s
half-signature, records it and decrements her
signature counter. If SEM’s half-signature fails
verification or its attributes are wrong (e.g., it signs
a different message than m or includes an incorrect
signature counter j # i), Alice aborts the protocol
and concludes that a hostile attack has occurred.?
(See Section 7 below.)

Finally, Alice’s SAS signature on message m has the
following format:

SIG; = [Certa,m,i, SK',|"FM SK'!

The second part, namely SKf[l7 is Alice’s half-
signature. As mentioned earlier, it is actually a
one-time signature: h(SK'; ') = SKY.

Note that Alice must use her one-time keys in
strict sequence. In particular, Alice must not re-
quest a SEM half-signature using SKA_1 unless,

20ur communication channel assumption rules out non-
malicious packets errors.

in the last protocol run, she obtained SEM’s half-
signature containing SKY.

5.3 SAS Signature Verification

SAS signature verification comes in two flavors:
light and full. The particular choice depends on the
verifier’s trust model. Recall that the philosophy
of SAS is based on much greater (yet not uncon-
ditional) trust placed in a SEM than in a regular
user. If a verifier (Bob) fully subscribes to this, i.e.,
trusts a SEM more than Alice, he can chose light
verification. Otherwise, if Bob is equally suspicious
of SEMs as of ordinary users, he can choose full
verification.

Light verification involves the following steps:

1. Obtain and verify® Certgeas

9. Verify ~ SEM’s  RSA
[Certa,m, i, SK4]|9EM

half-signature:

3. Verify Alice’s half-signature: ha(SK’; ") z
SKY

Full verification requires, in addition:
4. Verify Certa
5. Check that i < n

?

6. Verify Alice’s SAS root key: h'; "(SKY)
SK™

Note that light verification does not involve check-
ing Alice’s SAS certificate. Although this may
seem counter-intuitive, we claim that SAS signature
format (actually SEM’s half-signature) already in-
cludes Cert 4 as a signed attribute. Therefore, for a
verifier who trusts the SEM, step 2 above implicitly
verifies Certy.

It is easy to see that, owing to the trusted nature
of a SEM and the SAS Invariant, light verification
is usually sufficient. However, if a stronger property
(such as non-repudiation) is desired, full verification
may be used.

5.4 State and Registration

As follows from the protocol description above,
both Alice and the SEM maintain state. Alice’s
SAS state amounts to the following:

Certa,Certsgm, SKB,,@', {SIG,,....SIG,_;i—1}

3This may be done infrequently.



The first three values are self-explanatory. The
fourth is Alice’s current signature counter, (i), and
the rest is the list of previously generated signatures
for the same Cert 4. The state kept by the SEM (for
each user) is similar:

Ce’l’tA,i, {SIGrH ceey SIGn,ifl}

The amount of state might seem excessive at first,
especially considering that some users might be on
small limited-storage devices. There are some opti-
mizations, however. First, we note that Alice can
periodically off-load her prior signatures to some
other storage (e.g., to a workstation or a PC when
the PDA is charging). Also, it is possible to dras-
tically reduce state maintenance for both users and
SEMs if successive signatures are accumulated. For
example, each SEM’s half-signature can addition-
ally contain the hash of the last prior SAS signa-
ture. This optimization results in storage require-
ments comparable to those of a traditional signature
scheme.

Registration in SAS can be done either off- or
on-line. In the off-line case, SEM obtains Alice’s
SAS certificate via manual (local or remote) instal-
lation by an administrator or by fetching it from the
directory service. To register on-line, Alice simply
includes her SAS certificate as an optional field in
the initial SAS signature request to the SEM. Be-
fore processing the request as described above, the
SEM checks if the same certificate is already stored.
If not, it installs in the certificate database and cre-
ates a new user entry. (See Figure 2.)

Incoming user
request

Incoming admin
request

v Y
SEM Controller

'

Client Manager
(revecation checking)

Admin Interface

s Forl on-ll.ne
registration

Time-stamping - SAS
(optional)

Certificate
and
signature db

Crypto library (OpenSSL) |

Figure 2. SEM architecture

6 Analysis

We now consider the efficiency and security as-
pects of the SAS signature method.

6.1 Efficiency

The cost of our signature protocol can be broken
up as follows:

1. Network overhead: round-trip delay between
Alice and SEM

2. SEM computation: signature computation plus
other overhead (including hash verification of
user’s one-time public key, database processing,
etc.)

3. User computation: verification of the SEM
half-signature and other (commitment to stor-
age) overhead.

Clearly, (1) and (3) are extra steps as compared
with a traditional signature method. The extra cost
of light signature verification (referring to the steps
in the previous section) is only in Step 3 which con-
sists of a single hash operation. Full verification
costs an additional certificate validation (Step 4) as
well as (n — i) hash operations in Step 5.

6.2 Security Analysis

We claim that the SAS signature method
achieves the same security level as a traditional dig-
ital signature scheme if SAS signature and verifica-
tion protocols are executed correctly. Due to space
limitations, we only present an informal security
analysis.

To forge a SAS signature, an adversary can at-
tempt to:

TYPE 1: forge a SEM’s half-signature (i.e., an
RSA signature) or

TYPE 2: find a quantity SK7) such that
H(SK%) = SKY%. Recall that SKY is
included in SEM’s half-signature.

Clearly, a TYPE 1 attack is an attack on the un-
derlying signature scheme, i.e., RSA, and, as such, is
not specific to the SAS method. Therefore, we only
consider TYPE 2 attacks. However, finding SK%
implies a successful attack on either the collision-
resistance or the one-wayness property of the un-
derlying hash function h4(). Even we were to allow



the possibility of the adversary mounting a success-
ful TYPE 2 attack, the scheme remains secure if full
verification is used. (Recall that full verification in-
cludes not only checking H(SK%) < SK' but also
WYH(SKY) £ SK7)

We observe that, in any practical digital sig-
nature scheme, a collision-resistant one-way hash
function is first applied to the message in order to
produce a fixed-length digest which is then signed.
Hence, a successful TYPE 2 attack on a SAS signa-
ture is, at the same time, an attack on the digital
signature scheme.

6.3 Disputes

In case of a dispute between a signer (Alice) and a
verifier (Bob), the latter submits the disputed SAS
signature to an unbiased arbitrator who starts by
verifying the following:

e Alice’s and SEM’s certificates are valid and cer-
tified by a C' A.

e SEM'’s half-signature is valid.

e Alice’s one-time key is a hash pre-image of the
value in SEM’s half-signature.

e The SAS root key in Cert 4 can be derived from
the one-time public key by repeated hashing.

This is essentially the full SAS signature verification
as described earlier. If any of the above steps fails,
the arbitrator rules in Alice’s favor. Otherwise, Bob
wins the dispute.

Assuming the above procedure succeeds, Alice
is asked to produce a different SAS signature with
the same one-time key (i.e., same one-time signa-
ture). If Alice can come up with such a signature
(meaning that the message signed is different from
the one in the disputed signature), the arbitrator
concludes that Alice’s SEM cheated or was compro-
mised. This conclusion is based on the apparent
violation of the SAS Invariant. If Alice fails to
produce a different signature, the arbitrator con-
cludes that Alice attempted to cheat.

7 Denial of Service

The SAS signature protocol, unlike traditional
signature schemes, involves multiple parties and
communication. It is therefore subject to Denial
of Service (DoS) attacks. Since we assume that the
communication channel is reliable (cf. Section 4.3),

only hostile DoS attacks are of interest. Also, our
channel assumption states that all messages even-
tually get through; thus, attacks on the communi-
cation media are ruled out.

There are two types of DoS attacks: user attacks
and SEM attacks. The purpose of a user attack
is to deny service to a particular user whereas the
purpose of a SEM attack is to deny service to all
users served by a SEM. User attacks can be further
divided into request and reply attacks. Request at-
tacks involves modifying (or injecting) a user’s sig-
nature request and a reply attack — modifying a
SEM’s reply.

7.1 TUser Attacks

Suppose that an adversary (Eve) intercepts the
signature request and mounts a request attack. In
this case, SEM receives a request that is perfectly
legitimate (well-formed) from its point of view. It
proceeds to sign it and send the signed reply back
to Alice. Clearly, Alice discards the reply because it
contains a signature for a different message. If Eve
prevents the reply from reaching Alice, she gains no
advantage since, as explained above, forging a signa-
ture requires Eve to come up with a one-time public
key which she cannot do without breaking the hash
function. Even if the reply does not arrive immedi-
ately, according to our communication assumption,
it eventually reaches Alice who promptly detects an
attack.

A slight variation on the above occurs when Eve
has in her possession the last SAS signature gener-
ated by Alice. In this case, Eve can contact Alice’s
SEM with a well-formed request and without Alice’s
knowledge, i.e., Alice is off-line. However, this at-
tack results in the same outcome as the above. This
is because, eventually, Alice requests a new signa-
ture and SEM replies with the last (signed) reply.
Alice, once again, detects an attack.

We note that these attacks can be prevented: one
way to do so is for Alice not to reveal her i-th signa-
ture until (¢ — 1)-st signature is computed. In other
words, every other signature would be used strictly
for this purpose. Then, if we suppose that Alice-
SEM communication is private, revealing SIG; to
Bob (or Eve) is safe since a successful request to Al-
ice’s SEM would require knowledge of SK;_; which
Alice does not reveal until the next signature is re-
quested. Yet another solution is to use a second,
different hash chain for the sole purpose to authen-
ticate Alice’s requests to the SEM.

All in all, request attacks, while possible, are de-



tected by the SAS signature protocol due to its “fail-
stop” property: any manipulation of the signature
request is detected by the user who can then inval-
idate its own certificate.

User reply attacks are comparatively less effec-
tive. If Eve modifies SEM’s reply, short of forging
an RSA signature, Alice detects that the reply is not
what she expected and continues re-transmitting
her signature request.

7.2 SEM Attacks

By virtue of serving a multitude of regular users,
a SEM is a natural DoS attack target. This is not
unique to SAS. For instance, it is easy to mount an
effective DoS attack against an OCSP [1] (or even
worse, a TSP [16]) server. It suffices for the ad-
versary to flood the victim server with well-formed
requests, i.e., requests for which the server is “au-
thoritative” in OCSP. Since the server must digi-
tally sign all replies, it will slowly grind to a halt.

In SAS, it is appreciably more difficult for the
adversary to launch this type of an attack. The
stateful nature of the SEM requires each signature
request to be well-formed: it must contain the ex-
pected value of the current one-time public-key, i.e.,
the pre-image of the previously used public-key. All
other requests are promptly discarded.

Therefore, in order to force the SEM to perform
any heavy-weight tasks (of which signing is really
the only one), the adversary must mount simulta-
neous user request attacks on as many users as pos-
sible thus hoping to flood the SEM. However, even if
this were possible, the attack would quickly subside
since the SEM will only perform a single signature
operation per user before demanding to see a pre-
image (next one-time public key). As we already
established, finding the pre-image of the last signed
one-time public key is computationally infeasible.

7.3 Loss of State

As SAS requires a non-trivial amount of state to
be maintained by both users and SEMs, we need to
consider the potential disaster scenarios that result
in a loss of state.

Suppose that Alice looses all records of her prior
signatures along with the signature counter. We
further assume that she still has possession of her
SAS certificate and the secret hash chain seed. Since
these two values are fairly long-term, it is reason-
able for Alice to store them in more permanent stor-
age. Because of the “amnesia”, Alice will attempt

to obtain the initial signature from the SEM. Since
SEM has retained all relevant state, it will reply
with the last half-signature (including SEM’s signa-
ture counter) generated for Alice’s SAS certificate.
Once she verifies the reply, Alice will realize her loss
of state and resort to off-line means. However, if a
malicious SEM is aware of Alice’s loss of state, it can
use this to its advantage by forging with impunity
Alice’s signatures.

If Alice looses her entire storage, including the
SAS certificate, the consequences are not particu-
larly dire. The SEM will simply keep state of Alice’s
“orphan” certificate until it eventually expires.

Any loss of SEM’s state is much more serious.
Most importantly, if the SEM looses all state per-
taining to Alice’s SAS certificate, the SAS Invari-
ant property can no longer be guaranteed. (Con-
sider, for example, malicious Alice re-establishing
state of her SAS certificate on the SEM and then
obtaining n signatures with the same hash chain.)

7.4 SEM Compromise

SEM compromise is clearly the greatest risk in
SAS. The adversary who gains control of a SEM can
un-revoke or refuse to revoke SAS user certificates.
Moreover, it becomes possible to produce fraudu-
lent user signatures: since state is kept of all prior
SAS signatures (corresponding to active SAS certifi-
cates), the adversary can sign on behalf of Alice for
each (SKY,SK'!) pair found in SEM’s storage.

Nonetheless, a defrauded SEM user can still have
recourse if she faithfully keeps state of all prior SAS
signatures. Referring to the SAS dispute resolution
procedure, when an arbitrator is presented with two
distinct and verifiable SAS signatures for the same
(SKY, SK};I) pair, he concludes that the SEM has
attempted to cheat.

7.5 Suicide in SAS

In order to provide rapid and effective response
to potential attacks, SAS includes a way for the user
to “self-revoke” a SAS certificate. This is easily ob-
tained by placing a new value (X.509 extension) in
the SAS certificate. This value, referred to as the
“suicide hash”, is the hash of a randomly selected
secret quantity generated by Alice when composing
her certificate request. To self-revoke the certifi-
cate, Alice simply communicates the corresponding
suicide pre-image to the SEM and the CA. As a re-
sult, the former simply stops honoring any further
signature requests (pertaining to Alice’s certificate)



while the latter places a reference to the said cer-
tificate on the next CRL.

A similar technique has been suggested (with the
value revealed by the CA instead) by Micali [17] as
part of a proposal for an efficient revocation scheme.

8 Implementation and Experiments

To better understand the implications of using
SAS and to obtain valuable experimental and prac-
tical data, we implemented the SAS scheme, first as
a limping proof-of-concept prototype and, later, as
a fully functional and publicly available package.

The implementation, for the most part, follows
the protocol as presented in Section 5. The SAS cer-
tificate issuance is done strictly off-line: all users ob-
tain their SAS certificates from the CA as described
in Section 5.1. The newly issued certificates are
either transferred to SEM off-line or piggybacked
onto each user’s initial SAS signature request. We
limit our implementation discussion owing to space
limitations; further details, including the SAS sig-
nature and SAS certificate formats can be found in
Appendix A.

8.1 SAS Application Example: Eudora
Plug-in

To demonstrate the ease and utility of the SAS
signatures, we developed a plug-in (on top of the
SAS user library [18]) for the popular Eudora [19]
mailer.

When composing email, the sender simply clicks
on the plug-in button. When ready to send, the
plug-in reads the user’s SAS certificate and extracts
the SEM’s address. It then communicates with the
SEM to obtain a SAS signature on the email mes-
sage. The resulting signed email is verified auto-
matically by the Eudora plug-in on the receiver’s
side. Even if the receiver does not use Eudora, the
SAS-signed email can be verified by any S/MIME
capable email client such as Netscape Messenger
or Microsoft Outlook. The verification, however,
requires the receiver (verifier) to install a stand-
alone SAS email verifier program. This program
is registered as the viewer for the new MIME type
(¢‘x.SAS-signature’’).

Figure 3 shows a screen snapshot of the Eudora
message composition window when the user is ready
to send a signed email. It is essentially the same as
the normal Eudora screen except for the small SAS
button at the toolbar along the top of the window.
Figure 4 depicts a screen snapshot of the Eudora
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Figure 3. Snapshot of signer plug-in

mailer showing a SAS-signed email message being
received. The user is presented with a signature
icon on the message screen; clicking on it causes the
mailer to invoke the plug-in’s verification function
the output of which is displayed in the Figure 5.
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Figure 4. Verifier plug-in: signed email

To conserve space we omit the depiction of a user
trying to sign email with a revoked certificate. In
this case, the plug-in displays an error message in-
forming the user of his certificate’s demise. Further
details on the Eudora plug-in can be found in Ap-
pendix A.

8.2 Experimental Results

As emphasized in the introduction, one of the
main goals of SAS is to off-load the bulk of signature
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Figure 5. Verifier plug-in: verification

computation from the weak user to the powerful
SEM. To validate the goals and experiment with
the SAS implementation, we ran a number of tests
with various hardware platforms and different RSA
key sizes.

All experiments were conducted over a 100 Mbit
Ethernet LAN in a lab setting with little, if any,
extraneous network traffic. All test machines ran
Linux version 2.2 with all non-essential services
turned off. The hardware platforms ranged from
a measly 233-MHz PI (Pentium I) to a respectable
1.2-GHz PIV (Pentium IV). Note that we selected
the lowest-end platform conservatively: only very
high-end PDAs and palmtops approach 200-MHz
processor speed; most are in the sub-100Mhz range.
Our choice of the SEM platform is similarly conser-
vative: a 933-MHz PIII. (At the time of this writing,
1.7-GHz platforms are available and affordable.)

Processor Key length (bits)

1024 | 2048 4096 8192
PI-233 MHz 40.3 | 252.7 | 1741.7 | 12,490.0
PIII-500 MHz | 14.6 | 85.6 | 562.8 | 3,873.3
PIII-700 MHz 9.2 55.7 | 3778 2,617.5
PIII-933 MHz 7.3 43.9 294.7 | 2,052.0
PIV-1.2 GHz 9.3 58.7 | 401.2 2,835.0

Table 1. Plain RSA signature timings
(ms)

First, we present in Table 8.2 plain RSA timings
conducted with OpenSSL on the five hardware plat-
forms. Table 8.2 illustrates the SAS timing mea-

surements on the four user platforms with the SEM
daemon running on a 933-MHz PIII. All SAS tim-
ings include network transmission time as well as
SEM and user processing times. Finally, Table 8.2
shows the LAN round-trip communication delay be-
tween the user and the SEM, for different key sizes.
The size of the signature request is determined by
the digest size of the hash function, whereas, SEM’s
replies vary from roughly 164 bytes for 1024-bit
RSA key to around 1,060 bytes for an 8K-bit RSA
key.

We purposely used fairly conservative platforms
for both the SEM and test users. The slowest user
platform is a 233-MHz Pentium I laptop which is
significantly faster than a typical PDA or a cell
phone. The motivation was to show that, even a
relatively fast user CPU, the speedup from SAS is
appreciable. Clearly, a more realistic scenario would
involve, for example, a 60- to 100-MhZ PDA as the
user platform and a 1.7- to 2-GhZ PIV as a SEM.

As is evident from Table 8.2, all four user plat-
forms experience noticeable speed-up as a result of
using SAS, as compared with plain RSA. It is not
surprising that the two low-end clients (233-MHz
and 500-MHz) obtain a factor 4 to 6 speed-up de-
pending on the key size. It is interesting, however,
that the seemingly most powerful client platform
(1.2-GHz PIV) also experiences a small speed-up.
However, looking at Table 8.2, it becomes clear that
the 1.2-GHz PIV is not the fastest platform after all.
The explanation for this oddity rests with the chip
maker.

Processor Key length (bits)

1024 | 2048 | 4096 8192
PI-233 MHz 13.3 | 524 | 322.5 | 2,1434
PIII-500 MHz 9.1 | 46.3 | 302.0 | 2,070.2
PIII-700 MHz 8.5 | 45.1 | 299.0 | 2,059.6
PIV-1.2 GHz 8.5 | 454 | 299.0 | 2,061.0

Table 2. SAS signature timings (ms)

To summarize, as Tables 8.2 and 8.2 illustrate,
despite large variances in the four clients’ CPU
speeds, the difference in SAS sign time is very small.
Moreover, the SAS sign time is only slightly higher
than the corresponding value for the SEM (PIII-
933 MHz) in Table 8.2, meaning that — communi-
cation delay aside — a SAS client can sign almost
as fast as the SEM. The reason is that, to obtain
a SAS signature, a user’s cryptographic computa-
tion (which dominates the overall time) amounts to
message hashing and signature verification. Hash-



ing is almost negligible as compared to public key
operations. RSA signature verification is also quite
cheap in comparison to signing since we use small
public exponents.

Processor Key length (bits)
1024 | 2048 | 4096 | 8192
PI-233 MHz 0.6 0.7 1.1 1.7
PIII-500 MHz | 0.4 0.5 0.8 1.2
PIII-700 MHz | 0.1 0.2 0.2 0.3

PIV-1.2 GHz 0.4 0.5 0.8 1.2

Table 3. Network round-trip delay (ms)

9 Benefits and Drawbacks

In summary, the SAS signature scheme offers
several important benefits as described below:
Efficient Signatures. As follows from the pro-
tocol description and our experimental results,
the SAS signature scheme significantly speeds up
signature computation for slow, resource-limited
devices. Even where speed-up is not as clearly
evident (e.g., with small key sizes), SAS signatures
conserve CPU resources and, consequently, power,
for battery-operated devices.

Fast revocation. To revoke a SAS certificate, it is
sufficient for the CA to communicate to the correct
SEM. This can be achieved, for example, with CA
simply issuing a new CRL and sending it to the
SEM. Thereafter, the SEM will no longer accept
SAS signature requests for the revoked certificate.
We remark that, with traditional signature
schemes, the user who suspects that his key has
been compromised can ask the CA to revoke the
certificate binding this key to the user. However,
the adversary can continue ad infinitum to use
the compromised key and the verification burden
is placed on all potential verifiers who must have
access to the latest CRL. With SAS, once the SEM
is notified of a certificate’s revocation, the adver-
sary is no longer able to interact with the SEM to
obtain signatures. Hence, potential compromise
damage is severely reduced.

More secure signatures. Since only a SEM
performs real RSA public key operations (key
generation, signature computation), it can do so
with stronger RSA keys than would otherwise be
used by the users. Indeed, a small PDA-like device

is much less likely to generate high-quality (or
sufficiently long) RSA factors (p,q) and key-pairs
than a much more powerful and sophisticated SEM.

Signature Causality. Total order can be imposed
over all SAS signatures produced by a given user.
This is a direct consequence of the hash chain
construction and the SAS Invariant. In other
words, total ordering can be performed using
the monotonically increasing signature counter
included in each SAS signature.

Dispute Resolution. Signature Causality can be
used to provide unambiguous dispute resolution in
case of private key compromise. Recall that the
compromise of a private key in a traditional signa-
ture scheme results in chaos. In particular, all prior
signatures become worthless unless the use of a
secure timestamping service is explicitly mandated
for all signer and signatures. In SAS, once the time
of compromise is established, signatures can be
easily sorted into pre- and post-revocation piles.

Attack Detection. As discussed in Section 7,
an adversary can succeed in obtaining a single
fraudulent half-signature (not a full SAS signature)
by substituting a message of its own choosing in
the user’s signature request. This essentially closes
the door for the adversary since it is unable to
obtain further service (short of inverting the hash
function). The real user will detect that an attacks
has taken place the next time when it tries to run
the SAS signature protocol with its SEM.

Limited Damage. Even if the entire SAS hash
chain is compromised (i.e., an adversary obtains
the seed of the hash chain), the damage is con-
tained since the adversary can generate at most
n signatures. Furthermore, a user whose hash
chain is compromised will detect the compromise
the very next time she attempts to contact the
SEM. (This is because the SEM will reply with
its last half-signature ostensibly computed for the
requesting user.)

Alas, the SAS scheme has some notable draw-
backs as well:
e FEach SEM is a single point of failure and a
performance bottleneck for the users it serves.

e As discussed in Section 7, a SEM signs (with RSA,
to produce its half-signature) a response to every
well-formed signature request. This feature can be



exploited by an adversary in order to mount a DoS
attack. However, even the best attack can succeed
in making a SEM sign at most once for each user
it serves. Of course, an adversary can still flood
any SEM with malformed requests which can cer-
tainly render a SEM unavailable to legitimate users.

e Unlike other mediated or multi-party signature
methods (such as mRSA or 2-party DSA), SAS
signatures are not compatible with any other basic
signature type. In other words, SAS signatures are
not transparent to verifiers. Therefore, all potential
verifiers must avail themselves of at least the SAS
verification method.

e It is possible, but neither easy nor elegant, for
a user to switch among different SEMs in SAS.
One way is to have multiple SAS certificates; one
for a distinct SEM. Another way is to use on-line
hand-over of a SAS certificate among two SEMs.
Neither solution is particularly attractive due to
the difficulty of replication of a statfule server. (In
mRSA [4], for example, a user can swich among
SEMs transparently, where SEM is stateless. )

e SAS involves on-going state retention for regular
users and SEMs. This burden is particularly heavy
for SEMs (users can off-load their state periodically)
since they must keep complete signature histories
for all users served.
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Appendix A: SAS Implementation De-
tails

A.1 SAS Signature Format

The well-known PKCS#7 [20] standard defines
a general cryptographic message syntax for digital
signatures. In it, SignerInfo includes an optional
set of signed attributes as well as an optional set
of unsigned attributes. This flexibility allows us to
easily extend the PKCS#7 signature syntax to ac-
commodate SAS signatures. This is because a SAS
signature can be viewed as a regular public key sig-
nature with an appended extra value, i.e., the hash
pre-image.

The format changes are only a few new re-
quirements for authenticatedAttributes and
unauthenticatedAttributes of the SignerInfo
field. In a SAS signature, SignerInfo is the same
as in plain PKCS#7, except:

e authenticatedAttributes:
this field is not OPTIONAL, but MANDA-
TORY. It must contain, at a minimum,
two more attributes aside from those set in
PKCS#T:

— SAS_issuer_sn: IssuerAndSerialNumber —
specifies the SAS client’s certificate by is-
suer name and issuer-specific serial num-

ber

— SAS signed_token_index: INTEGER -
specifies the SAS client signed one-time
signature index (counter)

— SAS_signed_token_value: OCTET

STRING - specifies the SAS client
signed one-time public key
Note that PKCS#7 requires
issuerAndSerialNumber in  SignerInfo

to identify signer’s key. In SAS, this corre-
sponds to SEM’s key. Therefore, we require
another field SAS_issuer_sn to identify the
user’s SAS certificate containing the SAS root
key.

e unauthenticatedAttributes:
this field is not OPTIONAL, but MANDA-
TORY. It must contain:

— SAS_preimage_token_value: OCTET
STRING — specifies the SAS user’s one-
time hash pre-image of the signed token
specified in SAS_signedtoken_value.



This attribute is unsigned. It is inserted
by the user when the SEM’s half-signature
is received and verified.

Because of format compatibility, a SAS signature
can be shipped as a normal PKCS#7 signature.
However, the verification method is obviously dif-
ferent. The normal PKCS#?7 verification routines
can only verify the SEM half-signature (i.e., RSA
public key signature).

The extra step in (light) verification of
a SAS signature is the comparison of the
hash of SAS preimage token value and the
SAS_signed_token value assuming light verifica-
tion is used. Otherwise, as described above, the ver-
ifier checks the validity of SAS_signed_token_value
and SAS_signed token_index by computing the
iterative hash and comparing the result with the
SAS root key in the signer’s SAS certificate.

The fact that two parties participate in sign-
ing result in a semantic issue when SAS signa-
tures are used in conjunction with S/MIME. Most
S/MIME applications enforce a policy requiring the
sender of the message (as shown in the RFC822
From: field) to match the e-mail address in the
signer certificate. ~ Unfortunately, in SAS, the
sender is the holder of the SAS certificate, e.g., al-
ice@wonderland.com. Whereas, the “signer” is the
SEM, e.g., sesm@wonderland.com. Therefore, a SAS
verifier should be aware of the presence of the un-
signed attribute and use the proper email address
in comparison.

A.2 SAS Certificate

To support SAS attributes, we extended X509v3
handling [21] in the popular Openssl library [22]. In
addition to the usual X509v3 fields, a SAS certifi-
cate also certifies the following:

e SASHashType: DigestAlgorithmIdentifier —
identifies the hash algorithm used in generating
the hash chain;

e SASPublicKeyIdentifier: OCTET STRING —
SAS root key in the hash-chain.

e SASPublicKeyPara: INTEGER - length of the
hash-chain.

e SASServerName: STRING — SEM'’s host name.
This field indicates the location of SEM and

has no security meaning.

e SASSerialNumber: INTEGER — SEM’s certifi-
cate serial number. (Here it is assumed that

the SEM and the user share the same CA).
Uniquely identifies SEM’s certificate and the
corresponding public key.

A.3 Eudora Plug-in Details

We implemented the SAS plug-in as two email
translators defined in Eudora’s plug-in API [19].
Specifically, SAS signing is a @Q4-Transmission
translator and SAS verification is an On-Display
translator.

SAS signing translator is invoked when Eudora
is ready to send email and is fed with the entire
email message, including its MIME header. When
SAS signature protocol terminates, the whole SAS
signature in PKCS#7 format is appended to the
email body as an attachment with the MIME sub-
type ¢ ‘x.SAS-signature’’.

SAS verification translator is called when Eudora
is about to display a SAS-signed email. As in tradi-
tional signature verification, a certificate chain must
be at hand. Our plug-in allows users to specify the
root CA certificate, assuming, of course, that the
SEM and the SAS client share the same certificate
issuer. It is easy to build a chain by extracting
SEM and client’s certificate from the PKCS#T7 sig-
nature. In this implementation, we chose not to
adopt opaque signing. If the signature is invalid,
an error message window is popped up while the
original email body is still displayed.

Since SAS signature verification is different from
normal S/MIME, non-Eudora applications, like
Netscape or Outlook, cannot verify it without a spe-
cial verification program. We provide such a stand-
alone

Appendix B: Related Work on Certifi-
cate Revocation

e CRLs and A-CRLs: Certificate Revocation
Lists are the most common way to handle certificate
revocation. The Validation Authority (VA) period-
ically posts a signed list of all revoked certificates.
These lists are placed on designated servers called
CRL distribution points. Since these lists can get
quite long, a VA may alternatively post a signed
A-CRL which only contains the list of revoked cer-
tificates since the last CRL was issued. When ver-
ifying a signature on a message, the verifier checks
that, at the time that the signature was issued, the
signer’s certificate was not on the CRL.

e OCSP: The Online Certificate Status Proto-
col (OCSP) [1] improves on CRLs by avoiding the



transmission of long CRLs to every user and by pro-
viding more timely revocation information. The VA
sends back a signed response indicating whether the
specified certificate is currently revoked. When ver-
ifying a signature, the verifier sends an OCSP (cer-
tificate status request) query to the VA to check if
the enclosed certificate is currently valid. The VA
answers with a signed response indicating the cer-
tificate’s revocation status. Note that OCSP pre-
vents one from implementing stronger semantics: it
is impossible to ask an OCSP VA whether a certifi-
cate was valid at some time in the past.

e Certificate Revocation Trees: Kocher [23]
suggested an improvement over OCSP. Since the
VA is a global service, it must be sufficiently
replicated to handle the load of all validation
queries. This means the VA’s signing key must
be replicated across many servers which is either
insecure or expensive (VA servers typically use
tamper-resistance to protect the VA’s signing key).
Kocher’s idea is to have a single highly secure VA
periodically post a signed CRL-like data structure
to many insecure VA servers. Users then query
these insecure VA servers. The data structure
(CRT) proposed by Kocher is a hash tree where
the leaves are the currently revoked certificates
sorted by serial number The root of the hash tree

is signed by the VA.

A user wishing to validate a certificate issues a

query to the closest VA server. Any insecure VA
can produce a convincing proof that the certificate
is (or is not) on the CRT. If n certificates are cur-
rently revoked, the length of the proof is O(logn).
In contrast, the length of the validity proof in OCSP
is O(1).
e Skip-lists and 2-3 trees: One problem with
CRTs is that, every time a certificate is revoked, the
entire CRT must be recomputed and distributed in
its entirety to the various VA servers. A data struc-
ture allowing for dynamic updates would solve this
problem since the secure VA would only need to
send small updates to the data structure along with
a signature on the new root of the structure. Both
2-3 trees proposed by Naor and Nissim [24] and skip-
lists proposed by Goodrich [25] are natural data
structures for this purpose. Additional data struc-
tures were proposed in [26]. When a total of n cer-
tificates are already revoked and k new certificates
must be revoked during the current time period,
the size of the update message to the VA servers is
O(klogn) (as opposed to O(n) with CRT’s). The
proof of certificate’s validity is O(logn), same as
with CRTs.



