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Abstract

We describe an implementation of a distributed algo-
rithm to generate a shared RSA key. At the end of
the computation, an RSA modulus N = pq is pub-
licly known. All servers involved in the computation
are convinced that N is a product of two large primes,
however none of them know the factorization of N .
In addition, a public encryption exponent is publicly
known and each server holds a share of the private ex-
ponent. Such a sharing of an RSA key has many ap-
plications and can be used to secure sensitive private
keys. Previously, the only known method to gener-
ate a shared RSA key was through a trusted dealer.
Our implementation demonstrates the e�ectiveness of
shared RSA key generation, eliminating the need for
a trusted dealer.

1 Introduction

To protect an RSA private key, one may break it into
a number of pieces (shares) and store each piece at
a separate location. Sensitive private keys, such as
Certi�cation Authority (CA) keys, can be protected
in this way. Fortunately, for the RSA cryptosystem it
is possible to share a private key among several sites
without having to reconstruct the key in order to use
it { a CA can issue certi�cates without reconstructing
its private key at a single location [8]. To explain how
this is done we briey recall the details of the RSA
system. Let N = pq be a product of two large primes.
Let e be a public signature veri�cation exponent and
d be the corresponding private signing exponent. A
private RSA key is the pair hd;Ni (other information
such as p and q is often included for e�cient signa-
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ture generation). To share its private key among four
sites, the CA does the following: it picks four random
integers d1; : : : ; d4 in the range [�N; : : : ; N ] such that
d1 + d2 + d3 + d4 = d. Each of these shares is then
stored in a separate location. To issue a certi�cate,
the CA creates a signature on a message m by ask-
ing each site to compute si = mdi mod N . Each site
then sends si to the entity requesting the certi�cate.
The requesting entity multiplies the four si's to obtain
s = md1+d2+d3+d4 = md mod N . Thus, a valid signa-
ture is obtained. The beauty of this simple procedure
is that the private key d is never reconstructed at a
single location. If a hacker penetrates even three of
the four sites, she learns no information about the pri-
vate key. To achieve fault-tolerance the scheme may
be slightly modi�ed so that any 3-out-of-4 sites can
issue a certi�cate. Indeed, in SET [14] the private
key belonging to the root CA is shared in this fashion
among four entities [5]. Shared keys are also used in
the Omega (
) public key management system devel-
oped at AT&T [11].

An important issue left out of the above discussion
is key generation. Who generates the modulus N and
the private key d? A simple solution is to ask a trusted

dealer to generate two primes p and q, multiply them
to getN and then generate e and d. Finally, the dealer
splits d into four pieces and sends one piece to each of
the sites. Unfortunately, a trusted dealer introduces a
single point of attack: the dealer, or anyone who com-
promises the dealer, has the private key and can is-
sue false certi�cates. Recently, Boneh and Franklin [4]
showed how three (or more) servers can generate a
shared RSA key without a trusted dealer. They de-
scribe an e�cient distributed algorithm that enables a
number of sites to jointly generate a shared key so that
none of them know the private key d or the factoriza-
tion of N . Once the key is generated it can be used for
distributed certi�cate generation as described above.
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Distributed generation of an RSA modulus with an
unknown factorization is useful in other contexts as
well. For instance, in the Fiat-Shamir authentication
scheme [7] a number of entities may use a common
modulus N = pq for authentication, but none of them
should know the factorization of N . The original Fiat-
Shamir scheme calls for a trusted dealer to generateN .
The Boneh-Franklin algorithm eliminates the need for
a trusted dealer in this context as well.

In this paper we study the practicality of distributed
generation of shared RSA keys. In order to achieve op-
timal performance we implemented a number of prac-
tical optimizations that greatly reduce the algorithm's
running time while still (provably) preserving security.
The paper describes our implementation, including the
optimizations we used, and gives detailed timing mea-
surements on the algorithm's performance. Our re-
sults demonstrate the e�ectiveness of shared RSA key
generation. We hope these results will reduce the re-
liance on trusted dealers for generating shared keys.

In our experiments we used up to �ve servers to
generate the shared key. Communication between the
servers is protected using SSL as implemented in the
SSLeay package by Eric Young [17]. To store the
shared RSA key on disk we designed an appropriate
ASN.1 structure and store the key in PEM format.
Once the shared key is generated we perform a num-
ber of tests to verify proper sharing. We describe the
implementation in detail in Section 3.

Detailed timing measurements are given in Sec-
tion 5. Here we briey summarize the results. Our
optimized implementation takes under 91 seconds on
average to generate a 1024 bit key among three servers
using 333MHz Pentium machines on a 10Mbps Ether-
net. During the execution of the algorithm each server
sends approximately 1.2Mb of data across the network.
As an experiment we also ran our distributed compu-
tation across the continent by using servers located at
various places in the US. We were able to generate a
1024 bit shared RSA key in under 6 minutes. Such a
con�guration may be used when the shares of a shared
RSA key must be stored in remote locations. The op-
timizations we used to achieve this performance are
described in Section 4.

The algorithm can be easily made robust against
an attacker who is able to corrupt one of the servers
during key generation. The attacker can disrupt key
generation (and consequently be detected). However,
if a shared key is generated, the attacker will not know
the factorization of N or the private key d. We discuss
this issue in Section 6.

2 Overview

Before describing our implementation and the practi-
cal optimizations we briey describe the algorithm for
generating shared RSA keys. The algorithm is some-
what complex and here we only give a high-level de-
scription. For a detailed explanation along with proofs
of security see [4].

The goal is to enable k servers to generate a mod-
ulus N = pq and exponents e and d. At the end of
the computation all servers should be convinced that
N is the product of two primes, however none of them
should know the factorization. Furthermore, e should
be public while d should be shared among the servers
in a way that enables t-out-of-k threshold signature
generation. That is, any t servers should be able to is-
sue a certi�cate (without reconstructing the key d). At
the same time, an attacker who penetrates at most t�1
servers should not be able to obtain any information
about the private key. Our key generation algorithm
proceeds in a number of steps. At a high level these
steps are as follows:

(1) pick candidates: Each of the k servers picks two
random n-bit integers pi; qi and keeps them secret.

(2) compute N : Using a private distributed compu-
tation the k servers compute

N = (p1 + : : :+ pk) � (q1 + : : :+ qk)

Other than the value of N , this step reveals no
information about the secret values p1; : : : ; pk and
q1; : : : ; qk. Now that N is public, the k servers ap-
ply trial division to ensure that N is not divisible
by small primes.

(3) primality test: The k servers engage in a pri-
vate distributed computation to test that N is the
product of two primes. If the test fails, the proto-
col is restarted from step 1. As before, this step
reveals no information about the private shares.

(4) key generation: Given a public encryption ex-
ponent e, the servers use a private distributed com-
putation to generate a shared secret decryption ex-
ponent d.

Before describing how each of the steps is imple-
mented we explain the security features achieved by
the protocol.

Collusion The algorithm is bk�1
2
c private. That is,

even if bk�1
2
c servers share the information they
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learn during the protocol, they will still not be able
to recover the factorization of N or the private key
d. Hence, when three or four servers are involved,
no single server has any information. When �ve
servers are used, no pair learns anything.

Honest parties In this section we assume all servers
are honestly following the protocol. This model is
often called honest but curious parties | curious
parties learn nothing from the protocol. In Sec-
tion 6 we explain how the protocol can be made
robust against malicious participants. Techniques
for achieving stronger robustness properties are de-
scribed in [9].

Private and authenticated channels The con-
nection between server i and server j must be
secure. Otherwise, an adversary can tap all
communication and expose critical information.
Our system implements private channel using the
SSL protocol as described in Section 3.

2.1 Distributed computation of N

For completeness, the next three subsections describe
steps (2) { (4) of the algorithm. The reader may skip
to Section 3 and refer back these subsections as neces-
sary.

We begin by describing the private computation of
N (Step 2). Each server has a secret pi; qi. They wish
to make the product N = (

P
pi)(
P

qi) public without
revealing any information about their private shares
beyond what is revealed by the knowledge of N . Our
technique is a practical adaptation of a generic secure
circuit evaluation protocol due to BenOr, Goldwasser
and Wigderson (BGW) [1]. From here on, let P > N
be some prime. Unless otherwise stated, all arithmetic
operations are done modulo P . The protocol works as
follows:

Step 1: Let l = bk�1
2
c. For all i = 1; : : : ; k server

i picks two random degree l polynomials fi; gi 2
ZP [x] satisfying fi(0) = pi and gi(0) = qi. In other
words, the constant term of fi; gi are set to pi; qi
and all other coe�cients are chosen at random. In
addition, each server i picks a random degree 2l
polynomial hi 2 ZP [x] satisfying hi(0) = 0.

Step 2: For all i = 1; : : : ; k server i computes

8j = 1; : : : ; k : pi;j = fi(j)

qi;j = gi(j)

hi;j = hi(j)

Server i then privately sends the triple
hpi;j ; qi;j ; hi;ji to server j for all j 6= i. Note
that the pi;j for j = 1; : : : ; k are standard l-out-of-
k Shamir secret sharings of pi. The same holds for
qi.

Step 3: At this point, each server i has all of
hpj;i; qj;i; hj;ii for j = 1; : : : ; k. Server i computes:

Ni =

0
@ kX

j=1

pj;i

1
A �

0
@ kX

j=1

qj;i

1
A+

kX
j=1

hj;i (mod P )

Server i broadcasts Ni to all other servers.

Step 4: At this point each server j has all values Ni

for i = 1; : : : ; k. Let �(x) be the polynomial

�(x) = (
X
j

fj(x))(
X
j

gj(x)) +
X
j

hj(x) (mod P )

Observe that �(i) = Ni and by de�nition of fi; gi
and hi we have �(0) = N . Furthermore, �(x) is a
polynomial of degree 2l. We note that l is de�ned so
that k � 2l+1. Since all servers have at least 2l+1
points on �(x) they can interpolate it and discover
its coe�cients. Finally, each server evaluates �(0)
and obtains N mod P . Since N < P the servers
learn the correct value of N .

From the description of the protocol it is clear that
all servers learn the value N . The protocol requires
that at least three servers be involved, in which case
linear polynomials are used and the protocol is 1-
private. The following lemma states that a coalition
of bk�1

2
c servers learns no other information about the

private shares. This statement holds in the informa-
tion theoretic sense { no complexity assumptions are
needed.

Lemma 2.1 Given N , any coalition of bk�1
2
c servers

can simulate the transcript of the protocol. Conse-

quently, the protocol is bk�1
2
c private.

2.1.1 Sharing the �nal outcome

In some cases (as in Section 4.1) we wish to have the
servers evaluate the function N = (

P
pi)(
P

qi); how-
ever the result should be additively shared among the
servers rather than become publicly available. That
is, at the end of the computation each server should
have an Mi such that

kX
i=1

Mi = (

kX
i=1

pi)(

kX
i=1

qi) (mod P )
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and no information is revealed about the private shares
or the �nal result.

The modi�cation to BGW in order to achieve the
above goal is immediate. The servers do not perform
Step 4 of the protocol and do not perform the broad-
cast described at the end of Step 3. Consequently, they
each end up with a point on a polynomial �(x) of de-
gree 2l that evaluates to N at x = 0. Using Lagrange
interpolation we know that

N = �(0) =

kX
i=1

�i(0)Ni mod P

where �i(x) =
Q

j 6=i(x � j)=(i � j) is the appropriate
Lagrange coe�cient. Therefore, rather than broadcast
Ni at the end of Step 3, server i simply sets Mi =
�i(0)Ni. The resulting Mi's are an additive sharing of
N as required.

2.2 Distributed primality test

We describe a simpli�ed version of the distributed pri-
mality test (Step 3). Server i has two secret n-bit
integers pi; qi. At this point, all servers know N where
N = pq = (

P
pi)(
P

qi). They wish to determine if
N is the product of two primes without revealing any
information about the factors of N .

Distributed primality test:

Step 1: The servers pick a random g 2 Z
�
N. The

value g is known to all k servers.

Step 2: Server 1 computes v1 = gN�p1�q1+1 mod N .
All other servers compute vi = gpi+qi mod N . The
servers exchange the vi values with each other and
verify that

v1 =

kY
i=2

vi (mod N)

If the test fails then the servers declare that N is
not a product of two primes. Otherwise, they de-
clare success.

We refer to the above test as a Fermat test for test-
ing that a number is a product of two primes. Essen-
tially, what is being tested is that

gN�p�q+1 = 1 (mod N)

Note that there exist N that are not a product of
two primes yet they always pass the test. The den-
sity of such integers is extremely small (less than 1 in

1040) [12]. A full probabilistic primality test (that only
admits integers that are a product of two primes) was
designed by Boneh and Franklin [4]. Once an integer
N that passes the Fermat test above is found, the full
Boneh-Franklin test can be applied to ensure that the
number is indeed a product of two primes. Currently
our implementation only tests the number using the
simple Fermat test protocol above.

When N is the product of two distinct primes, the
primality test protocol reveals no information about
the private shares of the participants.

2.3 Shared generation of public and

private keys

Once the servers successfully construct an RSA mod-
ulus N = pq = (

P
pi)(
P

qi) they wish to compute
shares of d = e�1 mod �(N) for a given encryption
exponent e (Step 4). At the end of the computation
each server should have a di such that d =

P
di. There

are two approaches for doing so. The �rst approach
works for small e (say e < 220) but is very e�cient re-
quiring very little communication between the servers.
The second works for any e and is still e�cient, how-
ever it requires more communication. Since signature
generation usually makes use of a small RSA public ex-
ponent (so that signature veri�cation is fast) we chose
to implement the �rst approach as described below.

Step 1: Server 1 locally computes �1 = N�p1�q1+1.
All other servers locally compute �i = �pi � qi.
Observe that �(N) =

P
�i.

Step 2: The servers jointly determine the value of
` = �(N) mod e. Since ` =

P
�i mod e, it is pos-

sible to compute ` without revealing any other in-
formation about the private shares. To do so we
use a simple protocol due to Benaloh [3] which
is k � 1 private: each server i creates an addi-
tive sharing of �i, namely �i =

P
j i;j mod e

for random i;j . It then sends i;j to server j.
Server j now has i;j for all i. It computes the
sum �j =

P
i i;j mod e and sends �j to all other

servers. Then each server locally computes
P

j �j
which satis�es

P
�j =

P
j �j = ` mod e.

Step 3: Let � = `�1 mod e. Then, it is not di�cult
to see that d = (�� � �+1)=e. Each party i locally
computes:

di =

�
�� � �i

e

�

As a result we have d =
P

di + r mod �(N) where
0 � r < k.
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Step 4: The above sharing of d enables
shared decryption [8] using the equality
cd � cr

Q
cdi mod N . Server 1 deter-

mines the value of r by trying all possible values
of 0 � r � k during a trial decryption. It then
subtracts r from its own share d1.

The above approach leaks ` = �(N) mod e and r.
This is a total of log2 e + log2 k bits. As a result this
approach only works for small e. In our implementa-
tion we use e = 65537, a standard small public expo-
nent. We emphasize that an alternate approach works
for all e and doesn't leak any information (see [4]). We
chose not to implement it since it is more costly.

2.4 t-out-of-k sharing

The previous subsection explains how we obtain a
k-out-of-k sharing of d. However, to provide fault-
tolerance it is often desirable to have a t-out-of-k shar-
ing enabling any subset of t servers to apply the private
key. We explain how to achieve 2-out-of-3 sharing of
the RSA key. This approach generalizes to any t-out-
of-k as long as k is not too big (e.g. k < 20). Standard
Shamir secret sharing [15] is inadequate since the pri-
vate key would have to be reconstructed at a single
location in order for it to be used.

We �rst explain the structure of a 2-out-of-3 RSA
signature generation scheme. Write the private key d
as d = d1+d2 = d3+d4 where d1; d2; d3; d4 are random
integers in [�N;N ]. Each of the three server is given
shares according to the following table:

S1 S2 S3
d1 d2 d1
d3 d4

Observe that any pair of servers can generate a sig-
nature (without having to reconstruct the key). No
single server has any information about d. The pri-
vate share of the key given to each server is composed
of N and a list of di's. As a result, in the implemen-
tation we de�ne a new ASN.1 private key structure,
as described in Section 3.2. We note that an alter-
nate approach to a t-out-of-k sharing of an RSA key
is described in [13].

We can now explain how a t-out-of-k sharing of d
as above can be generated by the servers themselves
(without a trusted dealer). Once the servers generate
a k-out-of-k sharing (as explained in the previous sec-
tion) they can easily convert it into a t-out-of-k sharing
as follows: each server i constructs a t-out-of-k sharing

(as the above table) of its own share di. It then sends
to server j the shares of di that belong to j. Finally,
each server adds up all the shares it received from the
other servers. The resulting di's are a t-out-of-k shar-
ing of d.

3 Implementation details

Our implementation consists of two independent com-
ponents. The �rst is a communications package
(COM) that abstracts low level communications. It
provides encrypted links between servers as well as a
convenient interface for sending abstract data types,
such as large numbers, over the network. The sec-
ond component is the algorithm module (GEN) that
implements the key generation algorithm. Our code is
written in C for high performance and easy integration
into existing products.

3.1 Communications package

The clients and servers use a communications package
based on SSL to ensure the authenticity and con�den-
tiality of connections. The communications package
handles the following tasks internally:

� Tunneling communications using an underlying se-
cure transport, like SSL.

� Providing an intuitive, platform-independent inter-
face for reading and writing abstract data types,
like large integers.

� Managing a large number of simultaneous network
connections and presenting a simpli�ed networking
API for higher-level code.

� Handling transparent end-to-end authentication
using techniques such as certi�cates and sequence
numbers.

� Maximizing e�ciency by taking advantage of
bu�ering and nonblocking I/O.

In short, the package ensures that the underlying
protocol security assumptions mentioned earlier are
met while abstracting away the complexities of asyn-
chronous networking and any optimizations we imple-
ment at the communications level.

A con�guration �le, which is read upon program
startup, contains network settings for the clients and
servers, such as IP addresses, port numbers, and path-
names. Instead of requiring each program to know all
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the details of each server, the API allows servers to be
referenced directly by number. The communication
package takes care of the mappings between server
number and address/port information. In addition,
it handles peer identi�cation transparently, so that a
server knows the identity of any clients that contact
it.

3.1.1 Authentication

As stated earlier, the communications package is based
on Eric Young's SSLeay [17] package. Client and
server certi�cates are issued by a private CA, whose
public key is distributed by hand to all clients and
servers beforehand. Each party has its own certi�cate,
signed by this CA, which contains its own identity as
part of the signed certi�cate data. For example, the
certi�cate for server 0 has a subject �eld that looks
like:

/C=US/ST=California/O=Stanford University/

OU=ITTC Project/CN=[SERVER 0]

The name �eld contains the authenticated identity
of the party, which can be veri�ed by clients and other
servers.

At the moment our approach to authentication is
ad-hoc. After all, the method of authentication de-
pends on the environment in which our system is used.
For instance, when generating a CA private key, au-
thentication can be done using certi�cates generated
by a higher level CA. For a root CA authentication
can be done using the current CA root key. In other
environments where shared keys are used authentica-
tion can be done using standard certi�cates issued by
a CA.

In addition to certi�cate authentication, the com-
munications package keeps track of sequence numbers
for each pair of parties. This allows the system to
detect when a private key is compromised and used,
since this would introduce a skew between the se-
quence numbers held by the servers and the legitimate
client.

3.1.2 Multiparty I/O

There are many instances where conventional network
programming can lead to considerable implementation
ine�ciencies, even under normal usage. Consider an
application of threshold decryption when one of the
servers has failed. One of the bene�ts of threshold
decryption is the ability to tolerate the loss of one or
more shares. However, if one naively attempts to con-

nect to each server in series, the procedure will stall
when the non-functioning server is reached.

Instead, the communications package uses non-

blocking I/O underneath to alleviate this problem. In
this mode, when the communications package makes
an I/O request, it tells the operating system to re-
turn immediately instead of waiting until the opera-
tion can be completed. This is useful when communi-
cating with multiple parties, because the application
can open multiple connections and have the communi-
cations package deliver packets on several of the con-
nections without waiting for acknowledgments. This
reduces the amount of time spent waiting on the net-
work to its theoretical minimum.

The core of the communications package is a state
machine that tracks the status of each connection.
This state machine handles the initial connection es-
tablishment and negotiates the initial authentication
handshakes transparently to the application. This ap-
proach is needed because multiple connections, in dif-
ferent stages, may be in progress simultaneously. All
data is bu�ered internally and delivered to the appli-
cation as complete and well-formed packets.

3.2 Key storage

The SSLeay package supports reading and writing
both public and private keys in PEM format. Our
private shares and shared public keys are represented
internally as extensions of the standard RSA key data
structure1. On disk, we support a PEM-encoded
ASN.1 format similar to that used for RSA keys. The
private and public share formats are described in Ta-
ble 1. Note that none of these �les contains the op-
tional values d mod p� 1; d mod q � 1, or q�1 mod p
normally used to optimize RSA computations because
none of the parties can construct these values.

The values g and gdi mod N stored in the public
shared key are used to detect incorrect (or possibly
compromised) private share operations by the share
servers. Their function is not discussed in this paper.

3.3 Testing the shared keys

Once a shared key is generated among the servers it
undergoes a number of tests to verify proper sharing.
The �rst thing the servers do is trial decryption: each
server picks a random message, encrypts it using the

1Because SSLeay supports some degree of object polymor-

phism, our \extended" RSA keys can be used interchangeably

with \ordinary" RSA keys in SSLeay.
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Private share �le format Public key �le format
Data Type Field Data Type Field
INTEGER Version INTEGER Version
INTEGER N INTEGER N
INTEGER e INTEGER e
INTEGER k (number of sets) INTEGER g (generator)
INTEGER d1 INTEGER k (number of sets)

...
... INTEGER gd1 mod N

INTEGER dk
...

...
INTEGER gdk mod N

Table 1: Private and public shared key formats

public key, and sends the result to all other servers.
Each server then applies its private share to the ci-
phertext and sends the result back to the originating
server. The originating server combines all the results
and compares the resulting plaintext to the original
random message it chose.

When our system is run in a test mode, more ag-
gressive testing is done on the output. Once the key is
generated, all servers send their shares of the private
key d to all other servers. They also send their private
shares of the factors p and q. Each server then veri�es
that p and q are both prime, that N = pq, and that
e � d = 1 mod �(N). This test should clearly not be
done under normal system operation since it exposes
the private key to each of the servers, defeating the
main point of key sharing.

4 Practical optimizations

We describe several practical optimizations we use to
improve the performance of distributed key genera-
tion. First, we explain the main reason why our im-
plementation is slower than standard single user gen-
eration. To generate an RSA key, a single user re-
peatedly picks random numbers until two primes are
found. These primes are multiplied to form N = pq.
The probability that a random n-bit integer is prime
is approximately 1=n. Consequently, an average of n
probes are needed until a prime is found; 2n are needed
until two primes are found. This approach cannot be
used in distributed key generation since the prime fac-
tors have to be kept secret. Instead, in our implemen-
tation the servers �rst share two random n-bit integers
p and q. The shared numbers are multiplied to obtain
N = pq and a double-primality test is then directly
applied to N . The probability that both p and q are
simultaneously prime is asymptotically 1=n2. There-

fore, naively one has to perform n2 probes on average
until a suitable N is found. This is much worse than
the expected 2n probes needed in single user genera-
tion, resulting in a slowdown of a factor of 256 (!) for a
1024 bit RSA modulus. Our �rst and most signi�cant
optimization eliminates much of this slowdown by an
approach we call distributed sieving. Other optimiza-
tions take advantage of the distributed environment in
which the computation takes place.

4.1 Distributed sieving

The goal of distributed sieving is to ensure that in
Step 1 (Section 2) of the algorithm, when the servers
generate shares of two random integer p and q, these
integers are not divisible by small primes. Unfortu-
nately, since p must remain secretly shared among the
servers as p = p1 + : : : + pk it is not possible to e�-
ciently perform trial division on p. Instead, we use a
technique that enables each server to pick a random
share pi and be guaranteed that

P
pi is not divisible

by small primes. Our method leaks no information {
server i learns nothing about the shares of p belonging
to other servers.

This single optimization results in a 10-fold improve-
ment in running time when generating a 1024-bit mod-
ulus. In what follows we let M be the product of
all odd small primes up to some bound which we call
the sieving bound. The only constraint is that M be
smaller than p.

Step 1: Each server i picks a random integer ai in the
range [1; : : : ;M ] such that ai is relatively prime to
M . To do so, we use a classic sieving technique: the
server picks a random integer r between 1 and M .
It then initializes a small boolean array represent-
ing the integers r; r + 1; r+ 2; : : : ; r + 30. For each
of the small prime divisors of M it loops through
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the array and crosses out the elements divisible by
that prime. Finally, it sets ai to be the �rst entry
that was not crossed out. If all entries were crossed
out the process is restarted and a new random ai
is chosen.

In general, the size of the array should be propor-
tional to log logM . An array of size 30 was exper-
imentally proven to be su�cient for our purposes.

Step 2: Since each ai is a random integer relatively
prime to M , their product a = a1 � � � ak mod M is
also a random integer relatively prime to M . We
need to convert this multiplicative sharing of a into
an additive sharing. More precisely, each server
should obtain a private bi in the range [0; : : : ;M ]
such that a = b1+ : : :+bk mod M . No information
about a should be leaked.

We convert the multiplicative sharing a =
a1 � � � ak mod M to an additive sharing by con-
sidering one server at a time. Suppose for some
1 � ` < k the value a` =

Q`

i=1 a1 � � � a` mod M is
already converted into an additive sharing

a` = b1;` + : : :+ bk;` (mod M)

Initially ` = 1. To convert a`+1 = a1 � � � a`+1 to
an additive sharing we run the algorithm of Sec-
tion 2.1.1 on the input

(b1;` + : : :+ bk;`) � (u1 + : : :+ uk) (mod M)

where u`+1 = a`+1 and ui = 0 for i 6= ` + 1. The
algorithm produces the required additive sharing
a`+1 = b1;`+1 + : : : + bk;`+1 of the product. After
k�1 iterations of this procedure (for ` = 1; : : : ; k�
1) we obtain the desired additive sharing a = b1 +
: : : + bk mod M of a1 � � � ak mod M . The privacy
achieved is identical to that of Section 2.1.1, hence
no information about a mod M is leaked.

Step 3: Finally, each server i picks a random ri in
the range [0; 2

n

M
] and sets pi = riM + bi. Clearly,

p =
P

pi � a mod M and hence p is not divisible
by any small prime factors.

One caveat in the procedure of Step 2 is that the
algorithm of Section 2.1.1 is carried out modulo M
which is not prime. This is not a problem as long
as the smallest prime factor of M is not smaller than
the number of parties k. Shamir secret sharing is not
possible in ZM when the smallest prime factor of M
is less than k. The algorithm of Section 2.1.1 cannot
be executed modulo such M . In our experiments the
number of servers is always less than 7. Hence, we

apply distributed sieving modulo M = 7 � 11 � 13 � � � p`
where p` is the sieving bound. To ensure that p and
q are not divisible by 2; 3 and 5 we �x their values
modulo 30.

4.2 Testing candidates in parallel

While generating and testing a particular candidate,
the algorithm is synchronous. All servers step from
one phase to another in synchrony. As a result, time is
wasted at various synchronization points. To improve
performance we run multiple threads on each server.
Thread 1 on each server talks to thread 1 on other
servers, thread 2 talks to thread 2 on other servers,
and so on. As a result, multiple candidates are tested
at once and synchronization overhead is reduced. Once
one of the threads �nds a modulus, the search termi-
nates and all other threads die. Currently, each set of
threads communicate on a separate set of ports.

Multithreading the key generation process greatly
improves performance. Section 5 gives timing mea-
surements to illustrate its e�ect. As expected, mul-
tithreading gives the greatest bene�ts in situations
where synchronization is taking a lot of time.

It is possible to estimate the number of iterations
that a thread must complete before �nding an RSA
modulus. If ` is the number of iterations that a single-
threaded implementation would expect to run before
�nding a modulus, then an implementation with n
threads expects

iterations =
1

1� (1� 1

`
)n

:

Since 1

`
is small, we have (1� 1

`
)n � 1� n

`
, and hence

iterations �
`

n
:

The timing measurements in Section 5 generally fol-
low this formula. They do not match exactly due to
random uctuations.

An interesting consequence is the diminishing gain
of multithreading. Increasing the number of threads
from n to n + 1 causes the expected number of itera-
tions to go from l

n
to l

n+1
, resulting in a decrease of a

factor of
l=n+ 1

l=n
=

n

n+ 1
:

As the number of threads becomes larger, n
n+1

tends
to 1, hence adding new threads has little e�ect on the
number of iterations needed to �nd a modulus.
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Adding new threads slows down the servers, but not
as much as would be expected under normal circum-
stances. For example, when going from one thread to
two threads, the servers do not operate at half their
speed because one thread can utilize the CPU while
the other is waiting for another server to synchronize.
The optimal number of threads is the result of this
tradeo�. Adding threads lowers the expected number
of iterations, while slowing down each iteration. Since
it is very hard to calculate this tradeo�, the optimal
number of threads is found by experimentation (See
Section 5).

4.3 Parallel trial division

Recall that once N is computed the servers perform
trial division on it before invoking the distributed pri-
mality test (Step 2 in Section 2). The k servers can
perform this trial division in parallel { each server is in
charge of verifying that N is not divisible by some set
of small primes. This can be e�ciently done by hard-
coding all small primes p1; p2; : : : ; pl (greater than the
sieving bound) in a list. Server i is in charge of testing
that N is not divisible by any of the primes pj in the
list for which j = i mod k. This factor of k speedup
enables us to use a large trial division bound, increas-
ing the e�ectiveness of trial division.

To further improve performance of trial division we
divide by multiple primes at once. For instance, to
test if p is divisible by 5 or 7 one can compute p mod 5
and then p mod 7 and verify that both values are not
zero. However, one can compute a = p mod 35 at the
cost of one division; by testing if gcd(a; 35) = 1, it can
be seen if either 5 or 7 (or both) divide a. To take
advantage of this trick, we pack as many small primes
as possible into a single 32 bits word W and compute
p mod W . Hence, at the cost of one division we test
multiple small primes. This packing of small primes
into 32-bit words is done before the algorithm begins
and is identical on all servers.

4.4 Load balancing

In Step (3) of the primality test (Section 2.2) server
1 has to compute v1 = gN+1�p1�q1 mod N while all
other servers only have to compute vi = gpi+qi mod N .
Notice that N + 1 is roughly 2n bits while pi + qi is
only about n bits. Consequently, server 1 has to work
twice as hard as the other servers. Ideally, a server
would be chosen at random for every iteration and
given the role of server 1. However, choosing a ran-
dom server would require communication between all

of the servers, and is thus undesirable. A determin-
istic method to even things out is to assign the role
of server 1 to a di�erent server for each thread, and
increment this server after each iteration. This way
the computation of gN+1 mod N is not always done
on the same server leading to better load balancing.
Furthermore, the randomized timing of the iterations
will result in a fairly random and even distribution of
the role of server 1. As a result, primality test time is
reduced by up to a factor of two.

5 Timing measurements

We measured the performance of distributed key gen-
eration in a number of environments. First, we mea-
sured the performance of our implementation for a
number of common RSA key sizes. Table 2 summa-
rizes our results when running the system on three
servers. Note that all of the measurements, except for
network tra�c, are given as an average per thread. For
example, Table 2 shows that when computing a 512-bit
modulus, each thread spent an average of 55.7ms per
iteration executing the BGW protocol. All times are in
milliseconds, unless otherwise noted. Network tra�c
measurements are given for the entire key-generation
process, and reect the total load on the network. The
same amount of tra�c is sent as is received, so only
one statistic is given in the table.

We used 333MHz Pentium II's running Solaris 2.5.1.
The servers are connected by a 10-Megabit Ethernet.
Communication between the servers is protected by
SSL, and the optimal (largest) sieving bound is used.

The �rst column measures the time for distributed
sieving for both p and q (Section 4.1). The second
column measures the average time per iteration for
the BGW protocol, which is used four times in sieving
and once in the distributed computation of N (Sec-
tion 2.1). Next we measure the average time per it-
eration of trial division with a bound of 15,000. The
next two columns give both the average running time
of the primality test and number of times it was exe-
cuted. Following this is the number of iterations until
a modulus is found and the total average running time
per iteration. Finally, the average network tra�c per
key generation is given in megabytes. The timings are
averaged over 20 executions of the algorithm. Note
that the total time to generate a 1024-bit key is ap-
proximately 90 seconds.

We do not give the time to generate a sharing of the
signing exponent d once the modulus is found (Sec-
tion 2.3) since it is negligible compared to the rest of
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Sieving BGW trial div. prime test iterations total net number of
time time time time num time num time tra�c threads

512 bit 39.9 55.7 2.4 37.6 36.4 77.2 119 0.15 min 0.180 Mb 2
1024 bit 362.4 82.6 2.3 637.2 49.1 696.9 130 1.51 min 1.162 Mb 6
2048 bit 369.3 470.9 3.6 4177.3 233.9 2198.0 495 18.13 min 7.48 Mb 6

Table 2: Shared key generation time among three servers.

the computation. These times ranges from 20ms for a
512-bit key to 500ms for a 2048-bit key.

Experimentally, 2 threads per server is optimal for
a 512-bit key and 6 threads per server is optimal for a
1024-bit key. For 2048 bits, 6 threads also appears to
be optimal.

There is a large di�erences between the 1024-bit key
and the 2048-bit key in the number of primality tests
and the number of iterations. This di�erence is much
smaller between the 512-bit key and the 1024-bit key
because the 512-bit key uses 2 threads per server, while
the other two use 6 threads per server. Since the num-
bers given are the average per thread, the di�erences
between the 512-bit key and the 1024-bit key are actu-
ally quite large. For example, the 512-bit key requires
an average of 238 iterations overall (238 = 119 � 2),
while the 1024-bit key requires an average of 780 iter-
ations overall (780 = 130 � 6).

It is interesting to note that for a 1024 bit key the
number of primality tests is about a third of the num-
ber of iterations. Trial division up to 15000 is able to
eliminate two thirds of the candidates without a pri-
mality test. Normally, trial division is much more ef-
fective. However, due to the distributed sieving, the ef-
fect of trial division is diminished. Nevertheless, elimi-
nating two thirds of the candidates is signi�cant. Note
that, as expected, the e�ect of trial division is smaller
for the 2048 bit modulus (only 1 in 2 moduli are �l-
tered out by it).

Fixed key, varying conditions In Table 3 we �x
the key size to 1024 bits and study our system's behav-
ior under di�erent conditions. We generate a shared
key among di�erent numbers of servers: 3,4 and 5. All
servers run 6 threads.

Running time is measured when all communication
is sent in the clear and when SSL is used to secure
communication. Performance is measured over a wide
area network (WAN), and when all servers run on a
single machine. In all these experiments, the trial di-
vision bound is set as in the previous table. Again,
all measurements are in milliseconds unless otherwise
noted.

The �rst �ve rows show the results from running the
algorithm on di�erent numbers of servers, with and
without SSL enabled. Disabling SSL results in a small
increase in performance which grows as the number of
servers increases. Increasing the number of servers re-
sults in a substantial decrease in performance. This is
due to an increase in synchronization time, an increase
in the distributed sieving time, and an increase in net-
work tra�c. We note that the two extra servers used
for experiments with four and �ve servers are older
and much slower than the other three.

The line labeled \WAN" is especially interesting.
The three servers involved were two computers at
Stanford and one at the University of Wisconsin-
Madison. We have thus performed the �rst transconti-
nental, distributed RSA key generation. This takes an
average of about 5.7 minutes. We were stymied in our
wish to perform the �rst intercontinental, distributed
RSA key generation by US export laws.

E�ect of sieving To demonstrate the e�ectiveness
of distributed sieving we measured the algorithm's
running time on a single thread with di�erent siev-
ing bounds. Clearly, a larger sieving bound is better.
The results in Table 4 are the times for generating a
512-bit modulus on three servers with communication
protected by SSL. Sieving improves performance by
more than a factor of 10 for a 1024 bit modulus.

The table shows how sieving dramatically reduces
the number of iterations until a key is found. The
larger the number, the more e�ective sieving becomes.
Therefore, the key generation program automatically
�nds the largest acceptable sieving bound for each key
size, given the constraint that M < p (Section 4.1).

Multi-threading As discussed in Section 4.2, to
reduce the time wasted on synchronization it makes
sense to run multiple threads on each of the servers.
While one thread is waiting to synchronize with its
peers, other threads can execute. Table 5 shows that
running several threads in parallel results in a large
decrease in running time. As expected, each iteration
takes longer, but fewer iterations are required until
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Sieve BGW trial div. prime test time per total
SSL time time time time iteration time

3 Servers No 326 413 2.2 628 695 1.51 min
3 Servers Yes 362 83 2.3 637 697 1.51 min
4 Servers No 689 861 1.5 2035 1707 3.70 min
4 Servers Yes 804 1017 1.9 2173 1909 4.14 min
5 Servers Yes 1466 1731 1.9 2013 2589 5.61 min

WAN Yes 774 1012 6.3 1626 1704 5.69 min
Local No 263 334 2.7 1702 1014 2.20 min
Local Yes 267 337 3.3 1899 1115 2.42 min

Table 3: The e�ect of changing the number and locality of servers

Sieving trial div. prime test iterations total
time time time num time num time

Sieve 150 22.6 1.8 36.1 89 46.8 288 14.0 sec
Sieve 50 19.1 1.0 30.7 99 43.8 607 26.6 sec
No sieve N/A 1.4 34 149 11 10794 117.0 sec

Table 4: The e�ect of sieving on running time

BGW trial div. prime test iterations total
threads/serv. time time time time num time

one 46.5 2.2 201.3 319.5 1102 5.87 min
four 67.6 2.2 414.5 529.3 365 3.22 min
�ve 77.1 2.2 527.2 622.7 185 1.92 min
six 82.6 2.3 637.2 696.9 130 1.51 min

seven 87.5 2.5 810.8 781.4 129 1.68 min

Table 5: The e�ect of multiple threads
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one of the threads �nds a modulus. We generated the
1024-bit keys among three servers with SSL enabled.

Multithreading is most bene�cial when synchroniza-
tion takes a lot of time. This is most obvious in the
WAN trials and in the trials with 5 servers. When run-
ning these tests single-threaded, key generation was
very choppy; bursts of calculations were followed by
periods of waiting. When running multithreaded, key
generation proceeds smoothly, making much better use
of the servers' processors. On the WAN, generating
a 1024-bit key with a single thread took 26.5 min-
utes, while it took only 5.7 minutes using 6 threads
per server.

6 Robustness

Up until now we assumed all parties are honestly fol-
lowing the key generation protocol. For some appli-
cations it is desirable to make the protocol robust
against active adversaries that cheat during the pro-
tocol. Since the RSA function is veri�able (the par-
ties can simply check that they correctly decrypt en-
crypted test messages) active adversaries are limited
in the amount of damage they can cause. However, it
may still be possible that a party cheat during the pro-
tocol and consequently be able to factor the resulting
N . Similarly, a party can cheat and cause a non-RSA
modulus to be incorrectly accepted.

We describe a simple method for making our non-
robust protocol robust when the number of partici-
pants is small (e.g. less than ten). Consider the case
of four parties where at most one of them is malicious.
One can run the non-robust protocol until a candi-
date modulus N is found. At this point the protocol
is run four more times, once for each triplet of users.
In the �rst run, party 1 shares her values p1; q1 with
the other three parties by writing p1 = p02 + p03 + p04
and q1 = q02 + q03 + q04 where p0j ; q

0
j are random in-

tegers in the range [0; N ]. Party 1 then sends p0i; q
0
i

to party i for i = 2; 3; 4. Party i adds these values
to its own pi; qi. Next, parties 2; 3; and 4 run our
non-robust protocol among the three of them (ignor-
ing party 1). If the resulting N does not match the
N computed when all four parties were involved, or
if N turns out to not be an RSA modulus, the N is
rejected and the parties announce that one of them
is misbehaving. This experiment is repeated with all
four triplets { each time exactly one party is excluded
from the computation. Assuming at most one party is
malicious, the resulting N must be a product of two
large primes. Furthermore, the malicious party cannot

know the factorization of N since at no point in the
protocol does an honest party reveal any information
about it's share to another single party. This approach
enables the parties to detect cheating, but it does not
help in detecting the malicious party.

In general, when k parties are engaged in our non-
robust protocol, and c of them are malicious, the pro-
tocol can be made robust at the cost of

�
k
c

�
extra invo-

cations. The resulting computation is bk�c�1
2

c private.
Clearly this approach can only be applied as long as
both k and c are very small.

Recently, Frankel, MacKenzie and Yung [9] showed
how our protocol can be made to withstand bk�1

2
c ma-

licious parties. Their approach enables the parties to
detect and exclude the malicious party. In practice,
one could run our non-robust protocol until a modu-
lus N is found which is believed to be a product of two
primes. Then, the robust Frankel-MacKenzie-Yung
protocol can be used to determine that no majority
of parties cheated during the non-robust phase. For
more results on robust generation of shared RSA keys
see [2].

7 Conclusions

The goal of this paper is to demonstrate the e�ective-
ness of shared RSA key generation. Our optimized
implementation and timing measurements show that
distributed key generation is a viable method for gen-
erating shared RSA keys. Using three 333MHz PC's
on a 10Mbps Ethernet we were able to generate 1024
bit shared RSA keys in under 91 seconds. On a wide
area network, using servers across the US, we were able
to generate keys in under 6 minutes. These perfor-
mance �gures are achieved using a number of e�ective
optimizations and by multi-threading the key gener-
ation process. We hope these results can be used to
reduce the need for trusted dealers. Our code will be
made available on the project's web site.

We note that Spalding and Wright [16] previously
implemented a version of the Boneh-Franklin key gen-
eration algorithm. Their implementation simulates

the distributed environment on a single machine in
a single process. Consequently, the timing measure-
ments don't reect network latencies or the parallelism
obtained by multiple servers. Their implementation
does not use distributed sieving since the technique
was unknown at the time.

To obtain distributed key generation in under 91 sec-
onds we designed and implemented a number of prac-
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tical optimizations. The most signi�cant is distributed
sieving, which is responsible for a 10-fold improvement
in running time. Other optimizations take additional
advantage of the distributed environment.
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Appendix: Con�guration �le

All system con�guration parameters are located in one con�guration �le. This includes IP addresses of all servers
involved as well as type of RSA key to generate. To reduce administrative overhead, all servers use an identical
con�guration �le. We include an example con�guration �le.

;---------------------------------------------------

;--- Part 1: General configuration paratmers ---

;---------------------------------------------------

Num_Servers: 3

Threads: 4 ; Number of threads per server.

HomeDir: /ITTC/Log/

Word_Size: 32 ; 32 or 64 bits per word.

Log_Level: Notify ; Minimum priority of logged messages.

; Sieving and trial division bounds

Sieve: True

TrialDiv_End: 17800

Public_Key: 65537

Key_Length: Normal

; Possible key-lengths: Weak = 512 bits, Normal = 1024, Strong = 2048.

Test_Mode: False

;-------------------------------------

;--- Part 2: Server parameters ---

;-------------------------------------

; Server_Cert: location of server's certificate.

; Server_Key: location of server's private key.

; Server_Transport: Clear transport vs. SSL transport

Server_IP_Addr_0: saga3.stanford.edu

Share_IP_Port_0: 8713

Server_Cert_0: cert_s0.pem

Server_Key_0: key_s0.pem

Server_Transport_0: clear

Server_Sequence_File_0: seq0

Server_IP_Addr_1: cardinal4.stanford.edu

Share_IP_Port_1: 8713

Server_Cert_1: cert_s1.pem

Server_Key_1: key_s1.pem

Server_Transport_1: clear

Server_Sequence_File_1: seq1

Server_IP_Addr_2: epic2.stanford.edu

Share_IP_Port_2: 8713

Server_Cert_2: cert_s2.pem

Server_Key_2: key_s2.pem

Server_Transport_2: clear

Server_Sequence_File_2: seq2

Server_IP_Addr_3: amy5.stanford.edu

Share_IP_Port_3: 8713

Server_Cert_3: cert_s2.pem

Server_Key_3: key_s2.pem

Server_Transport_3: clear

Server_Sequence_File_3: seq2
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