
Fast-Track Session Establishment for TLS

Hovav Shacham Dan Boneh
hovav@cs.stanford.edu dabo@cs.stanford.edu

Abstract

We propose a new, “fast-track” handshake mechanism
for TLS. A fast-track client caches a server’s public pa-
rameters and negotiated parameters in the course of an
initial, enabling handshake. These parameters need not
be resent on subsequent handshakes. The new mecha-
nism reduces both network traffic and the number of round
trips, and requires no additional server state. These sav-
ings are most useful in high latency environments such as
wireless networks. We include a rollback mechanism to al-
low a server to gracefully revert to an ordinary TLS hand-
shake when needed. Our design is fully backwards com-
patible: fast-track clients can interoperate with servers
unaware of fast-track and vise versa. We have imple-
mented our proposal to demonstrate the savings in net-
work traffic and round trips.

1. Introduction

TLS is a widely deployed protocol for securing network
traffic. It is commonly used for protecting web traffic and
some e-mail protocols such as IMAP and POP. Variants
of TLS, such as WTLS [6], are used for securing wire-
less communication. In this paper we consider a modi-
fication to the TLS (and WTLS) handshake protocol that
makes the protocol more efficient in terms of bandwidth
and number of round trips. Improving the handshake pro-
tocol is especially relevant in bandwidth-constrained en-
vironments, such as wireless communications, where la-
tency is high and small payload transfers are common. We
hope that these extensions will promote the use of TLS in
high latency networks and discourage the development of
ad-hoc security protocols for such networks.
Recall that the TLS protocol [3] incorporates two types

of handshakemechanisms: a full handshake, and a resume
handshake protocol. The resume handshake protocol is
used to reinstate a previously negotiated TLS session be-
tween a client and a server. Compared to a full handshake,
the resume mechanism significantly reduces handshake
network traffic and computation on both ends. However, a

session can only be resumed if the old session is present in
the server’s session cache. Unfortunately, heavily loaded
servers can only store a session for a relatively short time
before the session is evicted from the cache. As a result, a
full handshake is often needed even though the client may
be willing to resume an old session.
In contrast, clients rarely connect to numerous TLS

servers, and could cache information about servers for a
longer time. We propose a new, “fast-track” handshake
mechanism for TLS that exploits this situation. The fast-
track mechanism improves the full TLS handshake pro-
tocol. Fast-track clients maintain a cache of long-lived
server information, such as the server certificate, and long-
lived negotiated information, such as the preferred cipher
suite. The long-lived cached information allows a reduc-
tion in handshake bandwidth: the handshake messages by
which a server communicates this information to the client
are obviated by the cache, and omitted from the fast-track
handshake. Moreover, the remaining messages are re-
ordered, so a fast-track handshake has three flows rather
than four. Hence, our fast-track mechanism reduces both
network traffic and round trips in the TLS handshake pro-
tocol.
By a flow we mean an uninterrupted sequence of mes-

sages from one participant in a connection to the other.
An ordinary TLS handshake has four flows; our fast-track
handshake has three. Because of the design of the TLS
protocol, multiple consecutive handshake messages can
be coalesced into a single TLS transport-layer message.
Thus, when network latency is high, a savings in flows
can translate into a savings in time.
The use of fast-track, along with the particular fast-track

parameters, is negotiated between clients and servers by
means of TLS extensions [1]. Care is taken to ensure inter-
operability with non-fast-track clients and servers, and to
allow graceful fallback to ordinary TLS handshakes when
required.
The use of fast-track session establishment gives sav-

ings in handshake bandwidth and flows, but does not pro-
vide a significant computational speedup relative to ordi-
nary TLS handshakes. It is most useful for bandwidth-
constrained, high-latency situations, and those in which
application message payloads are small. Thus fast-track,



ClientHello
ServerHello
Certificate

ServerKeyExchange
CertificateRequest
ServerHelloDone

Certificate
ClientKeyExchange
CertificateVerify
[ChangeCipherSpec]
Finished

[ChangeCipherSpec]
Finished

Figure 1. TLS Handshake Message Diagram

via a relatively simple, and fully backwards-compatible
change to the TLS protocol, improves performance and
makes TLS more usable in wireless environments. Client-
side caching could be applied to other mainstream security
protocols to yield similar results.
We enumerate the long-lived, cacheable items and de-

scribe the manner in which they are used in Section 3. We
discuss some design criteria in Section 4. We describe the
fast-track handshake protocol in Section 5. We then dis-
cuss performance, implementation, and security consider-
ation in Sections 6, 7, and 8. Finally, we briefly consider
other client-side caching strategies for TLS in Section 9.

2. TLS handshake overview
A TLS handshake has three objectives: (1) to negotiate

certain session parameters; (2) to authenticate the server
to the client, and optionally the client to the server; and
(3) to establish a shared cryptographic secret. The ses-
sion parameters include the protocol version, the cipher
suite, and the compression method. Authentication makes
use of a certificate-based public key infrastructure (PKI):
servers and clients identify themselves through certificate
chains terminating in well-known Certification Authority
(CA) certificates.
The standard TLS handshake is summarized in Fig-

ure 1. Messages sent by the client are on the left; by
the server, the right. Messages appearing in slanted type
are only sent in certain configurations; messages in brack-
ets are sent out-of-band. The handshake proceeds, in four
flows, as follows.
A client initiates a handshake by sending a ClientHello

message. This message includes a suggested protocol ver-
sion, a list of acceptable cipher suites and compression
methods, a client random value used in establishing the
shared secret, and (when TLS extensions [1] are used)
other extension-specific parameters.
The server replies with a ServerHello message, which

ClientHello
ServerHello

[ChangeCipherSpec]
Finished

[ChangeCipherSpec]
Finished

Figure 2. Message Diagram for a TLS Ses-
sion Resume

selects a protocol version, cipher suite, and compression
method, and includes the server random, and extension-
specific parameters. The server then sends its certificate
chain in the Certificate message. In certain cases, it sends
a ServerKeyExchange message with additional informa-
tion required for establishing the shared secret. (For ex-
ample, the 512-bit export-grade RSA key for RSA export
key-exchange.) If the server wishes that the client authen-
ticate itself, it sends a CertificateRequest message listing
acceptable certificate types and CA names for the client’s
certificate chain. Finally, it sends a ServerHelloDonemes-
sage to signal the end of the flow.
If the server requests client authentication, the client be-

gins its response with a Certificate message that includes
its certificate chain, and after the ClientKeyExchangemes-
sage, a CertificateVerify message that includes its signa-
ture on a digest of the handshake messages to that point.
The ClientKeyExchangemessage includes the information
necessary to determine the shared secret. (For example, in
RSA key exchange, it includes the encryption of a “pre-
master secret” that is used to calculate the secret.)
Finally, the client sends a ChangeCipherSpecmessage

(which is not a handshake message), signaling its switch
to the newly-negotiated parameters and secret key, and
sends an encrypted and compressed Finishedmessage that
includes a digest of the handshake messages.
The server, in its turn, also sends a ChangeCipherSpec

message and a Finished message that includes a digest of
the handshake messages (up to the client’s Finished mes-
sage). After this, the client and server can exchange appli-
cation data over the encrypted, authenticated, and possibly
compressed link that has been established.
A server can identify a particular connection by a “ses-

sion ID,” a field in the ServerHello message. By mutual
consent, a client and server can resume a connection. The
client includes the ID of the session it wishes to resume
in its hello message, and the server accepts by including
the same ID in its hello. The client and server proceed
directly to the ChangeCipherSpec and Finishedmessages
(with the previously-agreed-uponparameters and secrets).
This exchange is summarized in Figure 2.
Relative to establishing a new session, resuming a

previously-negotiated session saves bandwidth, flows, and



computation (since the handshake’s expensive crypto-
graphic operations are avoided). However, heavily loaded
servers typically keep session IDs in their session cache
for only a relatively short while.
We note that our fast-track optimization only applies to

the full handshake protocol (not the session resume hand-
shake). Hence, fast-track is most effective in environ-
ments where short lived TLS sessions are common so that
frequent handshakes are not resumes.

3. Cacheable handshake parameters
The savings we achieve through fast-track depend on a

client’s caching certain long-lived handshake parameters.
“Long-lived,” in this context, means, first, that they do
not change between handshakes (as does, e.g., the server-
random), and, second, that they are expected not to change
except when either the server or client is reconfigured. A
client collects these parameters in the course of an ordi-
nary TLS handshake. In the course of a fast-track hand-
shake, it uses these parameters to craft its messages.
The particular values which a client uses in a fast-track

handshake are called the determining parameters for that
connection. A server uses information in the client hello
message and its own configuration to come up with its
own version of the determining parameters for the con-
nection. The two versions must match for the handshake
to be successful. Therefore, a fast-track-initiating hello
message includes a hash of the determining parameters to
allow the server to check this, as described in Section 5.2.
The long-lived parameters fall into two general cate-

gories: (1) those that are features of the server’s config-
uration alone, and (2) those that properly depend on the
interaction of the server’s configuration with the client’s.
In the first category, we include:

The server’s certificate chain;

The server’s Diffie-Hellman group, if any; and

Whether client authentication is required; if so,

– Acceptable client certificate types; and
– Acceptable certificate authorities.

These features of a TLS server’s configuration are as-
sumed to change infrequently and thus to be capable of
being cached on the client.
In the second category, we include parameters such as:

The preferred client-server cipher suite; and

The preferred client-server compression method.

(The cipher suite comprises a key-exchange algorithm, a
bulk encryption algorithm, and a MAC algorithm.) These

are a function of both the server and client configurations,
and are negotiated in a TLS handshake: the client pro-
poses a list for each, and the server chooses.
A client in possession of the above information knows

enough to be able to compute a key-exchange message,
without any additional input from the server (with one ex-
ception discussed below). It is this fact that allows the
reordering of the handshake messages.
To participate in ephemeral Diffie-Hellman (EDH) key

exchange, a client needs to know the group modulus and
generator relative to which the Diffie-Hellman exchange
will operate. The description of this group is part of the
ServerKeyExchangemessage when EDH is used. It is as-
sumed that the server will not often change its EDH group,
so a fast-track client can cache the group parameters and
use them to send a ClientKeyExchange message during
a fast-track handshake. By contrast, a server employing
temporary RSA keys for key exchange, in the RSA “ex-
port” cipher suites, will typically change its export RSA
key quite often. The temporary RSA key, which a client
would need for its fast-track key exchange, can be cached
only briefly. Accordingly, fast-track explicitly does not
support RSA export authentication. Since the RSA export
mechanism is being phased out, this does not seem like a
serious constraint.

4. Design considerations
With significant deployment of legacy TLS clients, in-

compatible changes to the protocol are unlikely to be
accepted. Accordingly, fast-track’s design emphasizes
interoperability and backwards-compatibility. Fast-track
clients and servers must be able to interoperate with TLS
servers and clients not capable of using fast-track; they
must be able to discover which peers are capable of fast-
track; and they must recover gracefully when configu-
rations have changed, falling back on the ordinary TLS
handshake protocol.
Through the use of TLS extensions [1], a client and

server can, in an ordinary TLS handshake, negotiate the
future use of fast-track. A subsequent fast-track con-
nection uses another extension to allow the client and
server to ascertain their both using the same unsent, client-
cached parameters. Since a client must suggest, and a
server must assent to the use of fast-track, the likelihood
of a client’s attempting to initiate a fast-track connection
with a non-fast-track server is minimal.
If a client does attempt to initiate a fast-track connec-

tion with a non-fast-track server, it is important that it be
alerted of its mistake quickly. A fast-track handshake is
initiated through a message that TLS servers not imple-
menting fast-track would reject as invalid. This minimizes
confusion resulting from such a mismatch. For servers
aware of fast-track, but not wishing to use it, we include



a rollback mechanism to allow a server to gracefully re-
vert to an ordinary TLS handshake if its configuration has
changed.

5. The fast-track handshake
In this section, we describe the actual fast-track hand-

shake protocol. There are two distinct phases. First, in the
course of an ordinary TLS handshake, a client and server
negotiate and agree on the future use of fast-track, and the
client collects the parameters that will allow it to make
that future handshake. Next, the client initiates a fast-track
handshake with the server, using the determining parame-
ters from earlier.
Fast-track also defines a mechanism whereby the server

can deny the fast-track; it would do so, for example, when
its configuration has changed, rendering the client’s deter-
mining parameters obsolete. This mechanism is also used
for session resumes.

5.1. Negotiation of fast-track
A client wishing to engage in a fast-track handshake

with a server must first determine whether that server is
capable of (and willing to use) fast-track. This is not a
problem, since the client must also have completed an or-
dinary handshake with the server to have obtained the in-
formation it needs for the new, fast-track handshake.
The TLS Extensions mechanism [1] provides the ma-

chinery for the negotiation. A client proposing the pro-
spective use of fast-track includes the fasttrack-capable
extension in its hello; a server assenting to the prospec-
tive use includes the same extension in its hello. Such a
handshake is referred to as “enabling.”
Servers might be reconfigured to disable fast-track, and

clients should be alerted of the configuration change as
soon as possible; preferably, before they undertake the
computationally-heavy early steps of the fast-track hand-
shake.
Accordingly, a client is expected to include in each of its

handshakes the fasttrack-capable extension, and attempt a
fast-track handshake with a server only if their most recent
successful handshake was an enabling one. (Per the spec-
ification, the extensions governing a resumed session are
those negotiated in the original handshake for that session;
a successful resume is therefore not considered a hand-
shake for this purpose.)

5.2. Fast-track
To engage in a fast-track handshake, the client and

server must agree on certain determining parameters (see
Section 3). The client obtains these from a previous, en-
abling handshake. But it and the server must make sure
that they expect to use the same parameters. Fast-track

ClientHelloFT fasttrack-hash
Certificate
ClientKeyExchange

ServerHelloFT
ServerKeyExchange
[ChangeCipherSpec]

Finished
CertificateVerify
[ChangeCipherSpec]
Finished

Figure 3. Message Diagram for an Accepted
Fast-Track Handshake

ensures this as follows. As part of its fast-track hello mes-
sage, a client must include, in the fasttrack-hash extension,
the SHA-1 hash of the determining parameters. The server
builds its own version of the parameters, and ensures that
the hashes match.
Suppose a client initiates a fast-track handshake, and in-

cludes in its hello message both the fasttrack-capable ex-
tension and the fasttrack-hash extension, accompanying
the latter with a hash of what it thinks are the determining
parameters for the handshake. If the server’s configura-
tion has changed, but it still wishes to engage in fast-track
in the future (with the new, correct parameters), it ought
to deny the fast-track, but include the fasttrack-capable
extension in its (ordinary) hello message. If, instead,
the server’s configuration has changed, and it no longer
wishes to engage in fast-track in the future, it ought to
deny the fast-track, and ought not to include the fasttrack-
capable extension in its hello.
The fast-track handshake is summarized in Figure 3.

The notation is that employed in Figures 1 and 2, above.
Note that the ClientHelloFT message must include the
fasttrack-hash extension with a hash of the determining
parameters; this requirement is indicated in the first line
of the figure.
The exchange omits the server Certificate, Certifi-

cateRequest, and ServerHelloDone messages, and re-
quires three flows rather than four. In an ordinary TLS
handshake, the server has the last handshake flow; here,
the client does. If the client sends the first application
data— the typical situation— the savings in flows is mag-
nified, since the client’s first application-data flow can be
coalesced with its last handshake flow.
The fast-track handshake calls for a nontrivial reorder-

ing of the TLS handshake messages. If a client were
accidentally to attempt it with a server entirely unaware
of fast-track, the client and server might entirely befud-
dle one another. In keeping with the design goal that the
client and server should discover as expeditiously as pos-
sible whether fast-track is appropriate, the fast-track client



ClientHelloFT fasttrack-hash
Certificate
ClientKeyExchange

ServerHello
Certificate

ServerKeyExchange
CertificateRequest
ServerHelloDone

Certificate
ClientKeyExchange
CertificateVerify
[ChangeCipherSpec]
Finished

[ChangeCipherSpec]
Finished

Figure 4. Message Diagram for a Denied
Fast-Track Handshake

hello is made a different message type—ClientHelloFT
rather than ClientHello—although the two message types
have an identical format. A TLS server that is not aware
of fast-track will alert the client immediately to the unex-
pected message type.
The client has enough information to create its key-

exchange message without any additional server input, so
this message can be sent in the first flow. Once the server
has sent its server-random (in its hello) and potentially
its key-exchange message, both sides have enough infor-
mation to calculate the master secret and change cipher
suites. The client must wait until it has seen a message
from the server before sending its CertificateVerify mes-
sage, to avoid replay attacks.

5.3. Denying fast-track

A server need not agree to engage in a fast-track hand-
shake, even if it had previously assented to one through the
fasttrack-capable extension. Fast-track includes a mecha-
nism whereby the server denies an in-progress fast-track
handshake, and the client and server revert to an ordinary
handshake negotiation.
A server denies fast-track by responding to the client’s

first flow with a ServerHellomessage rather than a Server-
HelloFT. Its response should be as though the client had
initiated the connection through a ClientHello message
with the same body as that of the ClientHelloFTmessage it
actually had sent (except without the fasttrack-hash exten-
sion). From that point on, the parties carry on an ordinary
TLS handshake, conforming to the rules given in the TLS
specification. The other messages sent by the client as
part of its first flow are ignored by both parties, and are
not included in any handshake message digests.
Figure 4 presents the messages exchanged when fast-

ClientHelloFT fasttrack-hash
Certificate
ClientKeyExchange

ServerHello
[ChangeCipherSpec]

Finished
[ChangeCipherSpec]
Finished

Figure 5. Message Diagram for a Session
Resume, with Fast-Track Denied

track is denied. The notation is the same as employed
in Figure 3, with the additional convention that messages
printed with strike-through are not included in any hand-
shake digests.
Finally, a server can deny fast-track but proceed with

a session-resume if it wishes, and if the client sent a
nonempty session-id in its fast-track hello message. Fig-
ure 5 gives the message flow in this case, using the
same notational conventions as the previous figures. Ses-
sion resumption provides less of a performance gain to
fast-track clients, since they will have already engaged
in the time-consuming ClientKeyExchange calculations
when the server accepts the resume.

6. Performance considerations

The fast-track handshake mechanism reduces the proto-
col’s communication requirements and round trips but has
little effect on CPU load. We briefly discuss fast-track’s
effect on CPU load for both servers and clients A more
extensive analysis of the performance of standard TLS in
the Web environment is available [2].
The performance of servers employing fast-track is

comparable to that of ordinary servers. Servers avoid
sending as many as three messages (Certificate, Certifi-
cateRequest, and ServerHelloDone), but none of these in-
volves any computationally-intensive operation; contrari-
wise, fast-track servers must verify the SHA-1 hash of the
determining parameters.
Performance of fast-track clients is slightly improved,

with a proper implementation. For example, once a client
has validated a server’s certificate chain, it need not reval-
idate it in the course of a fast-track handshake. Indeed,
once it has computed the determining parameters hash
which will later be sent to the server, the client may choose
to discard the chain, maintaining only the server’s public
key. Thus, in a fast-track handshake, a client avoids the
signature verifications of an ordinary handshake, with a
long-term space overhead of only a few hundred bytes for
the server key.



RFC 2246 Fast-Track Savings
TLS RSA WITH 3DES EDE CBC SHA

Client 322 291 10%
Server 1187 130 89%
Total 1509 421 72%
TLS DHE RSA WITH 3DES EDE CBC SHA
Client 285 245 14%
Server 1461 404 72%
Total 1746 649 63%

Table 1. Handshake Bytes Sent for TLS Key
Exchange Methods; No Client Authentica-
tion

7. Implementation

We have modified OpenSSL 0.9.6a to negotiate and
perform fast-track handshakes. Since OpenSSL does not
currently support TLS extensions, our implementation in-
stead used TLS’ version negotiation scheme: fast-track-
capable clients and servers speak the fictitious TLS “Ver-
sion 1.1.”
We summarize our observed savings in bandwidth be-

low. Aside from the bytes-sent measurements, our im-
plementation also maintains the savings in flows that fast-
track provides over ordinaryTLS handshakes: three flows,
rather than four.
Table 1 presents the number of bytes written across

the wire by the client and by the server in both
a standard (RFC 2246) TLS handshake [3], and a
fast-track handshake. The first cipher suite, called
“TLS RSA WITH 3DES EDE CBC SHA” in RFC 2246
(and called “DES-CBC3-SHA” in OpenSSL), uses RSA
for key exchange. It does not require a ServerKeyEx-
change message to be sent. The second cipher suite,
“TLS DHE RSA WITH 3DES EDE CBC SHA” (called
“EDH-RSA-DES-CBC3-SHA” in OpenSSL), employs
Ephemeral Diffie-Hellman (EDH) for key exchange,
with RSA authentication. A handshake using this cipher
suite requires the server to send a ServerKeyExchange
message. At present, EDH-based key exchange is not
widely deployed in TLS environments, though support for
it has been added in some recent browsers; accordingly,
the first of the two settings in Table 1 is by far the more
common.
The data in Table 1 show quite clearly that, in typical

situations, the bandwidth cost of a TLS handshake is dom-
inated by the server certificate chain. The server’s key
exchange message, when sent, is also a significant com-
ponent. Note that the server here sends only its own cer-
tificate. Since the client must already have a copy of the
self-signed CA certificate to assess the server’s creden-

RFC 2246 Fast-Track Savings
TLS RSA WITH 3DES EDE CBC SHA, client auth
Client 2519 2488 1%
Server 1196 130 89%
Total 3715 2618 30%
TLS DHE RSA WITH 3DES SHA, client auth

Client 2482 2442 2%
Server 1472 404 73%
Total 3954 2846 28%

Table 2. Handshake Bytes Sent for TLS Key
Exchange Methods; Client Authentication
Required

tials, the CA certificate need not be transmitted. (This is
permitted by the TLS specification [3, 7.4.2].)
Although the savings in bandwidth generated by the

server is substantial, the savings in client bandwidth is
quite modest. In fact, our implemented client does not
(yet) send the determining-parameters hash to the server.
These additional 22 bytes of extension to the client hello
(required in a fully-conforming fast-track implementa-
tion) would largely negate the savings in client bytes-sent
evident in Tables 1 and 2. The savings in server bytes-sent
is unaffected. This underscores that, since fast-track does
not assume a server-side cache, it can do little to reduce
the information that a client must supply during a hand-
shake. (The client bytes-sent savings are largely at the
TLS transport layer, where the reduced number of flows
allows greater consolidation of messages.)
Table 2 presents data in the same format as in Table 1,

but in which the server requires that the client authenti-
cate itself. Here, the dominant component is the client’s
certificate chain. Unlike the server, the client does send
the CA certificate along with its own.
The limited gains in bytes-sent seen in Table 2 again re-

flect fast-track’s inability to do away with the sending of
client information to the server. The specific problem of
client certificates can be alleviated via a different mech-
anism, complementary to fast-track: the TLS Extensions
document defines a client-certificate-url extension [1, 3.3].
With this extension, a client sends the URL where its cer-
tificate may be found, along with a hash of the certificate,
rather than the certificate itself.
The number of bytes which a server writes depends on

its certificate chain; similarly for a client when client au-
thentication is required. Since certificates vary in length,
a limit is placed on the accuracy of bytes-sent measure-
ments. This limit is made more severe by the presence
at several points in the TLS handshake of arbitrary-length
lists: the client’s supported cipher suites; the client’s sup-



ported compression methods; and the server’s acceptable
certificate types and acceptable CA names (for client au-
thentication).

8. Security analysis
In this section we argue that fast-track is no less secure

than the ordinary TLS handshake protocol. Unfortunately,
a formal argument about the security of fast-track as a
handshake protocol is extremely difficult, especially in the
absence of a comprehensive formal analysis of TLS [4].
Nor is a rigorous reduction of fast-track security to TLS
security feasible – the message order is changed between
the two protocols, so an attacker on one would not nec-
essarily be able to create messages for the other without
breaking the hash functions used in the finished-message
digests. In light of these limitations, we present common
arguments about the security of fast-track.
Fast-track is negotiated in the course of an ordinary TLS

handshake, using the fasttrack-capable extension (Sec-
tion 5.1). The extension itself contains no sensitive data,
and the negotiation is protected by the same mechanisms
that protect other negotiated extensions.
A client should store determining parameters for use

in a future fast-track handshake only after verifying that
the server has a valid certificate, and the parameters come
from an ordinary handshake, so these parameters should
not be open to tampering. Furthermore, if the client and
server determining parameters differ, the mismatch will be
detected in the course of the handshake, since some mes-
sages will be incomprehensible. Thus, determining pa-
rameter mismatch is not a security problem, and the SHA-
1 hash should be sufficient to provide collision-resistance
for robustness. (The exception is if the client has obtained
an adversary’s certificate for the server’s distinguished
name, a situation that could allow for a man-in-the-middle
attack. But this would require a compromise of the public
key infrastructure.)
All the same information exchanged in a standard hand-

shake is exchanged in a fast-track handshake, except for
the determining parameters, for which a cryptographic
hash is exchanged. The handshake digest hashes in the
Finished messages should thus provide the same security
as in ordinary TLS.
The ordering of the server and client Finishedmessages

is opposite of that in ordinary TLS handshakes, but TLS
session resumes also use this reversed ordering.
The server response message (ServerHello or Server-

HelloFT) is included in the final hashes regardless of
whether fast-track is denied, so rollback attacks should be
impossible.
The only message not verified by both the client and

server finished-message hashes is the client CertificateV-
erifymessage. It is included in the client finished-message

hash, so the server should be able to detect its having been
modified and abort the connection.
In any case, the client certificate itself is included in

both finished-message hashes, and is presumably no more
open to tampering than in an ordinary TLS handshake.
The client CertificateVerify message contains only a sig-
nature with the certificate’s key, so opportunities for mis-
chief through its modification are limited.

9. Other client cache strategies
It was noted earlier that fast-track is a strategy for ex-

ploiting client-side caching to reduce handshake over-
head. There are other possible strategies.
One can keep actual session information on the client

side, encrypted—perhaps with a secret server symmetric
key— to defeat tampering. A client could later send the
encrypted information to the server, initiating what might
be termed a client-side session resume.
There are limitations to this approach. TLS servers

usually agree to resume only sessions that satisfy certain
properties. For example, OpenSSL refuses to resume ses-
sions that were not properly shut down. A client-side re-
sume scheme would have to be designed so the client does
not obtain a session ticket until the server is convinced
that it is willing for that session to be resumed. (The TLS
specification also recommends that sessions persist for no
longer than twenty-four hours, to limit the damage from a
compromise of the session’s master secret.)
It should be possible, however, for a TLS server to

maintain a cache of resumable session IDs, while obli-
gating the client to hold on to an opaque ticket that con-
tains the remainder of the information the server maintains
about sessions.
If the initial handshake were unsatisfactory, the server

could drop the session ID from its cache, and refuse a
subsequent client-side resume even though the client had
a supposedly valid ticket.
This approach essentially uses the client as secondary

storage for the server’s session cache, which is made to
take less storage.

10. Conclusions
We proposed an improvement to the TLS handshake

protocol that makes TLS easier to use in bandwidth-
constrained environments. Our improvement is based on
a fast-track handshake mechanism that exploits a small
session-cache on the client. In a fast-track handshake
there is no need to transmit server parameters such as
the server certificate and preferred cipher suite. This en-
ables us to reorder the messages in a fast-track handshake
and effectively save two round trips. Hence, the fast-track
handshake saves both network traffic and round trips over



the standard full TLS handshake protocol. The reduction
in number of round trips speeds up TLS session estab-
lishment in high latency networks. Overall, fast-track is a
simple addition to TLS that makes it more friendly to use
in constrained environments.
We implemented our proposal in a backwards compati-

ble design. If either the client or the server does not sup-
port fast-track or do not wish to use fast-track they can re-
vert to the standard full TLS handshake. Our experiments
show that fast-track can save up to 72% of the handshake
traffic. Our prototype implementation of fast-track and In-
ternet draft are available for download [5].

Acknowledgments
We thanks Dan Simon and DanWallach for helpful con-

versations about this paper. This work was partially sup-
ported by an NSF CAREER grant.

References
[1] S. Blake-Wilson, M. Nystrom, D. H. J. Mikkelsen, and

T. Wright. TLS Extensions. Internet-Draft: draft-
ietf-tls-extensions-01.txt, Sept. 2001. Work
in progress.

[2] C. Coarfa, P. Druschel, and D. Wallach. Performance Anal-
ysis of TLS Web Servers. In Proceedings of NDSS ’02,
2002.

[3] T. Dierks and C. Allen. RFC 2246: The TLS Protocol, Ver-
sion 1, Jan. 1999.

[4] J. Mitchell, V. Shmatikov, and U. Stern. Finite-State Anal-
ysis of SSL 3.0. In Seventh USENIX Security Symposium,
pages 201–216, 1998.

[5] H. Shacham and D. Boneh. TLS Fast-Track Session
Establishment. Internet Draft: draft-shacham-tls-
fasttrack-00.txt, Aug. 2001. Work in progress.

[6] Wireless Application Forum. Wireless Transport Layer
Security Specification. http://www.wapforum.org,
2000.


