
Fighting Spam by Encapsulating Policy in Email Addresses

John Ioannidis
ji@research.att.com

AT&T Labs – Research

Abstract

Everyday network interactions require users to give out
their email address, yet no guarantees can be made about
how this address will be used. Sometimes the address is
given to a human (e.g., on a business card), but many
times it is entered in a web form as part of a web trans-
action. Unfortunately, that email address frequently finds
itself in spammers’ lists, never to be removed again. We
propose the concept of the Single-Purpose Address (SPA);
SPAs are generated by a program, and then cut-and-
pasted into the web page (or other application) requesting
an email address. In its more general form an SPA en-
codes a security policy that describes the acceptable use
of the address; since senders cannot be trusted to abide by
it, this policy is enforced by the receiver, who generated
the policy in the first place. SPAs are cryptographically
protected to shield them from tampering. Since SPAs are
not meant to be typed by humans, but rather processed by
computer only, they do not have to be short, memorable,
or even pronounceable. We present ways to construct such
addresses, and we show the implementation of an opti-
mized case.

1. Introduction

Unsolicited commercial email (“spam”) is everywhere.
Much effort is being spent to curtail it, and no arguments
need to be offered here as to why spam is undesirable.
While there is no perfect solution in sight, decreasing ex-
posure and increasing the trouble that a spammer has to go
through to send unsolicited email seems to be an accept-
able approach. If only a small number of users employ
these methods, it will not be worth it for the spammers to
try to work around them; if many people start using them,
the cost to the spammers of working around so many pro-
tections may make it financially unrewarding to engage in
their practices.

The life-cycle of spam starts with our making our
email address known by giving it out to individuals,
subscribing to mailing lists, posting on Usenet or other

on-line discussion media, entering it on web forms
when conducting web-based transactions, and so on.
Sometimes the email address we give out needs to be
parsable by humans; that is the case with email ad-
dresses we give to friends, colleagues, business asso-
ciates, and other people we interact with personally. In
many more cases, it is irrelevant if an address is sim-
ple and readable (e.g., ji@att.com) or completely obscure
(e.g., VP72W24KM7IH7FT4O@fufutos.gr). These are
the cases when the address is not processed by a real per-
son (that is, read and then typed in in the course of every-
day transactions), but instead is passed between databases.
It is precisely then where it is important to be able to limit
the use of an address we gave out to just the purposes for
which it was given out. It is generally believed that most
spammers collect new email addresses by scanning on-
line postings, and by buying or otherwise acquiring lists of
customer or personnel addresses. In all of these cases, the
readability of the address matters little, since no human
typist is involved. It can even be argued that, with mod-
ern mail user agents (MUAs) offering sophisticated GUIs
allowing users to select addresses based on attached real
names rather than actual email addresses, and also people
exchanging virtual business cards by pointing their PDAs
at each other, even humans may not need to be able to read
and remember an email address.

We can see the following broad (and usually overlap-
ping) categories of email address exposure:

1. Person-to-person, where communication is explicitly
invited.

2. Online presence, where communication by readers of
the online material is welcome, at least for a while.

3. Electronic transactions, where communication is
only desired when initiated by the other parties in-
volved in the transaction.

In the first case, where we give our address to a human,
we want that address to work for a long time, perhaps for-
ever, but we would ideally want only that person to be able
to send mail to it. This may be feasible if we employ some
electronic means of giving out the address (more email, a



PDA), but is probably impossible in the general case for
email addresses printed on business cards, for example.

The address-on-the-card is just a special case of the
second type of address exposure; it is similar in na-
ture to putting in on a research paper such as this
one, posting on Usenet, and so on. For example, if I
had given my email address on the title page as jiRE-
MOVE@THE.research.CAPS.att.com, any human reading
the paper would immediately figure out how to send me
email, but a web crawler getting the electronic version
might have a harder time. Many such address obscuring
techniques are employed; we list some of them in Sec-
tion 5. The problem here is that, in some venues, we may
want the address to work indefinitely, whereas in other
cases we want it to have a limited lifetime; either way, we
cannot restrict who the sender will be, except that we hope
that, by obscuring it, they will be a human.

Let us now examine the third case. In many situations
of conducting business over the web, we only care that
the corresponding party be able to contact us for a lim-
ited amount of time; moreover, we want only the organi-
zation we are giving our address to to be able to contact us,
and not anyone they pass it on to. This is both to prevent
said party from sending advertising material in the future
(which most online vendors do, despite assurances to the
contrary), and to prevent abuse of the supplied address by
third parties that, with or without the coöperation of the
merchant, acquire our email address. Thus, the two main
features required of email addresses in these situations are
that they stop working after a certain date, and also that
they only work for specific senders.

An easy approach would be to create throw-away email
aliases, give those out, and not check mail sent there af-
ter a while to the ones we consider to be single-use or
limited-time-use only. It is easy to see that such an ap-
proach has huge logistical overheads. Also, most Inter-
net users do not run their own mail servers, and creat-
ing aliases at a moment’s notice is not an easy option for
them; the username+extension convention1 can be used
as a form of alias in this case. After an alias has reached
the end of its desired lifetime, a filter rule in a feature such
as procmail can be used to reject the alias from then on.
Evidently, procmail can also be used to restrict who the
allowed sender for that particular alias is. An unfortu-
nate problem with this approach is that many web servers
do not accept email addresses containing a + sign. Also,
since the part before the + sign is still presumably a valid
address, the next generation of spamming software would
simply remove whatever followed the + and send to the

1In most email systems, sending mail to user+extension@domain de-
livers the mail to a “mailbox” named extension for user@domain. The
mailbox can be a separate mail file, or can simply be a marking of the
mail message indicating that it is for that particular mailbox.

base account.
Many other ad hoc solutions can be proposed, and all

of them have the problem that the size of the alias list
and the size of filtering rules grow without bound, since
entries can never be removed. What we propose instead
is to encode rules as part of the email address, and do it
in such a way that the potential senders cannot alter these
rules without at the same time invalidating the alias. These
rules are applied when email to the address is received.
This way the user does not have to store any per-address
rules locally or keep track of multiple email addresses.
In Section 2 we describe the general way to accomplish
this goal; in Section 3 we present the implementation of a
common case; we discuss further aspects of the system in
Section 4. We conclude with related and future work.

2. SPA Architecture

Figure 1 shows the players in the SPA system. Users
create SPAs which they give to correspondents. When
correspondents send email back to users, either the user’s
MTA (Mail Transport Agent) and/or the user’s MUA
(Mail User Agent) check the email against the policy rules
encoded in the address, and deliver it, bounce it, or discard
it accordingly. This, of course, is a very simplified view
of the mail delivery process; it does not take into account
the possibility that a remote mail access protocol such as
POP3[13] or IMAP4[8] is used. We shall discuss these
cases in Section 4.

spain
user

user’s
mbox

correspondent

MTA 

spagen

procmail

Figure 1. Give address get mail.

The core idea is that whenever an email address is
handed out, rules about its use are encoded in the address
itself. The correspondent cannot, of course, be trusted
to obey these rules; the rules are enforced by the MTA
and/or the MUA when mail is sent to that address. The
correspondent may also attempt to tamper with the struc-
ture of the SPA in an effort to cause a message to be de-
livered when it should not be; thus, SPAs should contain
information that allows their integrity to be verified. Fur-
thermore, there is no reason to divulge any information
about a user’s policy to the correspondent; the address
must therefore be encrypted under a key known only to
the agents who generate the SPA (the user) and the agents



who must process the message when it is received (the
MTA and/or the MUA).

The requirements for the system we are building are:

� Any user should be able to set it up with little or no
explicit support from the mail administrators.

� Users should not have to get their own domain
names, or manage their own mail servers.

� The addresses should look like ordinary (if unpro-
nounceable) email addresses to correspondents.

2.1. Structure of Single-Purpose Addresses

The SPA consists of two parts: an indication of the
addressee, and an appropriately-encoded description of
the policy that will be applied when the message is re-
ceived. The addressee can simply be identified by his
username, with the policy part given as the extension as
in the user+extension convention. Since presumably the
“naked” (with no extension) main address of the user
would still be valid, it is recommended that users who
want to use SPAs get a second address (or an alias), and set
up their systems so that mail to the naked second address
is rejected. We shall discuss this more in Section 3.2.

The policy is a set of rules that encode the conditions
under which the sender’s email is allowed to be deliv-
ered to the user or not, and what corresponding actions
should be taken. This definition of policy is much like
in one in trust management systems[7, 11]. A policy
could be as simple as “this email address expires on
March 20th, 2003”, or as complicated as “accept this
mail between January 30th, 2003 and March 20th, 2003,
and only if the user is sending it from some machine in
cs.miskatonic.edu; if accepted, forward the mail to sel-
don@trantor.gov.” What is expressible is limited by the
richness of the policy definition language, and how com-
pactly it can be encoded. The SMTP specification[14, 10]
does specify a 64-character size for usernames, but mod-
ern mailers seem to support much longer addresses. No
one is expected to type in such addresses; remember that
SPAs are meant to be generated by a program and cut-and-
pasted into web forms or other such places.

Evidently, email headers are not authenticated in the
normal course of events, hence no guarantees can be made
about their validity. It is not the objective of our system
to supplant secure email; rather, it is one more tool in the
spam-fighter’s toolbox. The one part in the SPA that can
be trusted is the expiration date, and that is because it is
checked against the receiver’s notion of time, who decided
on the expiration date in the first place. This also avoids
the need for synchronized clocks between sender and re-
ceiver. The SPA has to be protected against tampering by
the correspondent, and even against examination, so that

headers cannot automatically be faked to match the pol-
icy in the address. Once the set of policy rules has been
assembled, it is MAC-ed and encrypted under (symmet-
ric) keys known only to the user creating the SPA (and
subsequently receiving mail sent to the SPA, of course).
The details of cipher selection are beyond the scope of
this paper, but we do justify our implementation selections
in Section 3.1. Care must be taken so that individual bit
changing or splicing attacks do invalidate the MAC.

The output of the encryption is a string of random-
looking bits, and as such it is not suitable for use as an
email address. It must therefore be encoded using a set of
characters that are legal for email addresses[14, 9]. After
the policy part has thus been obtain, it is appended to the
user part; the result can now be cut-and-pasted or other-
wise used as an email address.

2.2. Processing of Received SPAs

When email directed to an SPA is received, the SPA
must first be decoded. The username part is stripped, and
the remainder is decoded and decrypted. Next, the MAC is
checked; if it passes, the policy rules are evaluated within
the context of the user and of the received message (i.e.,, if
the rules refer to the user’s environment such as the date,
or parts of the message such as the sender address, the pro-
gram that checks the rules has to take that into account).
The rules could indicate a simple accept/reject choice, or
may have more complicated results such as a new address
to forward the mail to, extra headers to insert, and so on.
Typically, all these operations will be done by a program
invoked by procmail or other mail delivery processing ap-
plications.

An impediment to the proper operation of SPAs is that,
in many legitimate cases and in most spam cases, the ad-
dress listed in the To: header of the mail message is not
the same as address of the recipient, which is given in
the RCPT command (the so-called “envelope recipient ad-
dress”) during the SMTP dialog. In fact, in many cases
the envelope recipient address does not appear anywhere
in the headers, although some mailers, if properly con-
figured, will put it in one of the Received: header lines.
There is only one solution to that: the MTA where the
SPA is delivered must be configured to add a header with
the envelope recipient address, which, of course, is the
SPA. There are issues when multiple recipients are given
with RCPT commands; we discuss how to solve them in a
particular MTA (Postfix) in Section3.2.

3. Implementation

We implemented SPAs under Unix, with Postfix[15] as
the Mail Transport Agent. There are two phases; creating
the SPA, and then processing email sent there. Unlike the



previous section where mostly talked about the structure,
in this section we shall discuss the receiving considera-
tions much more than the creation of SPAs.

3.1. SPA Creation

As a first usable system we decided to limit the range of
policies expressible in the address for the sake of brevity
and usability of addresses. There is a lot of broken and
misconfigured mail software and we would like, if pos-
sible, not to cause it to reject our addresses. Given that
we want these addresses to be used for web-based trans-
actions, and that some web servers impose artificial limits
on the size of email addresses, we decided to put the least
amount of data, encoded in a compact way, that fulfilled
the design criteria of our system. To wit, these baseline
SPAs have only an expiration date and a substring of the
domain name that is allowed to send email to that address.

A fundamental design issue was the length of the SPA.
128 bits are a convenient size; they are one block of a
modern symmetric cipher such as AES. We shall call this
construct the SPAB (SPA Block). SPABs are encrypted
under a symmetric key, and encoded using the charac-
ter set of valid email addresses: letters, numbers, and a
few special symbols. The encrypted and encoded SPA
block is called the SPABEE. Base-64 encoding would be
very convenient, resulting in a 22-character-long SPABEE.
While there is no reason to assume that automatic soft-
ware would change the case of an SPA string, email ad-
dresses are case-insensitive, so we decided not to take any
risks and just do base-32 encoding, using the numbers 0–
9 and the letters A–V. On receipt, we ignore the case of
letters. This results in a 26-character-long SPABEE. A
quick experiment of various well-known web sites showed
that they had no problem with 40- or 50-character-long ad-
dresses.

Time resolution of one day was deemed adequate; al-
locating 14 bits for the expiration date, encoded in days
since January 1st, 2000 would allow for expiration dates
into September 2044, by which time it is hoped that we
will have eradicated the spam problem. The special value
0 means “no expiration date”. Some bits in the 128-bit
string should be used to check for integrity, and the rest of
the space should encode the domain name allowed to send
to the SPA. Two bits encode how many trailing domain
name components to strip from the incoming address be-
fore comparing it to the address in the SPA. The underly-
ing assumption is that, in many occasions, the significant
part of a domain name (as far as spam is concerned) does
not include the trailing gTLD or ccTLD, and some times
not even the second-level domain. We want a mechanism
for allowing “foo.com”, “foo.co.uk”, and “foo.ac.jp” to
all be accepted if we suspect that they are the same firm.
The first two bits in the SPAB encode this: “00” means

that nothing is stripped, “01” and “10” means that one or
two trailing domain components are stripped, and “11”
means that upon receipt we should try matching against
zero, one or two components stripped. The domain name
itself can also be encoded in 6-bit characters, since do-
main names are not case-sensitive, and many characters
are not valid domain name characters. If the domain name
is shorter than the space available, it is padded with zeros.
Of course, an all-zeroes domain part means “accept all do-
main names”. Given all these considerations, we come up
with the following encoding:

2 bits encode TLD stripping.
14 bits encode expiration date (to September 2044).
96 bits encode domain name (16 characters).
16 bits encode ICV.

Since the domain name can now encode 16 charac-
ters, we can even have it encode a full email address
(the fact indicated by the inclusion of an at-sign in the
allowed domain name). Many people’s email addresses
are longer than 16 characters; again, we use properties
of the application domain to circumvent this problem; if
an @ sign appears in the domain name, we make a sub-
string comparison anchored at the @ sign. For example,
“i@research.att.c” would match “ji@research.att.com”
(as well as “iii@research.att.co.uk”), but would not
match “abc@research.att.com” or “ji@yahoo.com”.

The ICV is derived by computing the MD5 checksum
of the first 112 bits, and using the first (high-order) 16 bits
of that checksum. This is not really a MAC, but it is ade-
quate. It may seem rather short, however, in that it would
allow one tampered message in

�����
to go through unde-

tected. This is not deemed to be a serious problem; for
most people, it would be less than one bad message per
month, and even then, the chances that the domain name
and the expiration date would have decrypted to some-
thing valid are virtually nil.

Expiration DateD D

ICV

Encoded Domain Name

Figure 2. SPA Block.

The format of the SPA Block is shown in Figure 2.



To generate it, we wrote a short script, spagen, which
takes as arguments an expiration date and/or a domain
name (with or without an @ sign, as described above),
computes the ICV and populates the 128-bit SPAB. The
resulting block is then encrypted with AES-256-CBC
(AES with a 256-bit key in CBC mode), and printed
out base-32 encoded. The contents of the environment
variable SPAPFX are prepended:
$ echo $SPAPFX
ji+QQ
$ spagen -e +4 -1 -d apskatecomputers
ji+QQIV89O7OD2GDASIK2M1928IN6N8

This string can now be cut-and-pasted into whatever ap-
plication requires an SPA. The -1 option indicates that
one level of domain names has been omitted; the gen-
erated SPA will therefore cause any mail originating at
cheapskatecomputers.com, as well as realcheapskatecom-
puters.org, to be accepted for the following four days.

Once the SPAB, the policy part of the SPA, has been
computed, and encrypted and encoded into the SPABEE,
the SPA can be formed in several different ways, depend-
ing on how the user’s receiving email software operates.
The easiest case is when we are only worried about mail
sent directly to us; then we can form the SPA using the
mailbox+extension convention: the username, followed
by +, followed by the SPABEE. Since SPABEEs are 26
characters long, and it is unlikely that other ordinary uses
of the mailbox extension will be that long, a procmail rule
that selects 26-character extensions can be used to divert
email sent to SPAs. Alternatively, some user-selected pre-
fix to the SPABEE can be used as a disambiguator. In the
previous example, the SPABEE can be prefixed with the
string “QQ”; then a .procmailrc rule like the one in Fig-
ure 3 be used. All incoming mail to ji with an extension
starting with QQ will be piped to a program called spain
(“SPA in”) for processing.

:0
ˆTOji+QQ.*@att.com
| $BINDIR/spain

Figure 3. .procmailrc rule to catch SPAs

3.2. Processing incoming SPA mail

The simplest case for processing SPA mail is when the
“+” convention is used. The user’s .procmailrc contains a
rule like the one in Figure 3. The mail is piped through
the receiving program (spain), which verifies the valid-
ity of the SPA. If the SPA is invalid, the mail is sim-
ply discarded. Otherwise, the program inserts an X-SPA-
From: header line into the incoming mail and pipes it back

through procmail for reprocessing. Any existing X-SPA-
From: lines are deleted. To prevent an adversary from
inserting random X-SPA-From: lines in their mail in an at-
tempt to bypass SPA processing, spain replaces the To:
header line with username+ a fixed 128-bit string (base-
32 encoded). Mail sent to this extension is known to have
been sent to a valid SPA, and can take the X-SPA-From:
header into account. This process is adequately secure;
the security of the system is predicated upon the filesys-
tem security of the user anyway (anyone who can break
into the user’s machine and/or mail repository can simply
deposit spam there). Since this secret delivery address is
never exposed, and it only appears in the user’s configu-
ration files, there is no additional security exposure. An
adversary has as much of a chance of guessing that ad-
dress as of guessing the encryption key, which is negligi-
ble. Obviously, mail re-injected this way will not match
the rule looking for SPAs. Rules that do match it can then
also look at the X-SPA-From: headers, along with other
headers, to split the mail into different mailboxes. Fig-
ure 4 illustrates this process.

N

procmail

MTA 

SPA? spain

deliver

Y

Figure 4. Incoming SPA mail.

A number of complications arise in practice, all of
which need some (usually just one-time) support from the
mail administrator. The first, and perhaps most significant,
is that many web form software does not accept a + sign as
part of the email address; whether that is by design or by
ignorance is immaterial. Although MTAs can be config-
ured to use a different extension separator character, that
may not be desired because it affects all users. A better
solution is to use a separator string, such as QQ, that is
not likely to appear as part of an email address. For exam-
ple, if the mail server for fufutos.gr uses the postfix[15]
MTA, the following rule in /etc/postfix/virtual pcre ac-
complishes this.2

2For this to work, pcre:/etc/postfix/virtual pcre must
be added to the virtual maps line in /etc/postfix/main.cf.



/ˆ(\S+)QQ(\S+)@fufutos\.gr$/
${1}+${2}@fufutos.gr

Then, any mail sent to, e.g., fooQQbar@fufutos.gr will
be delivered to foo+bar@fufutos.gr.

This still leaves open the possibility that someone pe-
rusing a list of spam addresses will notice the pattern and
decide to simply put foo@fufutos.gr in the spam list. To
solve this problem, each user can be given an alias for use
only with SPAs. Mail sent to the naked alias (without an
extension) is obviously spam, and can safely be rejected.

The other important operation that the SMTP daemon
has to perform is to save the envelope recipent address
(the address given in the SMTP RCPT To: command); the
reasons for this were explained in Section 2.2. It turns out
that this is harder than it looks, because it has to happen
before any aliasing or address rewriting happens in the
MTA. The easiest way of accomplishing this in Postfix is
by defining a “content filter” for smtpd, the program that
accepts incoming SMTP connections. If so configured,
smtpd runs the mail it gets through a filter, giving the filter
access to the envelope sender (MAIL From:) and receiver
(RCPT To:) addresses. Thus the filter can insert a header
line such as
X-SPA-To:fooQQIV8...928IN6N8@fufutos.
gr (where some characters have been omitted for for-
matting reasons) to the headers. Because spammers can
always insert their own X-SPA-To: headers, the filter
scans for them and removes them before inserting its
own.

After these substitutions, the MTA delivers the mail to
the final user. The rule in Figure 3 is duplicated, except
that the header matched is not the To: header but rather
the X-SPA-To: header. Otherwise, the processing that in-
vokes spain, checks the SPA, and resends the mail to the
user with the 128-bit secret extension as described in the
beginning of this section remains the same.

4. Discussion

There are several operational issues associated with the
use of SPAs. The first concern is what happens when a
spammer acquires an SPA, but also learns who the allowed
sender is. Since email headers are not authenticated at any
point, the spammer can simply forge the From: headers
and let their spam through. Similarly, unrestricted SPAs
given to friends may also be compromised, for example
by being given by a naı̈ve relative to an electronic greet-
ing card web site. We thus need a way to revoke SPAs
without actually having to keep track of all the ones we
have given out. The easiest way to accomplish this is to
use periodically change the encryption key, while keeping
some small number of old ones around. When mail comes
in that does not decrypt properly with the current key (the
ICV in the SPAB does not compute correctly), we can try

decrypting with older keys; if one of them works, depend-
ing on the policy in the SPA we may simply consider it
expired, or send a challenge to the sender to verify that
they are still legitimate. The challenge message should not
create any additional state; an easy way of accomplishing
this is to generate an SPA with a one-day lifetime asking
the recipient to reply to that address. Many variations on
this theme are possible, and experience with a deployed
system will show what is most appropriate.

The 128-bit SPA described in Section 3 was done as
the absolute minimum system that would have the short-
est possible SPABEE size. In fact, since we are only check-
ing for equality, the string itself need not be in the SPAB,
just an indication of how many characters before and af-
ter the @ sign to compare, along with a truncated MAC
of the resulting substring. This would allow very long
email addresses to be efficiently encoded, but would not
reduce the minimum size of the SPABEE, which is dic-
tated by the block size of the cipher. If we are willing to
allow SPAs longer than 128 bits, we can encode longer
acceptable email addresses, perhaps even use real regular
expressions instead of substring matching. We can also
add a forwarding rule: an email address to forward the
resulting email to, in order to make procmail’s job eas-
ier. We can also increase the granularity of the expira-
tion date to hours or minutes, but since email operates on
human scales, the benefits derived from that would be al-
most nonexistent. There are some more obvious policies
that we could encode with a single bit, such as requiring
encrypted/authenticated mail to the SPA. In the limit, full-
fledged policies can be expressed in some policy definition
language such as the one described in [6].

Finally, when systems such as POP3[13] or IMAP4[8]
are used, the user can have the option of letting all mail,
including spam, accumulate on the server, and then use
spain-like processing as each piece of mail is retrieved.
Naturally, usually only the headers will need to be re-
trieved before a decision is made to discard the mail as
spam. If the machine where the POP3/IMAP4 server runs
can be trusted with the user’s SPA key, then all this pro-
cessing can happen on the server side, eliminating the
need to keep spam in the user’s mailbox.

The basic premise of Single-Purpose Addresses is that
they do not rely on the coöperation of the correspondent to
enforce policy. In trying to extend the system, we should
keep that basic premise in mind. There are many ways
to fight spam; SPAs add one more powerful tool to our
armory.

5. Related Work

There is a tremendous amount of effort being exerted to
fight spam. Like any social disease, people have tried to
counter spam with social pressure, technology, and legis-



lation. The social pressure aspect is the weakest of the ap-
proaches, and only works to some extent when there is the
possibility of financial or societal repercussions. Some le-
gal framework exists that prohibits unsolicited email. [12]
is a not-very-recent survey, and legislation by region can
be found in [1]. Litigation creates problems of its own,
and it is usually easier to just tolerate spam as part of the
cost of doing business on the Internet.

The main focus of anti-spam combat has been through
technical means. Again, much like disease, there are ways
of reducing exposure in the first place, combating the way
it spreads, and identifying and removing it where possi-
ble. Reducing exposure is hard, and different techniques
need to be employed when giving addresses to individuals,
posting in online fora, and when conducting transactions
over the web. These categories are not even well-defined;
a user entering a friend’s email address in an electronic
greeting card web site thinks that he is being cute, but he
is are actually exposing his friend’s unrestricted email ad-
dress to a spam harvester. Moreover, in personal email it
is hard to use one-time addresses; social norms still dictate
the use of short, pronounceable email addresses.

The system most like SPA is the Tagged Message Deliv-
ery Agent (TMDA)[2]. TMDA also has the concept of us-
ing the email address to create single-purpose addresses.
Aside from formatting and implementation details, the
main architectural difference is that policy is not explic-
itly described in the email address, but rather (except for
the case of the expiration date) the address is used to look
up the policy in local tables. This means that for each spe-
cial address created, state must be kept by the user so that
it can be processed in the future, causing such state ta-
bles to grow without bound when addresses without expi-
ration dates are used. TMDA also includes features found
in challenge-response systems. These systems, (e.g., [3])
try to ensure “return routability” of email addresses, po-
tentially including a short puzzle that a human could an-
swer easily but a machine could not. These can mitigate
the problem of spam to harvested addresses, but it does
mean that there can be cases where an automatic email
should have gone through but it does not. SPAs address
this problem.

Much spam software is sloppy about following SMTP
to the letter. Other software uses “open relays” (MTAs
(mis)configured to accept mail not for their own domains),
as stepping stones to obscure the origin of spam. Several
services provide real-time data on whether a host is an
open relay, and modern MTA software includes extensive
support for querying these services and rejecting email
passing through an open relay. Similarly MTAs can be
configured to reject mail with badly-formed headers; un-
fortunately, a sizeable fraction of worldwide mail servers
are misconfigured, and the risk of losing important email

is high.
Various ad hoc solutions also work, such as seeding

spammers’ lists with email addresses created just for that
purpose, and comparing mail received on those addresses
with mail received on real addresses. Spammers have
been getting more insidious, though, and they generate
slight variations of the message to each address they send
to.

Finally, there is a large amount of research literature
on identifying spam through textual analysis of both the
headers and the body of the message. Spamassassin[4],
a message-text classification program, does a stellar job,
as do many other systems employing AI techniques; their
operation is beyond the scope of this paper. Even forms of
micropayments have been proposed, either in the form of
actual transfer of payment, or the burning of CPU cycles
as an indication that some expense has been incurred[5];
causing spammers to spend their own resources in a man-
ner proportional to the amount of spam they send may
make them rethink their business model.

6. Summary and Future Work

There several ways in which to expand the SPA idea. A
policy description language that is more expressive than
simple regular-expression matching, and that can refer to
other headers and perhaps even content of the message
may be a useful tool to develop. Another useful exten-
sion would be to enable a mail server along the delivery
path, rather than the end user, to apply the policy in the
SPA. A fairly obvious way of accomplishing this is to en-
crypt the policy under the server’s public key while sign-
ing it with the user’s key. This of course opens up the po-
tential to launch a CPU denial-of-service attack on such
servers, hence some details have to be worked out first.
Finally, a method for delegating the right to send email
may be of some limited use: a subscriber to a mailing list
may wish to let any member of the mailing list send him
mail without first contacting him. If the SPA encodes that
the mailing list administrator has the right to delegate to
others the ability to send mail to the user, and the sender
of such email includes a delegation certificate along with
her email, that email will be let through. Many policy
management systems, such as [6], have a natural way of
specifying delegation. Such delegation certificates can be
transmitted in additional mail headers.

In conclusion, we have described Single-Purpose Ad-
dresses, a system that encodes policy in email addresses
for the chief purpose of filtering spam intelligently. The
policy specified may be as simple as an expiration date
and/or the email address of the allowed sender, or as com-
plicated as a full-fledged program. Thus, the SPA system
reduces spam by stopping it right before the user sees it.
Encoding policy as part of the email address allows for



stateless incoming mail filtering. There is no need to man-
age whitelists, and blacklists, to the extent that they will
be needed, can have addresses removed after their expira-
tion date. Integrity checks protect the SPA from tamper-
ing, and encryption ensures that adversaries cannot infer
valid, non-SPA addresses from the SPA itself; in a lim-
ited sense, SPA therefore also reduces exposure of email
addresses. Finally, while it is better to get some support
from the mail server, the SPA system can work with re-
duced functionality with just client support, increasing its
chances of adoption.

Acknowledgments

Many thanks go to Viktor Dukhovni for his help with Post-
fix, and to the anonymous reviewers for their helpful com-
ments.

References
[1] http://www.spamlaws.com/.
[2] http://www.tmda.net/.
[3] http://www.chooseyourmail.com/.
[4] http://www.spamassassin.com/.
[5] A. Back. Hashcash — A Denial of Service Coun-

termeasure. http://www.cypherspace.org/
hashcash/, April 1997.

[6] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis.
The KeyNote Trust-Management System Version 2. RFC

2704, http://www.rfc-editor.org/, September
1999.

[7] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust
Management. In Proc. of the 17th Symposium on Secu-
rity and Privacy, pages 164–173. IEEE Computer Society
Press, Los Alamitos, 1996.

[8] M. Crispin. Internet Message Access Protocol — Version
4rev1. RFC 2060, http://www.rfc-editor.org/,
December 1996.

[9] D. H. Crocker. Standard For The Format Of ARPA Inter-
net Text Messages. Request for Comments 822, Internet
Engineering Task Force, August 1982.

[10] J Klensin, Editor. Simple Mail Transfer Protocol. Request
for Comments 2821, Internet Engineering Task Force,
April 2001.

[11] M. Blaze and J. Feigenbaum and J. Ioannidis and
A. Keromytis. The Role of Trust Management in Dis-
tributed Systems Security. In Secure Internet Program-
ming, pages 185–210.

[12] S. H. Mueller. Spam and the Law. ;Login:, April 1998.
[13] J. Myers and M. Rose. Post Office Protocol — Version 3.

RFC 1939, http://www.rfc-editor.org/, May
1996.

[14] J. Postel. Simple Mail Transfer Protocol. Request for
Comments 821, Internet Engineering Task Force, August
1982.

[15] Wietse Venema. http://www.postfix.org/.


